এ অধ্যায়ের পাঠ্যসূচী
- ভেক্টরের মাণ (Magnitude of Vector)
- বিপরীত ভেক্টর (Opposite Vector)
- একক ভেক্টর (Unite Vector)
- সমরৈখিক ভেক্টর (Collinear Vector)
- সমতলীয় ভেক্টর (Coplanar Vector)
- দুইটি ভেক্টরের অন্তরভুক্ত কোণ (The angle between two vectors)
- ভেক্টর যোগের ত্রিভুজ সূত্র (Triangle law of vector addition)
- ভেক্টর যোগের সামান্তরিক সূত্র (Parallelogram law of vector addition)
- ভেক্টর যোগের বহুভুজ সূত্র (Polygon law of vector addition)
- দুইটি ভেক্টরের বিয়োগ (Subtraction of two vectors)
- ভেক্টর রাশির স্কেলার গুণিতক (Scalar Multiple of Vector)
- ত্রিমাত্রিক জগতে ভেক্টর অপারেশন (Vector operations in three-dimensional Space)
- দ্বিমাত্রিক ভেক্টরের বিশেষ বিধি (Spacial Law of two Dimensional Vector)
- সমতলে ভেক্টরের অংশক (Components of a Vector in a Plane)
- আয়ত একক ভেক্টর \(\hat{i}, \hat{j}\) (Unite Vector \(\hat{i}, \hat{j}\))
- কার্তেসীয় স্থানাংককে ভেক্টরে এবং ভেক্টরকে কার্তেসীয় স্থানাংকে প্রকাশ (Represention of Vector in Cartesian Co-ordinates and Cartesian Co-ordinates in Vector)
- অবস্থান ভেক্টর (Position Vector)
- কার্তেসীয় দ্বিমাত্রিক জগতে অবস্থান ভেক্টর (Position Vector in two Dimension Space)
- \(\overline{r}\) ভেক্টরের মাণ (Values of the vector \(\overline{r}\))
- ভেক্টর অন্তর্বিভক্তিকরণ সূত্র (Vector Interpolation Formula)
- ভেক্টর বহিঃর্বিভক্তিকরণ সূত্র (Vector extrinsic formula)
- অনুসিদ্ধান্ত-১ (Postulate-1)
- অনুসিদ্ধান্ত-২ (Postulate-2)
- অধ্যায় \(ii.C\)-এর উদাহরণসমুহ
- অধ্যায় \(ii.C\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
- অধ্যায় \(ii.C\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(ii.C\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(ii.C\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
ভেক্টরের মাণ
Magnitude of Vector
ভেক্টর নির্দেশক রেখাংশের প্রারম্ভিক বিন্দু এবং প্রান্তবিন্দুর মধ্যবর্তী দূরত্বকে ভেক্টরের মাণ বলা হয়। \( \overrightarrow{V}\) ভেক্টরের মাণকে \(|\overrightarrow{V}|\) দ্বারা প্রকাশ করা হয়।
বিপরীত ভেক্টর
Opposite Vector
দুইটি ভেক্টরের দৈর্ঘ্য বা মাণ সমান তাদের ধারক রেখা একই অথবা সমান্তরাল কিন্তু দিক বিপরীতমুখী এরূপ ভেক্টরকে একে অপরের বিপরীত ভেক্টর বলা হয়।
যেমনঃ \(\overrightarrow{AB}=\overrightarrow{v}\) এবং বিপরীত ভেক্টর \(\overrightarrow{BA}=-\overrightarrow{v};\)
\(\overrightarrow{AB}\) এবং \(\overrightarrow{BA}\) এর দৈর্ঘ্য সমান কিন্তু এরা পরস্পর বিপরীতমুখী।
