এ অধ্যায়ের পাঠ্যসূচী
- ঐতিহাসিক পটভূমি (Historical Background)
- বিপরীত ত্রিকোণমিতিক ফাংশন (Inverse trigonometric functions)
- \(\sin^{-1}{x}=cosec^{-1}{\frac{1}{x}}\)
- \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
- \(\sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)
- \(\sin^{-1}{x}=\sec^{-1}{\frac{1}{\sqrt{1-x^2}}}\)
- \(\sin^{-1}{x}=\tan^{-1}{\frac{x}{\sqrt{1-x^2}}}\)
- \(\sin^{-1}{x}=\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
- \(\cos^{-1}{x}=\sec^{-1}{\frac{1}{x}}\)
- \(\sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
- \(\cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
- \(\cos^{-1}{x}=cosec^{-1}{\frac{1}{\sqrt{1-x^2}}}\)
- \(\cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
- \(\cos^{-1}{x}=\cot^{-1}{\frac{x}{\sqrt{1-x^2}}}\)
- \(\tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
- \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
- \(\tan^{-1}{x}=\sin^{-1}{\frac{x}{\sqrt{1+x^2}}}\)
- \(\tan^{-1}{x}=cosec^{-1}{\frac{\sqrt{1+x^2}}{x}}\)
- \(\tan^{-1}{x}=\cos^{-1}{\frac{1}{\sqrt{1+x^2}}}\)
- \(\tan^{-1}{x}=\sec^{-1}{\sqrt{1+x^2}}\)
- \(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
- \(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
- \(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
- \(\sin^{-1}{x}+\sin^{-1}{y}=\)\(\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)
- \(\sin^{-1}{x}-\sin^{-1}{y}=\)\(\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)
- \(\cos^{-1}{x}+\cos^{-1}{y}=\)\(\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
- \(\cos^{-1}{x}-\cos^{-1}{y}=\)\(\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
- \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
- \(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
- \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\)\(\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\)
- \(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\frac{xy-1}{y+x}}\)
- \(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\frac{xy+1}{y-x}}\)
- \(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\)\(\cot^{-1}{\frac{xyz-x-y-z}{yz+zx+xy-1}}\)
- \(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\)
- \(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)
- \(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)
- \(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)
- \(3\tan^{-1}{x}=\tan^{-1}{\frac{3x-x^3}{1-3x^2}}\)
- \(3\cot^{-1}{x}=\cot^{-1}{\frac{x^3-3x}{3x^2-1}}\)
- \(2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
- \(2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
- \(2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
- \(2\tan^{-1}{x}=\cot^{-1}{\frac{1-x^2}{2x}}\)
- \( f(x)=y=\sin^{-1}{x}\)-এর লেখচিত্র (Graph of \(\sin^{-1}{x}\) inverse function)
- \( f(x)=y=\cos^{-1}{x}\)-এর লেখচিত্র (Graph of \(\cos^{-1}{x}\) inverse function)
- \( f(x)=y=\tan^{-1}{x}\)-এর লেখচিত্র (Graph of \(\tan^{-1}{x}\) inverse function)
- \( f(x)=y=cosec^{-1}{x}\)-এর লেখচিত্র (Graph of \(cosec^{-1}{x}\) inverse function)
- \( f(x)=y=\sec^{-1}{x}\)-এর লেখচিত্র (Graph of \(\sec^{-1}{x}\) inverse function)
- \( f(x)=y=\cot^{-1}{x}\)-এর লেখচিত্র (Graph of \(\cot^{-1}{x}\) inverse function)
- অধ্যায় \(vii.H\)-এর উদাহরণসমুহ
- অধ্যায় \(vii.H\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
- অধ্যায় \(vii.H\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(vii.H\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(vii.H\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
ঐতিহাসিক পটভূমি
Historical Background
হিপার্কাস (১৯০ খ্রিষ্টপূর্ব-১২০ খ্রিষ্টপূর্ব)
গণিত, জ্যোতির্বিদ্যা ও ভূগোলে তাঁর ব্যপক অবদান রয়েছে। তিনি প্রথম ত্রিকোণমিতিক সারনি প্রণয়ন করে 'আর্ক' ও 'কর্ড' সিরিজের মান নির্ণয় করেন। এজন্য তাঁকে ত্রিকোণমিতির জনক বলা হয়।
ত্রিকোণমিতি গণিত শাস্ত্রের একটি গুরুত্বপূর্ণ শাখা। ইংরেজী শব্দ 'Trigonometry' শব্দটি দুইটি গ্রিক শব্দ 'Trigon' যার অর্থ তিন কোণ এবং 'Metron' যার অর্থ পরিমাপ, এর সমন্বয়ে গঠিত। পরিমাপের ক্ষেত্রে উদ্ভূত নিত্য-নতুন জটিল সমস্যা সহজে সমাধানের জন্যই ত্রিকোণমিতির আবির্ভাব। খ্রিষ্টপূর্ব ২০০০ বছরেরও পূর্বে প্রাচীন মিশরীয় ও গ্রিক গণিতবিদ্গণ ত্রিকোণমিতি বিষয়ে অধ্যয়ন করতেন। জ্যোতির্বিদ্যা সংক্রান্ত গবেষণায় এটি ব্যপক ব্যবহৃত হয়। ভারত বর্ষের গুপ্ত আমলে আর্যভট্টের প্রাচীন ভারতীয় গণিতের ইতিহাসে আর্যভট্টের (৪৭৬ – ৫৫০ খ্রিষ্টপূর্ব ) হাত ধরেই ক্লাসিকাল যুগ (কিংবা স্বর্ণযুগ) শুরু হয়। গণিত এবং জ্যোতির্বিদ্যা সংক্রান্ত আর্যভট্টের বিভিন্ন কাজ মূলত দুটি গ্রন্থে সংকলিত হয়েছে বলে জানা গেছে। এর মাঝে ‘আর্যভট্টীয়’ একটি, যেটি উদ্ধার করা গিয়েছে। এটি রচিত চার খণ্ডে, মোট ১১৮টি স্তোত্রে। অন্য যে কাজটি সম্পর্কে জানা যায় সেটি হল ‘আর্য-সিদ্ধান্ত’। আর্য-সিদ্ধান্তের কোন পাণ্ডুলিপি খুঁজে পাওয়া যায়নি, তবে বরাহমিহির, ব্রহ্মগুপ্ত এবং প্রথম ভাস্করের কাজে এটির উল্লেখ মেলে। আর্যভট্ট গ্রন্থ রচনা করেছেন পদবাচ্যের আকারে। বিশেষ অবদানের কারণে ত্রিকোনমিতির স্বরূপ উন্মোচিত হয়। পরবর্তিতে ১৭ শতকে স্যার আইজ্যাক নিউটন ১৬৮৭ সালে স্যার আইজ্যাক নিউটনের বিশ্ব নন্দিত গ্রন্থ প্রকাশিত হয়, যেখানে তিনি সর্বজনীন মহাকর্ষ সূত্র সহ গতির তিনটি সূত্র প্রদান করেন। তিনি বলবিজ্ঞানের ভিত্তি স্থাপন করেন। আলোকবিজ্ঞান, শব্দবিজ্ঞান, তাপবিজ্ঞানসহ পদার্থবিজ্ঞানের সকল মৌলিক শাখায় তাঁর অবদান অনস্বীকার্য। বৈজ্ঞানিক পর্যবেক্ষন ও পরীক্ষণের তিনি উদ্ভাবিত তত্ত্বকে যাচাই ও পরীক্ষা নিরীক্ষার জন্য পরীক্ষণের ব্যবস্থা করতেন। ১৬৬৯ সালে নিউটন ক্যামব্রিজ বিশ্ববিদ্যালয়ে গণিতের লুকাসিয়ান প্রফেসর হিসাবে যোগদান করেন। ও জেমস স্টার্লিং স্টার্লিং (11/05/1692-5/12/1770) ছিলেন আর্চিবাল্ড স্টার্লিং অফ গার্ডেনের তৃতীয় পুত্র। ১৮ বছর বয়সে তিনি বলিওল কলেজ, অক্সফোর্ডে গিয়েছিলেন, যেখানে প্রধানত আর্ল অফ মারের প্রভাবে তিনি ব্যালিওলের বিশপ ওয়ার্নারের প্রদর্শনীকারীদের (বা স্নেল প্রদর্শনী) মনোনীত হন। লন্ডনে তিনি দশ বছর অবস্থান করেন, বেশিরভাগ সময় টাওয়ার স্ট্রিটের একটি একাডেমির সাথে যুক্ত ছিলেন এবং তাঁর অবসরকে গণিত এবং খ্যাতিমান গণিতবিদদের সাথে যোগাযোগের জন্য উৎসর্গ করেছিলেন। এর মত বিজ্ঞানীদের হাত ধরে ত্রিকোণমিতি আধুনিক গণিতের গুরুত্বপূর্ণ শাখা হিসেবে প্রতিষ্ঠা লাভ করে।
