এ অধ্যায়ের পাঠ্যসূচী
- ঐতিহাসিক পটভূমি (Historical Background)
- অন্তরীকরণ (Differentiation)
- অন্তরীকরণের প্রতীক (Symbol of Differentiation)
- লিমিট হিসেবে অন্তরীকরণ বা ঢাল হিসেবে অন্তরীকরণ (Differentiation as Limit Or, Differentiation as Slop)
- মূল নিয়মে অন্তরীকরণ (Differentiation of first principal law)
- মূল নিয়মে অন্তরীকরণ সূত্র (Differentiation of first principal law formulas)
- \(x\) এর সাপেক্ষে \(log_{x^{a}}\) এর অন্তরীকরণ (Differentiation of \(log_{x^{a}}\) with respect to \(x\))
- ফাংশনের যোগফল ও বিয়োগফলের অন্তরীকরণ (Differentiation of addition and subtraction of functions)
- অনুসিদ্ধান্ত (Illustration)
- অধ্যায় \(ix.B\)-এর উদাহরণসমুহ
- অধ্যায় \(ix.B\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
- অধ্যায় \(ix.B\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(ix.B\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(ix.B\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
ঐতিহাসিক পটভূমি
Historical Background
স্যার আইজ্যাক নিউটন
( ১৬৪২-১৭২৭ )
১৬৬৯ সালে তিনি ক্যামব্রিজ বিশ্ববিদ্যালয়ে গণিতের লুকাসিয়ান প্রফেসর হিসাবে যোগদান করেন।
অন্তরীকরণ ক্যালকুলাসের একটি অংশ বিশেষ। অতি ক্ষুদ্রাতিক্ষুদ্র গণনা পদ্ধতি হলো ক্যালকুলাস। এটির মূল উদ্দেশ্য কোনো ফাংশনের অন্তরীকরণ বা অন্তরজ নির্ণয় করা। যে গণনা পদ্ধতি কোনো ফাংশনে ব্যবহৃত স্বাধীন চলকের সাপেক্ষে অধীন চলকের পরিবর্তন সম্পর্কিত সুস্পষ্ট ধারনা দেয় সেটি ক্যালকুলাস। কোনো ফাংশনের অন্তরজ কোনো একটি নির্দিষ্ট ইনপুট ভ্যালুতে ঐ ফাংশনের পরিবর্তনের হার বোঝায়। \(y=f(x)\) ফাংশনের স্বাধীন চলক \(x\)-এর মাণ অতি ক্ষুদ্র \(\delta x\)-এর সাপেক্ষে অধীন চলক \(y\)-এর অতি ক্ষুদ্র \(\delta y\) পরিমান বৃদ্ধিপ্রাপ্ত হলে \(x\)-এর সাপেক্ষে \(y\)-এর অন্তরজকে \[\lim_{\delta x \rightarrow 0}\frac{\delta x}{\delta y}\] দ্বারা প্রকাশ করা হয়। সাধারণভাবে অন্তরজ নির্ণয় করার পদ্ধতিই হলো অন্তরীকরণ। পদার্থবিদ্যায় কোনো চলমান বস্তুর বেগ হলো সময়ের সাপেক্ষে এর সরণের অন্তরীকরণ। জ্যামিতিকভাবে একটি ফাংশনের কোনো বিন্দুতে অন্তরীকরণ হলো ঐ ফাংশনের লেখের ঐ বিন্দুতে স্পর্শকের ঢাল। অন্তরীকরণের মাধ্যমে কোনো স্পর্শকের ঢাল নির্ণয়ের ধারণা প্রাচীন। ইউক্লিড ইউক্লিড (৩০০-২৫০ খ্রিষ্টপূর্ব) বিখ্যাত গ্রিক গণিতজ্ঞ। তার লেখা গ্রন্থগুলির মধ্যে মাত্র তিনটির সন্ধান পাওয়া গিয়েছে এগুলো, ডাটা, অপটিক্স ও এলিমেন্টস। এলিমেন্টস বইটি মোট ১৩ খণ্ডে প্রকাশিত হয়েছিল।