যেমনঃ \(\overrightarrow{AB}=\overrightarrow{v}\) এবং বিপরীত ভেক্টর \(\overrightarrow{BA}=-\overrightarrow{v};\)
\(\overrightarrow{AB}\) এবং \(\overrightarrow{BA}\) এর দৈর্ঘ্য সমান কিন্তু এরা পরস্পর বিপরীতমুখী।
একক ভেক্টর
Unite Vector
কোনো ভেক্টরের দৈর্ঘ্য বা মাণ \(\) (এক) হলে তাকে একক ভেক্টর বলে। মাণ শন্য নয় এরূপ একটি ভেক্টরকে তার মাণ দ্বারা ভাগ করলে ঐ ভেক্টর রাশিটির দিক বরাবর অথবা তার সমান্তরাল বরাবর একটি একক ভেক্টর পাওয়া যায়। একক ভেক্টর প্রকাশের জন্য ভেক্টর প্রতীক হিসেবে হ্যাট \((\hat{})\) চিহ্ন ব্যবহার করা হয়।
যেমনঃ অক্ষ রেখা বরাবর একক ভেক্টরগুলি যথাক্রমে \(\hat{i}, \hat{j}, \hat{k}\)
আবার
\(\overline{a}\) একটি ভেক্টর রাশি যার মাণ \(|\overline{a}|,\) যেখানে \(|\overline{a}|\ne{0}\)
তাহলে,
\(\overline{a}\) এর একক ভেক্টর অথবা সমান্তরাল একক ভেক্টর, \(\hat{a}=\pm{\frac{\overline{a}}{|\overline{a}|}}\) \(\overline{a}\) এর দিক বরাবর একক ভেক্টর , \(\hat{a}=\frac{\overline{a}}{|\overline{a}|}\) \(\overline{a}\) এর বিপরিতদিক বরাবর একক ভেক্টর , \(\hat{a}=-\frac{\overline{a}}{|\overline{a}|}\)
যেমনঃ অক্ষ রেখা বরাবর একক ভেক্টরগুলি যথাক্রমে \(\hat{i}, \hat{j}, \hat{k}\)
আবার
\(\overline{a}\) একটি ভেক্টর রাশি যার মাণ \(|\overline{a}|,\) যেখানে \(|\overline{a}|\ne{0}\)
তাহলে,
\(\overline{a}\) এর একক ভেক্টর অথবা সমান্তরাল একক ভেক্টর, \(\hat{a}=\pm{\frac{\overline{a}}{|\overline{a}|}}\) \(\overline{a}\) এর দিক বরাবর একক ভেক্টর , \(\hat{a}=\frac{\overline{a}}{|\overline{a}|}\) \(\overline{a}\) এর বিপরিতদিক বরাবর একক ভেক্টর , \(\hat{a}=-\frac{\overline{a}}{|\overline{a}|}\)
সমরৈখিক ভেক্টর
Collinear Vector
দুই বা ততোধিক ভেক্টর একটি সরলরেখার সমান্তরাল হলে, তবে তাদেরকে সমরৈখিক বা সমান্তরাল ভেক্টর বলে।
যদি \(\overline{A}\) ও \(\overline{B}\) ভেক্টরদ্বয় সমরৈখিক হয় তবে \(\overline{A}=m\overline{B};\) যেখানে \(m\) একটি স্কেলার ।
যদি \(\overline{A}\) ও \(\overline{B}\) ভেক্টরদ্বয় সমরৈখিক হয় তবে \(\overline{A}=m\overline{B};\) যেখানে \(m\) একটি স্কেলার ।
সমতলীয় ভেক্টর
Coplanar Vector
দুই বা ততোধিক ভেক্টরের ধারক রেখা অভিন্ন হলে, তাদেরকে সমতলীয় ভেক্টর বলে।
দুইটি ভেক্টরের অন্তরভুক্ত কোণ
The angle between two vectors
ধরা যাক, \(\overline{P}\) ও \(\overline{Q}\) দুইটি ভেক্টর এদের ধারক রেখাদ্বয় পরস্পরকে \(O\) বিন্দুতে ছেদ করেছে। ছেদবিন্দুতে \(0<\theta<\pi\) কোণ উৎপন্ন হয়।
ভেক্টর যোগের ত্রিভুজ সূত্র
Triangle law of vector addition