হিপার্কাসের প্রণীত সারণি সংস্কার করে ক্লডিয়াস টলেমী ত্রিকোনমিতিতে অনেক গুরুত্বপূর্ণ তথ্য সংযোজন করেন।
বিপরীত ত্রিকোণমিতিক ফাংশন একটি নির্দিষ্ট ব্যবধিতে ব্যবহৃত হয়, যেখানে একটি কোণের মানগুলি রূপায়িত থাকে। নির্দিষ্ট ব্যবধিতে বিপরীত ত্রিকোণমিতিক রেলেশনেই বিপরীত ত্রিকোণমিতিক ফাংশন এবং এটি এক-এক ফাংশন।
৪র্থ-৫ম শতাব্দীতে শীদ্ধার্থ, আর্যভট্ট, ৭ম শতাব্দীতে ভাস্করা-I ও ব্রহ্মগুপ্ত বিপরীত ত্রিকোণমিতিক সমীকরণ নিয়ে ব্যপক তত্ত্ব লিপিবদ্ধ করেন।
১৮১৩ সালে বৃটিশ গণিতবিদ জন হার্শেল ১৮১৩ সালে বৃটিশ গণিতবিদ জন হার্শেল সর্বপ্রথম বিপরীত ত্রিকোণমিতিক ফাংশনের প্রতীকগুলি \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x} ... ... \) সূচিত করেন। (John Herschel) বিপরীত ত্রিকোণমিতিক ফাংশনকে \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x}\) ইত্যাদি প্রতীক দ্বারা সূচিত করেন।
হিপার্কাসের প্রণীত সারণি সংস্কার করে ক্লডিয়াস টলেমী ত্রিকোনমিতিতে অনেক গুরুত্বপূর্ণ তথ্য সংযোজন করেন।
বিপরীত ত্রিকোণমিতিক ফাংশন একটি নির্দিষ্ট ব্যবধিতে ব্যবহৃত হয়, যেখানে একটি কোণের মানগুলি রূপায়িত থাকে। নির্দিষ্ট ব্যবধিতে বিপরীত ত্রিকোণমিতিক রেলেশনেই বিপরীত ত্রিকোণমিতিক ফাংশন এবং এটি এক-এক ফাংশন।
৪র্থ-৫ম শতাব্দীতে শীদ্ধার্থ, আর্যভট্ট, ৭ম শতাব্দীতে ভাস্করা-I ও ব্রহ্মগুপ্ত বিপরীত ত্রিকোণমিতিক সমীকরণ নিয়ে ব্যপক তত্ত্ব লিপিবদ্ধ করেন।
১৮১৩ সালে বৃটিশ গণিতবিদ জন হার্শেল ১৮১৩ সালে বৃটিশ গণিতবিদ জন হার্শেল সর্বপ্রথম বিপরীত ত্রিকোণমিতিক ফাংশনের প্রতীকগুলি \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x} ... ... \) সূচিত করেন। (John Herschel) বিপরীত ত্রিকোণমিতিক ফাংশনকে \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x}\) ইত্যাদি প্রতীক দ্বারা সূচিত করেন।
বিপরীত ত্রিকোণমিতিক ফাংশন
Inverse trigonometric functions
নির্দিষ্ট ব্যবধিতে বিপরীত ত্রিকোণমিতিক রেলেশনেই বিপরীত ত্রিকোণমিতিক ফাংশন, অর্থাৎ ত্রিকোণমিতিক ফাংশনের বিপরীত বিশেষ অন্বয়কে বিপরীত ত্রিকোণমিতিক ফাংশন বলা হয়। বিপরীত ত্রিকোণমিতিক ফাংশনগুলি নিম্নরূপে লেখা হয়।
যেমনঃ \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x}, \ cosec^{-1}{x},\) \(\sec^{-1}{x}, \ \cot^{-1}{x}\) ইত্যাদি।
\(\sin^{-1}{x}\) কে "সাইন ইনভার্স \(x\)" পড়া হয়।
যেমনঃ \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x}, \ cosec^{-1}{x},\) \(\sec^{-1}{x}, \ \cot^{-1}{x}\) ইত্যাদি।
\(\sin^{-1}{x}\) কে "সাইন ইনভার্স \(x\)" পড়া হয়।
সাইন ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the sine as the inverse of the other ratio
\(\sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\)
\(cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\)
\(\sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\)
\(\sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
\(\sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
\(\sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
\(cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\)
\(\sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\)
\(\sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
\(\sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
\(\sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
প্রমাণঃ
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\frac{1}{\sin{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sin{\theta}}\right)}\)
\(\therefore \sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(cosec \ {\theta}=x\)
\(\Rightarrow \theta=cosec^{-1}{x}\)
আবার,
\(\sin{\theta}=\frac{1}{cosec \ {\theta}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\frac{1}{cosec \ {\theta}}\right)}\)
\(\therefore cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because cosec \ {\theta}=x\)
\(\therefore \theta=cosec^{-1}{x}\)
\(cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin^2{\theta}+\cos^2{\theta}=1\)
\(\Rightarrow \cos^2{\theta}=1-\sin^2{\theta}\)
\(\Rightarrow \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\sqrt{1-\sin^2{\theta}}\right)}\)
\(\therefore \sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sec{\theta}=\frac{1}{\cos{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\sqrt{1-\sin^2{\theta}}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\sqrt{1-\sin^2{\theta}}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{\cos{\theta}}{\sin{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\sqrt{1-\sin^2{\theta}}}{\sin{\theta}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\frac{1}{\sin{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sin{\theta}}\right)}\)
\(\therefore \sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(cosec \ {\theta}=x\)
\(\Rightarrow \theta=cosec^{-1}{x}\)
আবার,
\(\sin{\theta}=\frac{1}{cosec \ {\theta}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\frac{1}{cosec \ {\theta}}\right)}\)