, আর্কিমিডিস আর্কিমিডিস (২৮৭-২১২ খ্রিষ্টপূর্ব) একজন গ্রিক গণিতবিদ, পদার্থবিজ্ঞানী, প্রকৌশলী, জ্যোতির্বিদ ও দার্শনিক। তাঁকে গণিতের জনক বলা হয়। , এপোলোনিয়াস Apollonius (about 262 BC - about 190 BC) Apollonius was a Greek mathematician known as 'The Great Geometer'. His works had a very great influence on the development of mathematics and his famous book Conics introduced the terms parabola, ellipse and hyperbola. প্রমূখ বিজ্ঞানীরা এই ধারণা পোষণ করেন। চতুর্থ শতাব্দীতে ভারতীয় গণিতবিদ আর্জভট্ট প্রাচীন ভারতীয় গণিতের ইতিহাসে আর্যভট্টের (৪৭৬ – ৫৫০ খ্রিষ্টপূর্ব ) হাত ধরেই ক্লাসিকাল যুগ (কিংবা স্বর্ণযুগ) শুরু হয়। গণিত এবং জ্যোতির্বিদ্যা সংক্রান্ত আর্যভট্টের বিভিন্ন কাজ মূলত দুটি গ্রন্থে সংকলিত হয়েছে বলে জানা গেছে। এর মাঝে ‘আর্যভট্টীয়’ একটি, যেটি উদ্ধার করা গিয়েছে। এটি রচিত চার খণ্ডে, মোট ১১৮টি স্তোত্রে। অন্য যে কাজটি সম্পর্কে জানা যায় সেটি হল ‘আর্য-সিদ্ধান্ত’। আর্য-সিদ্ধান্তের কোন পাণ্ডুলিপি খুঁজে পাওয়া যায়নি, তবে বরাহমিহির, ব্রহ্মগুপ্ত এবং প্রথম ভাস্করের কাজে এটির উল্লেখ মেলে। আর্যভট্ট গ্রন্থ রচনা করেছেন পদবাচ্যের আকারে। (৪৭৬-৫৫০) এবং পরবর্তীতে ভাস্করা(১১১৪-১১৮৫), পারস্যের গণিতবিদ আলতুমী ( ১১৩৫- ১২১৩ ) প্রমূখ অন্তরীকরণের বিকাশে অনন্য ভূমিকা রাখেন। আধুনিক অন্তরীকরণের বিকাশে সপ্তদশ শতাব্দীর শেষ দিকে স্যার আইজ্যাক নিউটন ১৬৮৭ সালে স্যার আইজ্যাক নিউটনের বিশ্ব নন্দিত গ্রন্থ প্রকাশিত হয়, যেখানে তিনি সর্বজনীন মহাকর্ষ সূত্র সহ গতির তিনটি সূত্র প্রদান করেন। তিনি বলবিজ্ঞানের ভিত্তি স্থাপন করেন। আলোকবিজ্ঞান, শব্দবিজ্ঞান, তাপবিজ্ঞানসহ পদার্থবিজ্ঞানের সকল মৌলিক শাখায় তাঁর অবদান অনস্বীকার্য। বৈজ্ঞানিক পর্যবেক্ষন ও পরীক্ষণের তিনি উদ্ভাবিত তত্ত্বকে যাচাই ও পরীক্ষা নিরীক্ষার জন্য পরীক্ষণের ব্যবস্থা করতেন। ১৬৬৯ সালে নিউটন ক্যামব্রিজ বিশ্ববিদ্যালয়ে গণিতের লুকাসিয়ান প্রফেসর হিসাবে যোগদান করেন। এবং গটফ্রেড লিবনিজ লিবনিজ ( gottfried leibniz)(১৬৪৬-১৭১৬) অসামান্য কৃতিত্তের পরিচয় দেন। গণিতশাস্ত্রে অন্তরীকরণের অবদান অনস্বীকার্য।
অন্তরীকরণ।
Differentiation
অন্তরীকরণঃ কোনো ফাংশণের স্বাধীন চলকের সাপেক্ষে অধীন চলকের পরিবর্তনের হারকে ঐ ফাংশণের অন্তরজ বলা হয়। আর অন্তরজ নির্ণয়ের পদ্ধতিকে বলা হয় অন্তরীকরণ।
অন্তরীকরণের প্রতীকঃ
Symbol of Differentiation
অন্তরীকরণের প্রতীকঃ \(x\)-এর সাপেক্ষে \(f(x)\)-এর অন্তরজকে \(y^{\prime}, \frac{dy}{dx}, f^{\prime}(x)\) প্রভৃতি প্রতীক দ্বারা প্রকাশ করা হয়ে থাকে।
লিমিট হিসেবে অন্তরীকরণ বা, ঢাল হিসেবে অন্তরীকরণ
Differentiation as Limit Or, Differentiation as Slop
মনে করি \(y=f(x)\) বক্ররেখাটির উপর \(P(x, y)\) একটি নির্দিষ্ট বিন্দু। বক্ররেখাটির উপর আর একটি বিন্দু \(Q\) যার স্থানাঙ্ক \((x+\delta x, y+\delta y)\) । তাহলে, \(y=f(x)\) হলে \(y+\delta y=f(x+\delta x)\) হবে।