যদি কোনো ত্রিভুজের দুইটি বাহু একই ক্রমে দিকে ও মাণে দুইটি ভেক্টর রাশিকে নির্দেশ করে, তাহলে ত্রিভুজের তৃতীয় বাহুটি বিপরীতক্রমে ভেক্টরদ্বয়ের লব্ধির মাণ ও দিক নির্দেশ করবে।
এখানে, \(\overline{P}\) ও \(\overline{Q}\) ভেক্টর দুইটিকে \(\overrightarrow{AB}\) ও \(\overrightarrow{BC}\) দ্বারা সূচিত করা হলো। \(\overrightarrow{AB}\) এর প্রারম্ভিকবিন্দু \(A\) এবং \(\overrightarrow{BC}\) এর প্রান্তবিন্দু \(B\) এর সংযোগ রেখাংশ দ্বারা গঠিত ভেক্টর \(\overrightarrow{AC}\) পূর্বোক্ত ভেক্টরদ্বয়ের লব্ধি নির্দেশ করবে যাকে \(\overline{R}\) দ্বারা সূচীত করা হলো।
সুতরাং , \(\overline{P}+\overline{Q}=\overline{R}\)
\(\therefore \overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)
এখানে, \(\overline{P}\) ও \(\overline{Q}\) ভেক্টর দুইটিকে \(\overrightarrow{AB}\) ও \(\overrightarrow{BC}\) দ্বারা সূচিত করা হলো। \(\overrightarrow{AB}\) এর প্রারম্ভিকবিন্দু \(A\) এবং \(\overrightarrow{BC}\) এর প্রান্তবিন্দু \(B\) এর সংযোগ রেখাংশ দ্বারা গঠিত ভেক্টর \(\overrightarrow{AC}\) পূর্বোক্ত ভেক্টরদ্বয়ের লব্ধি নির্দেশ করবে যাকে \(\overline{R}\) দ্বারা সূচীত করা হলো।
সুতরাং , \(\overline{P}+\overline{Q}=\overline{R}\)
\(\therefore \overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)
ভেক্টর যোগের সামান্তরিক সূত্র
Parallelogram law of vector addition
কোনো সামান্তরিকের একটি কৌণিক বিন্দু থেকে অঙ্কিত সন্নিহিত বাহুদ্বয় যদি কোনো কণার উপর একই সময়ে ক্রিয়ারত দুইটি ভেক্টরের মাণ ও দিক নির্দেশ করে, তাহলে ঐ বিন্দু থেকে অঙ্কিত সামান্তরিকের কর্ণটি ভেক্টরদ্বয়ের লব্ধির মাণ ও দিক নির্দেশ করবে।
অর্থাৎ, \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\)
দ্রঃ দুইটি ভেক্টর সমান্তরাল হলে তাদের যোগের ক্ষেত্রে সামান্তরিক বিধি প্রযোজ্য নয়, কিন্তু ত্রিভুজ বিধি সকল ক্ষেত্রেই প্রযোজ্য হবে।
অর্থাৎ, \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\)
দ্রঃ দুইটি ভেক্টর সমান্তরাল হলে তাদের যোগের ক্ষেত্রে সামান্তরিক বিধি প্রযোজ্য নয়, কিন্তু ত্রিভুজ বিধি সকল ক্ষেত্রেই প্রযোজ্য হবে।
ভেক্টর যোগের বহুভুজ সূত্র
Polygon law of vector addition
দুইয়ের অধিক ভেক্টরের ক্ষেত্রে একই ক্রমে ভেক্টরগুলিকে সাজিয়ে প্রথম ভেক্টরের প্রারম্ভিকবিন্দু এবং শেষ ভেক্টরের প্রান্তবিন্দু যোগ করে একটি বহুভুজ অঙ্কন করলে বহুভুজের শেষ বাহুটি বিপরীতক্রমে ভেক্টরগুলির লব্ধির মাণ ও দিক নির্দেশ করবে।
\(\therefore \overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AE}\)