\(\therefore cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because cosec \ {\theta}=x\)
\(\therefore \theta=cosec^{-1}{x}\)
\(cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin^2{\theta}+\cos^2{\theta}=1\)
\(\Rightarrow \cos^2{\theta}=1-\sin^2{\theta}\)
\(\Rightarrow \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\sqrt{1-\sin^2{\theta}}\right)}\)
\(\therefore \sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sec{\theta}=\frac{1}{\cos{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\sqrt{1-\sin^2{\theta}}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\sqrt{1-\sin^2{\theta}}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{\cos{\theta}}{\sin{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\sqrt{1-\sin^2{\theta}}}{\sin{\theta}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
কোসাইন ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the cosine as the inverse of the other ratio
\(\cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\)
\(\sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\)
\(\cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\)
\(\cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
\(\cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
\(\cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
\(\sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\)
\(\cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\)
\(\cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
\(\cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
\(\cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
প্রমাণঃ
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\sec{\theta}=\frac{1}{\cos{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\cos{\theta}}\right)}\)
\(\therefore \cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\sec{\theta}=x\)
\(\Rightarrow \theta=\sec^{-1}{x}\)
আবার,
\(\cos{\theta}=\frac{1}{\sec{\theta}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\frac{1}{\sec{\theta}}\right)}\)
\(\therefore \sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \sec{\theta}=x\)
\(\therefore \theta=\sec^{-1}{x}\)
\(\sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\sin^2{\theta}+\cos^2{\theta}=1\)
\(\Rightarrow \sin^2{\theta}=1-\cos^2{\theta}\)
\(\Rightarrow \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\sqrt{1-\cos^2{\theta}}\right)}\)
\(\therefore \cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\frac{1}{\sin{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sqrt{1-\cos^2{\theta}}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sqrt{1-\cos^2{\theta}}}{\cos{\theta}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{\cos{\theta}}{\sin{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sqrt{1-\cos^2{\theta}}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\sec{\theta}=\frac{1}{\cos{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\cos{\theta}}\right)}\)
\(\therefore \cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\sec{\theta}=x\)
\(\Rightarrow \theta=\sec^{-1}{x}\)
আবার,
\(\cos{\theta}=\frac{1}{\sec{\theta}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\frac{1}{\sec{\theta}}\right)}\)
\(\therefore \sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \sec{\theta}=x\)
\(\therefore \theta=\sec^{-1}{x}\)
\(\sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\sin^2{\theta}+\cos^2{\theta}=1\)
\(\Rightarrow \sin^2{\theta}=1-\cos^2{\theta}\)
\(\Rightarrow \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\sqrt{1-\cos^2{\theta}}\right)}\)
\(\therefore \cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\frac{1}{\sin{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sqrt{1-\cos^2{\theta}}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sqrt{1-\cos^2{\theta}}}{\cos{\theta}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{\cos{\theta}}{\sin{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sqrt{1-\cos^2{\theta}}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
ট্যানজেন্ট ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the tangent as the inverse of the other ratio
\(\tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\)
\(\cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\)
\(\tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\)
\(\tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\)
\(\tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\)
\(\tan^{-1}{x}=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\)
\(\cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\)
\(\tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\)
\(\tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\)
\(\tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\)
\(\tan^{-1}{x}=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\)
প্রমাণঃ
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{1}{\tan{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{1}{\tan{\theta}}\right)}\)
\(\therefore \tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\cot{\theta}=x\)
\(\Rightarrow \theta=\cot^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{1}{\cot{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{1}{\cot{\theta}}\right)}\)