\(\therefore \delta y=f(x+\delta x)-\delta x \)
প্রদত্ত চিত্র থেকে এটি স্পষ্ট যে, \(PQ\) ছেদকের ঢাল,
\(\frac{\delta y}{\delta x}=\frac{f(x+\delta x)-f(x) }{\delta x} .....(1)\)
\(x\) কে স্থির রেখে যখন \(\delta x\rightarrow 0\) হয়, তখন \(Q\) বিন্দু ক্রমশ \(P\)-এর দিকে অগ্রসর হয়ে \(P\)-এর সাথে প্রায় মিলে যায়। এ অবস্থায়, \(QP\) ছেদকটি \(P\) বিন্দুতে স্পর্শকে পরিনত হয়।
সুতরাং, \[\lim_{\delta x \rightarrow 0}\frac{\delta y}{\delta x}=\lim_{\delta x \rightarrow 0}\frac{f(x+\delta x)-f(x)}{\delta x} ....(2)\]
\[\lim_{\delta x \rightarrow 0}\frac{\delta y}{\delta x}\] হচ্ছে প্রকৃতপক্ষে \(P(x, y)\) বিন্দুতে \(y=f(x)\) বক্ররেখার স্পর্শকের ঢাল।
\((2)\) নং এ উল্লেখিত ডানদিকের রাশিটিকে ফাংশন \(f\)-এর অন্তরজ বলা হয়। এবং \(\frac{dy}{dx}\) দ্বারা প্রকাশ করা হয়।
\[\therefore \frac{dy}{dx}=\lim_{\delta x \rightarrow 0}\frac{f(x+\delta x)-f(x)}{\delta x} ....(3)\]
\[\delta x=h\] লিখে \[(3)\] থেকে পাই,
\[\frac{dy}{dx}=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\]
সংজ্ঞাঃ যদি \[y=f(x), x\]-এর একটি ফাংশন হয়, তবে
\[\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\] কে \[x\]-এর সাপেক্ষে \[f(x)\]-এর অন্তরজ বলে। যা \[\frac{d}{dx}\{f(x)\}\] দ্বারা সূচিত করা হয়।
অর্থাৎ, \[\frac{d}{dx}\{f(x)\}=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\]
\[\therefore \] অন্তরজ একটি বিশেষ ধরনের লিমিট।
অন্তরজ নির্ণয়ের এই পদ্ধতি মূল নিয়ম নামে পরিচিত।
বিশেষভাবে লক্ষণিয়ঃ \(x\)-এর সাপেক্ষে \(f(x)\)-এর অন্তরজকে \(y^{\prime}, \frac{dy}{dx}, f^{\prime}(x)\) প্রভৃতি প্রতীক দ্বারা প্রকাশ করা হয়ে থাকে।
\(\therefore \delta y=f(x+\delta x)-\delta x \)
প্রদত্ত চিত্র থেকে এটি স্পষ্ট যে, \(PQ\) ছেদকের ঢাল,
\(\frac{\delta y}{\delta x}=\frac{f(x+\delta x)-f(x) }{\delta x} .....(1)\)
\(x\) কে স্থির রেখে যখন \(\delta x\rightarrow 0\) হয়, তখন \(Q\) বিন্দু ক্রমশ \(P\)-এর দিকে অগ্রসর হয়ে \(P\)-এর সাথে প্রায় মিলে যায়। এ অবস্থায়, \(QP\) ছেদকটি \(P\) বিন্দুতে স্পর্শকে পরিনত হয়।
সুতরাং, \[\lim_{\delta x \rightarrow 0}\frac{\delta y}{\delta x}=\lim_{\delta x \rightarrow 0}\frac{f(x+\delta x)-f(x)}{\delta x} ....(2)\]
\[\lim_{\delta x \rightarrow 0}\frac{\delta y}{\delta x}\] হচ্ছে প্রকৃতপক্ষে \(P(x, y)\) বিন্দুতে \(y=f(x)\) বক্ররেখার স্পর্শকের ঢাল।
\((2)\) নং এ উল্লেখিত ডানদিকের রাশিটিকে ফাংশন \(f\)-এর অন্তরজ বলা হয়। এবং \(\frac{dy}{dx}\) দ্বারা প্রকাশ করা হয়।