\(\therefore \overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AE}\)
দুইটি ভেক্টরের বিয়োগ
Subtraction of two vectors
ভেক্টরের বিয়োগের ক্ষেত্রে যে ভেক্টর বিয়োগ করতে হবে তার ঋণাত্মক ভেক্টরকে অপর ভেক্টরের সাথে যোগ করলেই বিয়োগফল পাওয়া যায়।
\(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) দুইটি ভেক্টর।
এদের বিয়োগফল হবে,
\(\overrightarrow{BA}=\overline{a}-\overline{b}\)
অথবা,
\(\overrightarrow{AB}=\overline{b}-\overline{a}\)
দ্রঃ ভেক্টরদ্বয়ের প্রান্তবিন্দুর সংযোগ রেখাংশ দ্বারা তাদের বিয়োগফল প্রকাশিত হয়। প্রথম ভেক্টরের প্রান্তবিন্দু পরে এবং দ্বিতীয় ভেক্টরের প্রান্তবিন্দু প্রথমে হয়।
\(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) দুইটি ভেক্টর।
এদের বিয়োগফল হবে,
\(\overrightarrow{BA}=\overline{a}-\overline{b}\)
অথবা,
\(\overrightarrow{AB}=\overline{b}-\overline{a}\)
দ্রঃ ভেক্টরদ্বয়ের প্রান্তবিন্দুর সংযোগ রেখাংশ দ্বারা তাদের বিয়োগফল প্রকাশিত হয়। প্রথম ভেক্টরের প্রান্তবিন্দু পরে এবং দ্বিতীয় ভেক্টরের প্রান্তবিন্দু প্রথমে হয়।
ভেক্টর রাশির স্কেলার গুণিতক
Scalar Multiple of Vector
ধরি, \(\overline{a}\) একটি ভেক্টর এবং \(m\) একটি স্কেলার। \(m\overline{a}\) দ্বারা ভেক্টর \(\overline{a}\) এর \(m\) গুণিতক বোঝায়। \(m\) গুনিতকের বিবরণ নিম্নে দেওয়া হলো।
\(m\overline{a}\) এর দৈর্ঘ্য \(\overline{a}\) এর দৈর্ঘ্যের \(m\) গুণ হবে। অর্থাৎ, \(|m\overline{a}|=m|\overline{a}|\) হবে।
\(m\overline{a}\) এর দিক এবং \(\overline{a}\) এর দিক একই হবে যখন, \(m>0\)
\(m\overline{a}\) এর দিক এবং \(\overline{a}\) এর দিক পরস্পর বিপরীত হবে যখন, \(m<0\)
\(m(-\overline{a})=(-m)\overline{a}=-m\overline{a}\)
\((-1)\overline{a}=-\overline{a}\)
\(0\overline{a}=\underline{0}\) (এখানে, বামপক্ষের শূন্যটি স্কেলার কিন্তু ডানপক্ষের শূন্যটি ভেক্টর )
\(m=\frac{\overline{a}}{\overline{b}} \Rightarrow \overline{a}=m\overline{b}\)
দ্রঃ যদি দুইটি অশূণ্য ভেক্টরের ধারকরেখা একই অথবা সমান্তরাল হয়, তবে একটি ভেক্টরকে অন্যটির একটি স্কেলার গুণিতক হিসেবে বিবেচনা করা হয়।
\(\overline{a}=\underline{0}\) হলে,
\(m\overline{a}=\underline{0}\) \(\overline{a}\ne{\underline{0}}\) হলে,
\(m\overline{a}\) এবং \(\overline{a}\) এর ধারকরেখা একই অথবা সমান্তরাল হবে। \(m\overline{a}\) এর দৈর্ঘ্য \(\overline{a}\) এর দৈর্ঘ্যের \(m\) গুণ হবে। অর্থাৎ, \(|m\overline{a}|=m|\overline{a}|\) হবে।
\(m\overline{a}\) এর দিক এবং \(\overline{a}\) এর দিক একই হবে যখন, \(m>0\)
\(m\overline{a}\) এর দিক এবং \(\overline{a}\) এর দিক পরস্পর বিপরীত হবে যখন, \(m<0\)