\(\therefore \cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \cot{\theta}=x\)
\(\therefore \theta=\cot^{-1}{x}\)
\(\cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\sin{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\times\cos{\theta}\)
\(\Rightarrow \sin{\theta}=\tan{\theta}\times\frac{1}{\sec{\theta}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\cos{A}=\frac{1}{\sec{A}}\)
\(\Rightarrow \sin{\theta}=\frac{\tan{\theta}}{\sqrt{1+\tan^2{\theta}}}\) ➜ \(\because \sec{A}=\sqrt{1+\tan^2{A}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\frac{\tan{\theta}}{\sqrt{1+\tan^2{\theta}}}\right)}\)
\(\therefore \tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\sqrt{1+\cot^2{\theta}}\)
\(\Rightarrow cosec \ {\theta}=\sqrt{1+\frac{1}{\tan^2{\theta}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow cosec \ {\theta}=\sqrt{\frac{1+\tan^2{\theta}}{\tan^2{\theta}}}\)
\(\Rightarrow cosec \ {\theta}=\frac{\sqrt{1+\tan^2{\theta}}}{\tan{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{\sqrt{1+\tan^2{\theta}}}{\tan{\theta}}\right)}\)
\(\therefore \tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\cos{\theta}=\frac{1}{\sec{\theta}}\)
\(\Rightarrow \cos{\theta}=\frac{1}{\sqrt{1+\tan^2{\theta}}}\) ➜ \(\because \sec{A}=\sqrt{1+\tan^2{A}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\frac{1}{\sqrt{1+\tan^2{\theta}}}\right)}\)
\(\therefore \tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\sec{\theta}=\sqrt{1+\tan^2{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\sqrt{1+\tan^2{\theta}}\right)}\)
\(\therefore \theta=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{1}{\tan{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{1}{\tan{\theta}}\right)}\)
\(\therefore \tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\cot{\theta}=x\)
\(\Rightarrow \theta=\cot^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{1}{\cot{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{1}{\cot{\theta}}\right)}\)
\(\therefore \cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \cot{\theta}=x\)
\(\therefore \theta=\cot^{-1}{x}\)
\(\cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\sin{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\times\cos{\theta}\)
\(\Rightarrow \sin{\theta}=\tan{\theta}\times\frac{1}{\sec{\theta}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\cos{A}=\frac{1}{\sec{A}}\)
\(\Rightarrow \sin{\theta}=\frac{\tan{\theta}}{\sqrt{1+\tan^2{\theta}}}\) ➜ \(\because \sec{A}=\sqrt{1+\tan^2{A}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\frac{\tan{\theta}}{\sqrt{1+\tan^2{\theta}}}\right)}\)
\(\therefore \tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\sqrt{1+\cot^2{\theta}}\)
\(\Rightarrow cosec \ {\theta}=\sqrt{1+\frac{1}{\tan^2{\theta}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow cosec \ {\theta}=\sqrt{\frac{1+\tan^2{\theta}}{\tan^2{\theta}}}\)
\(\Rightarrow cosec \ {\theta}=\frac{\sqrt{1+\tan^2{\theta}}}{\tan{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{\sqrt{1+\tan^2{\theta}}}{\tan{\theta}}\right)}\)
\(\therefore \tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\cos{\theta}=\frac{1}{\sec{\theta}}\)
\(\Rightarrow \cos{\theta}=\frac{1}{\sqrt{1+\tan^2{\theta}}}\) ➜ \(\because \sec{A}=\sqrt{1+\tan^2{A}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\frac{1}{\sqrt{1+\tan^2{\theta}}}\right)}\)
\(\therefore \tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\sec{\theta}=\sqrt{1+\tan^2{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\sqrt{1+\tan^2{\theta}}\right)}\)
\(\therefore \theta=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\)
দুইটি ইনভার্স ফাংশনের যোগফলকে \(\frac{\pi}{2}\) এর মধ্যমে প্রকাশ
Express the sum of two inverse functions in terms of \(\frac{\pi}{2}\)
\(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
\(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
প্রমাণঃ
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আমরা জানি,
\(\sin{\theta}=\cos{\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow \cos^{-1}{\sin{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+\cos^{-1}{\sin{\theta}}=\frac{\pi}{2}\)
\(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আমরা জানি,
\(\tan{\theta}=\cot{\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow \cot^{-1}{\tan{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+\cot^{-1}{\tan{\theta}}=\frac{\pi}{2}\)
\(\therefore \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
ধরি,
\(\sec{\theta}=x\)
\(\Rightarrow \theta=\sec^{-1}{x}\)
আমরা জানি,
\(\sec{\theta}=cosec \ {\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow cosec^{-1}{\sec{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+cosec^{-1}{\sec{\theta}}=\frac{\pi}{2}\)
\(\therefore \sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \sec{\theta}=x\)
\(\therefore \theta=\sec^{-1}{x}\)
\(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আমরা জানি,
\(\sin{\theta}=\cos{\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow \cos^{-1}{\sin{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+\cos^{-1}{\sin{\theta}}=\frac{\pi}{2}\)
\(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আমরা জানি,