\[\therefore \frac{dy}{dx}=\lim_{\delta x \rightarrow 0}\frac{f(x+\delta x)-f(x)}{\delta x} ....(3)\]
\[\delta x=h\] লিখে \[(3)\] থেকে পাই,
\[\frac{dy}{dx}=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\]
সংজ্ঞাঃ যদি \[y=f(x), x\]-এর একটি ফাংশন হয়, তবে
\[\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\] কে \[x\]-এর সাপেক্ষে \[f(x)\]-এর অন্তরজ বলে। যা \[\frac{d}{dx}\{f(x)\}\] দ্বারা সূচিত করা হয়।
অর্থাৎ, \[\frac{d}{dx}\{f(x)\}=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\]
\[\therefore \] অন্তরজ একটি বিশেষ ধরনের লিমিট।
অন্তরজ নির্ণয়ের এই পদ্ধতি মূল নিয়ম নামে পরিচিত।
বিশেষভাবে লক্ষণিয়ঃ \(x\)-এর সাপেক্ষে \(f(x)\)-এর অন্তরজকে \(y^{\prime}, \frac{dy}{dx}, f^{\prime}(x)\) প্রভৃতি প্রতীক দ্বারা প্রকাশ করা হয়ে থাকে।
মূল নিয়মে অন্তরীকরণ
Differentiation of first principal law
মূল নিয়মে অন্তরীকরণঃ যদি \[y=f(x), x\]-এর একটি ফাংশন হয়, তবে
\[\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\] কে \[x\]-এর সাপেক্ষে \[f(x)\]-এর অন্তরজ বলে। যা \[\frac{d}{dx}\{f(x)\}\] দ্বারা সূচিত করা হয়।
অর্থাৎ, \[\frac{d}{dx}\{f(x)\}=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\]
\[\therefore \] অন্তরজ একটি বিশেষ ধরনের লিমিট। অন্তরজ নির্ণয়ের এই পদ্ধতি মূল নিয়ম নামে পরিচিত।
\[\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\] কে \[x\]-এর সাপেক্ষে \[f(x)\]-এর অন্তরজ বলে। যা \[\frac{d}{dx}\{f(x)\}\] দ্বারা সূচিত করা হয়।
অর্থাৎ, \[\frac{d}{dx}\{f(x)\}=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\]
\[\therefore \] অন্তরজ একটি বিশেষ ধরনের লিমিট। অন্তরজ নির্ণয়ের এই পদ্ধতি মূল নিয়ম নামে পরিচিত।
মূল নিয়মে অন্তরীকরণ সূত্র
Differentiation of first principal law formulas
মূল নিয়মে অন্তরীকরণ কর
\((i)\) \(x^{n}\)বঃ ২০১৫,২০১৪; কুঃ ২০১৪,২০০৯,২০০২; রাঃ ২০১৪; চঃ ২০১৩; ঢাঃ ২০১২,২০০৮; সিঃ ২০০৯;যঃ ২০০১; মাঃ ২০১০
\((ii)\) \(ax^{2}+bx+c\)
\((iii)\) \(\sin x\)
রুয়েটঃ ২০১১-২০১২; মাঃ ২০১২,২০০৮, ২০০৫; কুঃ ২০০৭,২০০৪; যঃ ২০০৪
\((iv)\) \(\cos x\)
যঃ ২০১৩; মাঃ ২০১১; কুঃ ২০১০, ২০০৫; দিঃ ২০১০; বঃ ২০০৮, ২০০৩;রাঃ ২০০৭
\((v)\) \(\tan x\)
সিঃ ২০১৪, ২০০৬, ২০০৪; ঢাঃ ২০১৩,২০১০, রাঃ২০১৩, ২০০৪; কুঃ ২০১২; বঃ ২০০৪;মাঃ ২০০৩, ২০০১
\((vi)\) \(\csc x\)
চঃ ২০১২, ২০০৯,২০০৩; সিঃ ২০১২; রাঃ ২০০৮; বঃ ২০০৫; ঢাঃ ২০০৪
\((vii)\) \(\sec x\)
যঃ ২০১০, ২০০৭; সিঃ ২০১০, ২০০২; বঃ ২০০৬, ২০০২, কুঃ ২০০১
\((viii)\) \(\cot x\)
যঃ ২০০৬
\((ix)\) \(\sin ax\)