\(m\) গুনিতকের বিশেষ বিধি
\((mn)\overline{a}=m(n)\overline{a}\)\(m(-\overline{a})=(-m)\overline{a}=-m\overline{a}\)
\((-1)\overline{a}=-\overline{a}\)
\(0\overline{a}=\underline{0}\) (এখানে, বামপক্ষের শূন্যটি স্কেলার কিন্তু ডানপক্ষের শূন্যটি ভেক্টর )
\(m=\frac{\overline{a}}{\overline{b}} \Rightarrow \overline{a}=m\overline{b}\)
দ্রঃ যদি দুইটি অশূণ্য ভেক্টরের ধারকরেখা একই অথবা সমান্তরাল হয়, তবে একটি ভেক্টরকে অন্যটির একটি স্কেলার গুণিতক হিসেবে বিবেচনা করা হয়।
ত্রিমাত্রিক জগতে ভেক্টর অপারেশন
Vector operations in three-dimensional Space
ভেক্টর যোগের এবং স্কেলার গুণিতক গঠনের মৌলিক বিধিগুলো নিম্নে তালিকা আকারে দেওয়া হলো। এখানে, \(\overline{a}, \overline{b}, \overline{c}\) যে কোনো ভেক্টর এবং \(m, \ n\) কে স্কেলার হিসেবে বিবেচনা করা হয়েছে।
\(\overline{a}+\overline{b}=\overline{b}+\overline{a}\) ( যোগের বিনিময় বিধি )
\(\overline{a}+(\overline{b}+\overline{c})=(\overline{a}+\overline{b})+\overline{c}\) ( যোগের সংযোগ বিধি )
\(m\overline{a}=\overline{a}m\) ( গুণের বিনিময় বিধি )
\(m(n\overline{a})=(mn)\overline{a}\) ( গুণের সংযোগ বিধি )
\(m(\overline{a}+\overline{a})=m\overline{a}+m\overline{b}\) ( বন্টন বিধি )
\(\overline{a}+\overline{b}=\overline{b}+\overline{a}\) ( যোগের বিনিময় বিধি )
\(\overline{a}+(\overline{b}+\overline{c})=(\overline{a}+\overline{b})+\overline{c}\) ( যোগের সংযোগ বিধি )
\(m\overline{a}=\overline{a}m\) ( গুণের বিনিময় বিধি )
\(m(n\overline{a})=(mn)\overline{a}\) ( গুণের সংযোগ বিধি )
\(m(\overline{a}+\overline{a})=m\overline{a}+m\overline{b}\) ( বন্টন বিধি )
দ্বিমাত্রিক ভেক্টরের বিশেষ বিধি
Spacial Law of two Dimensional Vector
এখানে, \(\overline{a}\) যে কোনো ভেক্টর এবং \(m, \ n\) কে স্কেলার হিসেবে বিবেচনা করা হয়েছে।
\(\overline{a}+\underline{0}=\underline{0}+\overline{a}=\overline{a}\) ( যোগের অভেদক বিধি )
\(\overline{a}+(-\overline{a})=\underline{0}\) ( যোগের বিপরীতক বিধি )
\((m+n)\overline{a}=m\overline{a}+n\overline{a}\) ( বন্টন বিধি )
\(1(\overline{a})=\overline{a}\) ( গুণের অভেদক বিধি )
\(\overline{a}+\underline{0}=\underline{0}+\overline{a}=\overline{a}\) ( যোগের অভেদক বিধি )
\(\overline{a}+(-\overline{a})=\underline{0}\) ( যোগের বিপরীতক বিধি )
\((m+n)\overline{a}=m\overline{a}+n\overline{a}\) ( বন্টন বিধি )
\(1(\overline{a})=\overline{a}\) ( গুণের অভেদক বিধি )
সমতলে ভেক্টরের অংশক