\(\tan{\theta}=\cot{\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow \cot^{-1}{\tan{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+\cot^{-1}{\tan{\theta}}=\frac{\pi}{2}\)
\(\therefore \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
ধরি,
\(\sec{\theta}=x\)
\(\Rightarrow \theta=\sec^{-1}{x}\)
আমরা জানি,
\(\sec{\theta}=cosec \ {\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow cosec^{-1}{\sec{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+cosec^{-1}{\sec{\theta}}=\frac{\pi}{2}\)
\(\therefore \sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \sec{\theta}=x\)
\(\therefore \theta=\sec^{-1}{x}\)
\(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
\(\sin^{-1}{x}\) ও \(\sin^{-1}{y}\) ইনভার্স ফাংশনের যোগফল ও বিয়োগফল
Add and subtract the inverse functions \(\sin^{-1}{x}\) and \(\sin^{-1}{y}\)
\(\sin^{-1}{x}+\sin^{-1}{y}=\)\(\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)
\(\sin^{-1}{x}-\sin^{-1}{y}=\)\(\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)
\(\sin^{-1}{x}+\sin^{-1}{y}=\pi-\)\(\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) যখন, \(x^2+y^2\gt{1}\)
\(\sin^{-1}{x}-\sin^{-1}{y}=\)\(\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)
\(\sin^{-1}{x}+\sin^{-1}{y}=\pi-\)\(\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) যখন, \(x^2+y^2\gt{1}\)
প্রমাণঃ
ধরি,
\(\sin{A}=x, \ \sin{B}=y\)
\(\Rightarrow A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow \sin{(A+B)}=\sin{A}\sqrt{1-\sin^2{B}}+\sqrt{1-\sin^2{A}}\sin{B}\) ➜ \(\because \cos{\theta}=\sqrt{1-sin^2{\theta}}\)
\(\Rightarrow A+B=\sin^{-1}{(\sin{A}\sqrt{1-\sin^2{B}}+\sin{B}\sqrt{1-\sin^2{A}})}\)
\(\therefore \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) ➜ \(\because \sin{A}=x, \ \sin{B}=y\)
\(\therefore A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
\(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)
ধরি,
\(\sin{A}=x, \ \sin{B}=y\)
\(\Rightarrow A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
আমরা জানি,
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \sin{(A-B)}=\sin{A}\sqrt{1-\sin^2{B}}-\sqrt{1-\sin^2{A}}\sin{B}\) ➜ \(\because \cos{\theta}=\sqrt{1-sin^2{\theta}}\)
\(\Rightarrow A-B=\sin^{-1}{(\sin{A}\sqrt{1-\sin^2{B}}-\sin{B}\sqrt{1-\sin^2{A}})}\)
\(\therefore \sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\) ➜ \(\because \sin{A}=x, \ \sin{B}=y\)
\(\therefore A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
\(\sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)
ধরি,
\(\sin{A}=x, \ \sin{B}=y\)
\(\Rightarrow A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow \sin{(A+B)}=\sin{A}\sqrt{1-\sin^2{B}}+\sqrt{1-\sin^2{A}}\sin{B}\) ➜ \(\because \cos{\theta}=\sqrt{1-sin^2{\theta}}\)
\(\Rightarrow A+B=\sin^{-1}{(\sin{A}\sqrt{1-\sin^2{B}}+\sin{B}\sqrt{1-\sin^2{A}})}\)
\(\therefore \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) ➜ \(\because \sin{A}=x, \ \sin{B}=y\)
\(\therefore A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
\(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)
ধরি,
\(\sin{A}=x, \ \sin{B}=y\)
\(\Rightarrow A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
আমরা জানি,
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \sin{(A-B)}=\sin{A}\sqrt{1-\sin^2{B}}-\sqrt{1-\sin^2{A}}\sin{B}\) ➜ \(\because \cos{\theta}=\sqrt{1-sin^2{\theta}}\)
\(\Rightarrow A-B=\sin^{-1}{(\sin{A}\sqrt{1-\sin^2{B}}-\sin{B}\sqrt{1-\sin^2{A}})}\)
\(\therefore \sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\) ➜ \(\because \sin{A}=x, \ \sin{B}=y\)
\(\therefore A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
\(\sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)
\(\cos^{-1}{x}\) ও \(\cos^{-1}{y}\) ইনভার্স ফাংশনের যোগফল ও বিয়োগফল
Add and subtract the inverse functions \(\cos^{-1}{x}\) and \(\cos^{-1}{y}\)
\(\cos^{-1}{x}+\cos^{-1}{y}=\)\(\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\cos^{-1}{x}-\cos^{-1}{y}=\)\(\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\cos^{-1}{x}-\cos^{-1}{y}=\)\(\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
প্রমাণঃ
ধরি,
\(\cos{A}=x, \ \cos{B}=y\)
\(\Rightarrow A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
আমরা জানি,
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\Rightarrow \cos{(A+B)}=\cos{A}\cos{B}-\sqrt{1-\cos^2{A}}\sqrt{1-\cos^2{B}}\) ➜ \(\because \sin{\theta}=\sqrt{1-cos^2{\theta}}\)
\(\Rightarrow A+B=\cos^{-1}{\{\cos{A}\cos{B}-\sqrt{(1-\cos^2{A})(1-\cos^2{B})}\}}\)
\(\therefore \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\) ➜ \(\because \cos{A}=x, \ \cos{B}=y\)
\(\therefore A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
\(\cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
ধরি,
\(\cos{A}=x, \ \cos{B}=y\)
\(\Rightarrow A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
আমরা জানি,
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow \cos{(A-B)}=\cos{A}\cos{B}+\sqrt{1-\cos^2{A}}\sqrt{1-\cos^2{B}}\) ➜ \(\because \sin{\theta}=\sqrt{1-cos^2{\theta}}\)
\(\Rightarrow A-B=\cos^{-1}{\{\cos{A}\cos{B}+\sqrt{(1-\cos^2{A})(1-\cos^2{B})}\}}\)
\(\therefore \cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\) ➜ \(\because \cos{A}=x, \ \cos{B}=y\)
\(\therefore A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