মূল নিয়মে অন্তরীকরণ কর
\((x)\) \(\cos ax\)রাঃ , বঃ ২০১১; যঃ২০০১
\((xi)\) \(\tan ax\)
\((xii)\) \(e^{x}\)
মাঃ ২০১৪, ২০০৯ সিঃ ২০১১, ২০০৯, ২০০৫; রাঃ২০১০,২০০৫;যঃ ২০০৯; কুঃ২০০৬;ঢাঃ ২০০৩
\((xiii)\) \(e^{mx}\)
ঢঃ ২০০৬;বঃ ২০০৯, ২০০৫, ২০০৩; রাঃ ২০১৫, ২০০৩,চঃ ২০০০; দিঃ ২০১৬,২০১১; কুঃ ২০১৩, ২০০২; যঃ ২০১১
\((xiv)\) \(a^{x}\)
বুটেক্সঃ ২০১০-২০১১;যঃ ২০১৬,২০১৩,২০০৮,২০০৫; ঢাঃ ২০১৪; দিঃ ২০১৩; বঃ ২০১২,২০০৭,২০০৪; কুঃ ২০০৮; সিঃ ২০০৭,২০০৩;মাঃ ২০০৭; চঃ ২০০৬, ২০০২; রাঃ ২০০৬
\((xv)\) \(\ln x\)
ঢাঃ ২০০৯, ২০০১; দিঃ ২০০৯; চঃ ২০১৪,২০১১;যঃ ২০০৩;রাঃ ২০১২,২০০৯,২০০২; কুঃ ২০১১,২০০৩; যঃ ২০১৬,২০১০;সিঃ ২০১৩,২০০৮,২০০৬;মাঃ ২০১৩,২০০৬
\((xvi)\) \(\log_ax \)
বুটেক্সঃ ২০০৭-২০০৮; যঃ ২০১৪,২০১২; দিঃ২০১৪; চঃ২০১৩,২০০৮,২০০৫; মাঃ ২০১৩;ঢাঃ ২০১২,২০০৭
\(x\) এর সাপেক্ষে \(\log_{x}a\) এর অন্তরীকরণ
Differentiation of \(\log_{x}a\) with respect to \(x\)
ধরি,
\(y=\log_{x}a\)
\(\Rightarrow y=\frac{\ln{a}}{\ln{x}}\)
\(\Rightarrow \frac{d}{dx}(y)=\frac{d}{dx}\left(\frac{\ln{a}}{\ln{x}}\right)\)
\(\Rightarrow \frac{dy}{dx}=\ln{a}\frac{d}{dx}\left(\frac{1}{\ln{x}}\right)\)
\(=\ln{a}\left(-\frac{1}{(\ln{x})^2}\right)\frac{d}{dx}(\ln{x})\) ➜ \(\because \frac{d}{dx}\left(\frac{1}{x}\right)=-\frac{1}{x^2}\)
\(=-\frac{\ln{a}}{(\ln{x})^2}\times{\frac{1}{x}}\) ➜ \(\because \frac{d}{dx}(\ln{x})=\frac{1}{x}\)
\(=-\frac{\ln{a}}{x(\ln{x})^2}\)
বিঃদ্রঃ যদি লগারিদমের ভিত্তি \(x\) এর ফাংশণ বা \(x\) হয় তবে সেক্ষেত্রে নেপিয়ার লগারিদমে ( ভিত্তি \(e\) ) পরিণত করে অন্তরজ নির্ণয় করতে হয়।
\(y=\log_{x}a\)
\(\Rightarrow y=\frac{\ln{a}}{\ln{x}}\)
\(\Rightarrow \frac{d}{dx}(y)=\frac{d}{dx}\left(\frac{\ln{a}}{\ln{x}}\right)\)
\(\Rightarrow \frac{dy}{dx}=\ln{a}\frac{d}{dx}\left(\frac{1}{\ln{x}}\right)\)
\(=\ln{a}\left(-\frac{1}{(\ln{x})^2}\right)\frac{d}{dx}(\ln{x})\) ➜ \(\because \frac{d}{dx}\left(\frac{1}{x}\right)=-\frac{1}{x^2}\)
\(=-\frac{\ln{a}}{(\ln{x})^2}\times{\frac{1}{x}}\) ➜ \(\because \frac{d}{dx}(\ln{x})=\frac{1}{x}\)
\(=-\frac{\ln{a}}{x(\ln{x})^2}\)
বিঃদ্রঃ যদি লগারিদমের ভিত্তি \(x\) এর ফাংশণ বা \(x\) হয় তবে সেক্ষেত্রে নেপিয়ার লগারিদমে ( ভিত্তি \(e\) ) পরিণত করে অন্তরজ নির্ণয় করতে হয়।
ফাংশনের যোগফল ও বিয়োগফলের অন্তরীকরণ
Differentiation of addition and subtraction of functions
অনুসিদ্ধান্ত
Illustration
\(\frac{d}{dx}(u\pm v\pm w\pm ...)=\frac{d}{dx}(u)\pm \frac{d}{dx}(v)\pm \frac{d}{dx}(w)\pm ...\)
Email: Golzarrahman1966@gmail.com
Visitors online: 000003