Components of a Vector in a Plane
যদি, \(\overline{a}\) এবং \(\overline{b}\) দুইটি অসম ভেক্টর হয়, তবে \(\overline{a}\) ও \(\overline{b}\) এর সমতলে যে কোনো ভেক্টর \(\overline{r}\) কে \(\overline{a}\) ও \(\overline{b}\) এর যোগাশ্রয়ী সমাবেশ এককভাবে প্রকাশ করা যাবে।
অর্থাৎ,
\(\overline{r}=m\overline{a}+n\overline{b}\)
\(OX\) বরাবর \(\overline{r}\) এর অংশক \(=m\overline{a}\)
\(OY\) বরাবর \(\overline{r}\) এর অংশক \(=n\overline{b}\)
অর্থাৎ,
\(\overline{r}=m\overline{a}+n\overline{b}\)
\(OX\) বরাবর \(\overline{r}\) এর অংশক \(=m\overline{a}\)
\(OY\) বরাবর \(\overline{r}\) এর অংশক \(=n\overline{b}\)
আয়ত একক ভেক্টর \(\hat{i}, \hat{j}\)
Unite Vector \(\hat{i}, \hat{j}\)
কার্তেসীয় সমতলে \(x\) ও \(y\) অক্ষ বরাবর যথাক্রমে একক ভেক্টর \(\hat{i}\) ও \(\hat{j}\) কে আয়ত একক ভেক্টর বলা হয়। \(\hat{i}\) ও \(\hat{j}\) পরস্পর লম্ব দুইটি একক ভেক্টর।
এখানে,
\(|\hat{i}|=|\hat{j}|=1\)
এখানে,
\(|\hat{i}|=|\hat{j}|=1\)
কার্তেসীয় স্থানাংককে ভেক্টরে এবং ভেক্টরকে কার্তেসীয় স্থানাংকে প্রকাশ
Represention of Vector in Cartesian Co-ordinates and Cartesian Co-ordinates in Vector
ধরি, কার্তেসীয় সমতলে \(P\) বিন্দুর কার্তেসীয় স্থানাঙ্ক \((x, y)\) এবং মূলবিন্দু \((0, 0), x\) ও \(y\) অক্ষের ধনাত্মক দিকে একক ভেক্টর যথাক্রমে \(\hat{i}\) ও \(\hat{j}\)
এবং \(\overrightarrow{OP}=\overline{r}\)
এখানে, \(PN\perp{OX}\) এবং \(PM\perp{OY}\)
তাহলে, \(\overrightarrow{ON}=x\hat{i}\) এবং \(\overrightarrow{NP}=\overrightarrow{OM}=y\hat{j}\)
এখন, \(\triangle{PON}\)-এ ভেক্টর সংযোগের ত্রিভুজ সূত্র ব্যবহার করে,
\(\overrightarrow{OP}=\overrightarrow{ON}+\overrightarrow{NP}\)
\(\therefore\) \(\overline{r}=x\hat{i}+y\hat{j}\) আবার, \(\triangle{PON}\) সমকোণী
\(\therefore OP^2=ON^2+NP^2\)
\(\Rightarrow \overrightarrow{OP}.\overrightarrow{OP}=\overrightarrow{ON}.\overrightarrow{ON}+\overrightarrow{NP}.\overrightarrow{NP}\)
\(\Rightarrow \overline{r}.\overline{r}=x\hat{i}.x\hat{i}+y\hat{j}.y\hat{j}\)
\(\Rightarrow r^2=x^2\hat{i}.\hat{i}+y^2\hat{j}.\hat{j}\) ➜ \(\because \overline{r}.\overline{r}=r^2\)
\(\Rightarrow r^2=x^2.1+y^2.1\) ➜ \(\because \hat{i}.\hat{i}=\hat{j}.\hat{j}=1\)
\(\Rightarrow r^2=x^2+y^2\)
\(\Rightarrow r=\sqrt{x^2+y^2}\)
\(\therefore\) \(r=|\overline{r}|=\sqrt{x^2+y^2}\)
এবং \(\overrightarrow{OP}=\overline{r}\)
এখানে, \(PN\perp{OX}\) এবং \(PM\perp{OY}\)