\(\cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
ধরি,
\(\cos{A}=x, \ \cos{B}=y\)
\(\Rightarrow A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
আমরা জানি,
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\Rightarrow \cos{(A+B)}=\cos{A}\cos{B}-\sqrt{1-\cos^2{A}}\sqrt{1-\cos^2{B}}\) ➜ \(\because \sin{\theta}=\sqrt{1-cos^2{\theta}}\)
\(\Rightarrow A+B=\cos^{-1}{\{\cos{A}\cos{B}-\sqrt{(1-\cos^2{A})(1-\cos^2{B})}\}}\)
\(\therefore \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\) ➜ \(\because \cos{A}=x, \ \cos{B}=y\)
\(\therefore A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
\(\cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
ধরি,
\(\cos{A}=x, \ \cos{B}=y\)
\(\Rightarrow A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
আমরা জানি,
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow \cos{(A-B)}=\cos{A}\cos{B}+\sqrt{1-\cos^2{A}}\sqrt{1-\cos^2{B}}\) ➜ \(\because \sin{\theta}=\sqrt{1-cos^2{\theta}}\)
\(\Rightarrow A-B=\cos^{-1}{\{\cos{A}\cos{B}+\sqrt{(1-\cos^2{A})(1-\cos^2{B})}\}}\)
\(\therefore \cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\) ➜ \(\because \cos{A}=x, \ \cos{B}=y\)
\(\therefore A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
\(\cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\tan^{-1}{x},\) \(\tan^{-1}{y}\) ও \(\tan^{-1}{z}\) ইনভার্স ফাংশনের যোগফল ও বিয়োগফল
Add and subtract the inverse functions \(\tan^{-1}{x},\) \(\tan^{-1}{y}\) and \(\tan^{-1}{z}\)
\(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\)\(\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\)\(\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) যখন, \(xy\gt{1}\)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\)\(\pi+\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\) যখন, \(xy+yz+zx\gt{1}\)
\(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\)\(\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\)\(\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) যখন, \(xy\gt{1}\)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\)\(\pi+\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\) যখন, \(xy+yz+zx\gt{1}\)
প্রমাণঃ
ধরি,
\(\tan{A}=x, \ \tan{B}=y\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
আমরা জানি,
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow A+B=\tan^{-1}{\left(\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
\(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
ধরি,
\(\tan{A}=x, \ \tan{B}=y\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
আমরা জানি,
\(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(\Rightarrow A-B=\tan^{-1}{\left(\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
\(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
ধরি,
\(\tan{A}=x, \ \tan{B}=y, \ \tan{C}=z\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}, \ C=\tan^{-1}{z}\)
আমরা জানি,
\(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{B}\tan{C}-\tan{C}\tan{A}-\tan{A}\tan{B}}\)
\(\Rightarrow A+B+C=\tan^{-1}{\left(\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{B}\tan{C}-\tan{C}\tan{A}-\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y, \ \tan{C}=z\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}, \ C=\tan^{-1}{z}\)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
ধরি,
\(\tan{A}=x, \ \tan{B}=y\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
আমরা জানি,
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow A+B=\tan^{-1}{\left(\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
\(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
ধরি,
\(\tan{A}=x, \ \tan{B}=y\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
আমরা জানি,
\(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(\Rightarrow A-B=\tan^{-1}{\left(\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
\(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
ধরি,
\(\tan{A}=x, \ \tan{B}=y, \ \tan{C}=z\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}, \ C=\tan^{-1}{z}\)
আমরা জানি,
\(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{B}\tan{C}-\tan{C}\tan{A}-\tan{A}\tan{B}}\)
\(\Rightarrow A+B+C=\tan^{-1}{\left(\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{B}\tan{C}-\tan{C}\tan{A}-\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y, \ \tan{C}=z\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}, \ C=\tan^{-1}{z}\)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\cot^{-1}{x},\) \(\cot^{-1}{y}\) ও \(\cot^{-1}{z}\) ইনভার্স ফাংশনের যোগফল ও বিয়োগফল
Add and subtract the inverse functions \(\cot^{-1}{x},\) \(\cot^{-1}{y}\) and \(\cot^{-1}{z}\)
\(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\)
\(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\)
\(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\)\(\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\)
\(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\)
\(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\)\(\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\)
প্রমাণঃ
ধরি,
\(\cot{A}=x, \ \cot{B}=y\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
আমরা জানি,
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(\Rightarrow A+B=\cot^{-1}{\left(\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\right)}\)
\(\therefore \cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
\(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\)
ধরি,
\(\cot{A}=x, \ \cot{B}=y\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
আমরা জানি,
\(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(\Rightarrow A-B=\cot^{-1}{\left(\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\right)}\)
\(\therefore \cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
\(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\)
ধরি,
\(\cot{A}=x, \ \cot{B}=y, \ \cot{C}=z\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}, \ C=\cot^{-1}{z}\)
আমরা জানি,
\(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
\(\Rightarrow A+B+C=\cot^{-1}{\left(\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\right)}\)
\(\therefore \cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y, \ \cot{C}=z\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}, \ C=\cot^{-1}{z}\)
\(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\)
ধরি,
\(\cot{A}=x, \ \cot{B}=y\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
আমরা জানি,
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(\Rightarrow A+B=\cot^{-1}{\left(\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\right)}\)
\(\therefore \cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
\(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\)
ধরি,
\(\cot{A}=x, \ \cot{B}=y\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
আমরা জানি,
\(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(\Rightarrow A-B=\cot^{-1}{\left(\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\right)}\)
\(\therefore \cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
\(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\)
ধরি,
\(\cot{A}=x, \ \cot{B}=y, \ \cot{C}=z\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}, \ C=\cot^{-1}{z}\)
আমরা জানি,
\(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
\(\Rightarrow A+B+C=\cot^{-1}{\left(\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\right)}\)
\(\therefore \cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y, \ \cot{C}=z\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}, \ C=\cot^{-1}{z}\)
\(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\)
\(2\sin^{-1}{x}\) ও \(2\cos^{-1}{x}\) ইনভার্স ফাংশনের ভিন্ন প্রকাশ
Different expressions of \(2\sin^{-1}{x}\) and \(2\cos^{-1}{x}\) inverse functions
\(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\)
\(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)
\(2\sin^{-1}{x}=\pi-\)\(\sin^{-1}{(2x\sqrt{1-x^2})}\) যখন, \(x\gt{\frac{1}{\sqrt{2}}}\)
\(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)
\(2\sin^{-1}{x}=\pi-\)\(\sin^{-1}{(2x\sqrt{1-x^2})}\) যখন, \(x\gt{\frac{1}{\sqrt{2}}}\)
প্রমাণঃ
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{2\theta}=2\sin{\theta}\cos{\theta}\)
\(\Rightarrow \sin{2\theta}=2\sin{\theta}\sqrt{1-\sin^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{(2\sin{\theta}\sqrt{1-\sin^2{\theta}})}\)
\(\therefore 2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cos{2\theta}=2\cos^2{\theta}-1\)
\(\Rightarrow 2\theta=\cos^{-1}{(2\cos^2{\theta}-1)}\)
\(\therefore 2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{2\theta}=2\sin{\theta}\cos{\theta}\)
\(\Rightarrow \sin{2\theta}=2\sin{\theta}\sqrt{1-\sin^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{(2\sin{\theta}\sqrt{1-\sin^2{\theta}})}\)
\(\therefore 2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cos{2\theta}=2\cos^2{\theta}-1\)
\(\Rightarrow 2\theta=\cos^{-1}{(2\cos^2{\theta}-1)}\)
\(\therefore 2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)
\(3\sin^{-1}{x},\) \(3\cos^{-1}{x},\) \(3\tan^{-1}{x}\) ও \(3\cot^{-1}{x}\) ইনভার্স ফাংশনের ভিন্ন প্রকাশ
Different expressions of \(3\sin^{-1}{x},\) \(3\cos^{-1}{x},\) \(3\tan^{-1}{x}\) and \(3\cot^{-1}{x}\) inverse functions
\(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)
\(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)
\(3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\)
\(3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\)
\(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)
\(3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\)
\(3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\)
প্রমাণঃ
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{3\theta}=3\sin{\theta}-4\sin^3{\theta}\) ➜ \(\because \sin{3A}=3\sin{A}-4\sin^3{A}\)
\(\Rightarrow 3\theta=\sin^{-1}{(3\sin{\theta}-4\sin^3{\theta})}\)
\(\therefore 3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cos{3\theta}=4\cos^3{\theta}-3\cos{\theta}\) ➜ \(\because \cos{3A}=4\cos^3{A}-3\cos{A}\)
\(\Rightarrow 3\theta=\cos^{-1}{(4\cos^3{\theta}-3\cos{\theta})}\)
\(\therefore 3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\tan{3\theta}=\frac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}}\) ➜ \(\because \tan{3A}=\frac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}}\)
\(\Rightarrow 3\theta=\tan^{-1}{\left(\frac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}}\right)}\)
\(\therefore 3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\)
ধরি,
\(\cot{\theta}=x\)
\(\Rightarrow \theta=\cot^{-1}{x}\)
আবার,