তাহলে, \(\overrightarrow{ON}=x\hat{i}\) এবং \(\overrightarrow{NP}=\overrightarrow{OM}=y\hat{j}\)
এখন, \(\triangle{PON}\)-এ ভেক্টর সংযোগের ত্রিভুজ সূত্র ব্যবহার করে,
\(\overrightarrow{OP}=\overrightarrow{ON}+\overrightarrow{NP}\)
\(\therefore\) \(\overline{r}=x\hat{i}+y\hat{j}\) আবার, \(\triangle{PON}\) সমকোণী
\(\therefore OP^2=ON^2+NP^2\)
\(\Rightarrow \overrightarrow{OP}.\overrightarrow{OP}=\overrightarrow{ON}.\overrightarrow{ON}+\overrightarrow{NP}.\overrightarrow{NP}\)
\(\Rightarrow \overline{r}.\overline{r}=x\hat{i}.x\hat{i}+y\hat{j}.y\hat{j}\)
\(\Rightarrow r^2=x^2\hat{i}.\hat{i}+y^2\hat{j}.\hat{j}\) ➜ \(\because \overline{r}.\overline{r}=r^2\)
\(\Rightarrow r^2=x^2.1+y^2.1\) ➜ \(\because \hat{i}.\hat{i}=\hat{j}.\hat{j}=1\)
\(\Rightarrow r^2=x^2+y^2\)
\(\Rightarrow r=\sqrt{x^2+y^2}\)
\(\therefore\) \(r=|\overline{r}|=\sqrt{x^2+y^2}\)
অবস্থান ভেক্টর
Position Vector
অবস্থান ভেক্টরঃ প্রসঙ্গ কাঠামোর মূলবিন্দু সাপেক্ষে কোনো বিন্দুর অবস্থান যে ভেক্টরের মাধ্যমে প্রকাশ করা হয় তাকে ঐ বিন্দুর অবস্থান ভেক্টর বলে।
ধরি, \(O\) মূলবিন্দু সাপেক্ষে \(A\) ও \(B\) এর অবস্থান ভেক্টর যথাক্রমে, \(\overline{a}\) ও \(\overline{b}\)
চিত্র হতে,
\(\overrightarrow{OA}=\overline{a}, \overrightarrow{OB}=\overline{b}\)
এখন, \(\triangle{OAB}\)-এ ভেক্টর সংযোগের ত্রিভুজ সূত্র ব্যবহার করে,
\(\overrightarrow{OA}+\overrightarrow{AB}=\overrightarrow{OB}\)
\(\Rightarrow \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}\)
\(\therefore \overrightarrow{AB}=\overline{b}-\overline{a}\)
ধরি, \(O\) মূলবিন্দু সাপেক্ষে \(A\) ও \(B\) এর অবস্থান ভেক্টর যথাক্রমে, \(\overline{a}\) ও \(\overline{b}\)
চিত্র হতে,
\(\overrightarrow{OA}=\overline{a}, \overrightarrow{OB}=\overline{b}\)
এখন, \(\triangle{OAB}\)-এ ভেক্টর সংযোগের ত্রিভুজ সূত্র ব্যবহার করে,
\(\overrightarrow{OA}+\overrightarrow{AB}=\overrightarrow{OB}\)
\(\Rightarrow \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}\)
\(\therefore \overrightarrow{AB}=\overline{b}-\overline{a}\)
কার্তেসীয় দ্বিমাত্রিক জগতে অবস্থান ভেক্টর
Position Vector in two Dimension Space
কার্তেসীয় দ্বিমাত্রিক জগতে মূলবিন্দু \((0, 0)\) এর সাপেক্ষে \(P(x, y)\) এর অবস্থান ভেক্টর \(\overline{r}\) হলে,
\(P\) বিন্দুর অবস্থান
\(\overline{r}=x\hat{i}+y\hat{j}\)
\(P\) বিন্দুর অবস্থান
\(\overline{r}=x\hat{i}+y\hat{j}\)
\(\overline{r}\) ভেক্টরের মাণ