\(\cot{3\theta}=\frac{\cot^3{\theta}-3\cot{\theta}}{3\cot^2{\theta}-1}\) ➜ \(\because \cot{3A}=\frac{\cot^3{A}-3\cot{A}}{3\cot^2{A}-1}\)
\(\Rightarrow 3\theta=\cot^{-1}{\left(\frac{\cot^3{\theta}-3\cot{\theta}}{3\cot^2{\theta}-1}\right)}\)
\(\therefore 3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\) ➜ \(\because \cot{\theta}=x\)
\(\therefore \theta=\cot^{-1}{x}\)
\(3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\)
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{3\theta}=3\sin{\theta}-4\sin^3{\theta}\) ➜ \(\because \sin{3A}=3\sin{A}-4\sin^3{A}\)
\(\Rightarrow 3\theta=\sin^{-1}{(3\sin{\theta}-4\sin^3{\theta})}\)
\(\therefore 3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)
ধরি,
\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cos{3\theta}=4\cos^3{\theta}-3\cos{\theta}\) ➜ \(\because \cos{3A}=4\cos^3{A}-3\cos{A}\)
\(\Rightarrow 3\theta=\cos^{-1}{(4\cos^3{\theta}-3\cos{\theta})}\)
\(\therefore 3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\tan{3\theta}=\frac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}}\) ➜ \(\because \tan{3A}=\frac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}}\)
\(\Rightarrow 3\theta=\tan^{-1}{\left(\frac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}}\right)}\)
\(\therefore 3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\)
ধরি,
\(\cot{\theta}=x\)
\(\Rightarrow \theta=\cot^{-1}{x}\)
আবার,
\(\cot{3\theta}=\frac{\cot^3{\theta}-3\cot{\theta}}{3\cot^2{\theta}-1}\) ➜ \(\because \cot{3A}=\frac{\cot^3{A}-3\cot{A}}{3\cot^2{A}-1}\)
\(\Rightarrow 3\theta=\cot^{-1}{\left(\frac{\cot^3{\theta}-3\cot{\theta}}{3\cot^2{\theta}-1}\right)}\)
\(\therefore 3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\) ➜ \(\because \cot{\theta}=x\)
\(\therefore \theta=\cot^{-1}{x}\)
\(3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\)
\(2\tan^{-1}{x}\) ইনভার্স ফাংশনের ভিন্ন প্রকাশ
Different expressions of \(2\tan^{-1}{x}\) inverse functions
\(2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\)
\(2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(2\tan^{-1}{x}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
\(2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\)
\(2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(2\tan^{-1}{x}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
প্রমাণঃ
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
এখন,
\(\tan{2\theta}=\frac{2\tan{\theta}}{1-\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\tan^{-1}{\left(\frac{2\tan{\theta}}{1-\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\sin{2\theta}=\frac{2\tan{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{\left(\frac{2\tan{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\cos{2\theta}=\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\cos^{-1}{\left(\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\cot{2\theta}=\frac{\cos{2\theta}}{\sin{2\theta}}\)
\(\Rightarrow \cot{2\theta}=\frac{\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}}{\frac{2\tan{\theta}}{1+\tan^2{\theta}}}\)
\(\Rightarrow \cot{2\theta}=\frac{1-\tan^2{\theta}}{2\tan{\theta}}\)
\(\Rightarrow 2\theta=\cot^{-1}{\left(\frac{1-\tan^2{\theta}}{2\tan{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
\(2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
এখন,
\(\tan{2\theta}=\frac{2\tan{\theta}}{1-\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\tan^{-1}{\left(\frac{2\tan{\theta}}{1-\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\sin{2\theta}=\frac{2\tan{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{\left(\frac{2\tan{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\cos{2\theta}=\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\cos^{-1}{\left(\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\cot{2\theta}=\frac{\cos{2\theta}}{\sin{2\theta}}\)
\(\Rightarrow \cot{2\theta}=\frac{\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}}{\frac{2\tan{\theta}}{1+\tan^2{\theta}}}\)
\(\Rightarrow \cot{2\theta}=\frac{1-\tan^2{\theta}}{2\tan{\theta}}\)
\(\Rightarrow 2\theta=\cot^{-1}{\left(\frac{1-\tan^2{\theta}}{2\tan{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
\(2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
\(\sin^{-1}{x}\) ইনভার্স ফাংশনের লেখচিত্র
Graph of \(\sin^{-1}{x}\) inverse function
\(f(x)=y=\sin^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।
\(\cos^{-1}{x}\) ইনভার্স ফাংশনের লেখচিত্র
Graph of \(\cos^{-1}{x}\) inverse function
\(f(x)=y=\cos^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।
\(\tan^{-1}{x}\) ইনভার্স ফাংশনের লেখচিত্র
Graph of \(\tan^{-1}{x}\) inverse function
\( f(x)=y=\tan^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।
\( cosec^{-1}{x}\) ইনভার্স ফাংশনের লেখচিত্র
Graph of \( cosec^{-1}{x}\) inverse function
\( f(x)=y= cosec^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।
\(\sec^{-1}{x}\) ইনভার্স ফাংশনের লেখচিত্র
Graph of \(\sec^{-1}{x}\) inverse function
\( f(x)=y=\sec^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।
\(\cot^{-1}{x}\) ইনভার্স ফাংশনের লেখচিত্র
Graph of \(\cot^{-1}{x}\) inverse function
\( f(x)=y=\cot^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।
Email: Golzarrahman1966@gmail.com
Visitors online: 000005