Values of the vector \(\overline{r}\)
ধরি,
\(P(x,y), \ M(0,y), \ N(x,0), \ \overrightarrow{OP}=\overline{r}\)
এবং অক্ষরেখাগুলি বরাবর একক ভেক্টর যথাক্রমে \(\hat{i}, \ \hat{j}\)
\(\therefore \overrightarrow{ON}=x\hat{i}, \overrightarrow{NP}=\overrightarrow{OM}=y\hat{j}\)
\(\triangle{OPN}\) সমকোণী
\(\therefore OP^2=ON^2+NP^2\)
\(\Rightarrow \overrightarrow{OP}.\overrightarrow{OP}=\overrightarrow{ON}.\overrightarrow{ON}+\overrightarrow{NP}.\overrightarrow{NP}\)
\(\Rightarrow \overline{r}.\overline{r}=x\hat{i}.x\hat{i}+y\hat{j}.y\hat{j}\)
\(\Rightarrow r^2=x^2\hat{i}.\hat{i}+y^2\hat{j}.\hat{j}\) ➜ \(\because \overline{r}.\overline{r}=r^2\)
\(\Rightarrow r^2=x^2.1+y^2.1\) ➜ \(\because \hat{i}.\hat{i}=\hat{j}.\hat{j}=1\)
\(\Rightarrow r^2=x^2+y^2\)
\(\Rightarrow r=\sqrt{x^2+y^2}\)
\(\therefore\) \(r=|\overline{r}|=\sqrt{x^2+y^2}\)
\(P(x,y), \ M(0,y), \ N(x,0), \ \overrightarrow{OP}=\overline{r}\)
এবং অক্ষরেখাগুলি বরাবর একক ভেক্টর যথাক্রমে \(\hat{i}, \ \hat{j}\)
\(\therefore \overrightarrow{ON}=x\hat{i}, \overrightarrow{NP}=\overrightarrow{OM}=y\hat{j}\)
\(\triangle{OPN}\) সমকোণী
\(\therefore OP^2=ON^2+NP^2\)
\(\Rightarrow \overrightarrow{OP}.\overrightarrow{OP}=\overrightarrow{ON}.\overrightarrow{ON}+\overrightarrow{NP}.\overrightarrow{NP}\)
\(\Rightarrow \overline{r}.\overline{r}=x\hat{i}.x\hat{i}+y\hat{j}.y\hat{j}\)
\(\Rightarrow r^2=x^2\hat{i}.\hat{i}+y^2\hat{j}.\hat{j}\) ➜ \(\because \overline{r}.\overline{r}=r^2\)
\(\Rightarrow r^2=x^2.1+y^2.1\) ➜ \(\because \hat{i}.\hat{i}=\hat{j}.\hat{j}=1\)
\(\Rightarrow r^2=x^2+y^2\)
\(\Rightarrow r=\sqrt{x^2+y^2}\)
\(\therefore\) \(r=|\overline{r}|=\sqrt{x^2+y^2}\)
ভেক্টর অন্তর্বিভক্তিকরণ সূত্র
Vector Interpolation Formula
\(O\) মূলবিন্দু এবং \(\overrightarrow{OA}\) ও \(\overrightarrow{OB}\) যথাক্রমে \(A\) ও \(B\) বিন্দুর অবস্থান ভেক্টর,
যেখানে, \(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) এবং \(P\) বিন্দু \(AB\) রেখাংশকে \(m:n\) অনুপাতে অন্তর্বিভক্ত করে।
\(P\) বিন্দুর অবস্থান ভেক্টর,
\(\overrightarrow{OP}=\frac{m\overline{b}+n\overline{a}}{m+n}\)
যেখানে, \(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) এবং \(P\) বিন্দু \(AB\) রেখাংশকে \(m:n\) অনুপাতে অন্তর্বিভক্ত করে।
\(P\) বিন্দুর অবস্থান ভেক্টর,
\(\overrightarrow{OP}=\frac{m\overline{b}+n\overline{a}}{m+n}\)
ভেক্টর বহিঃর্বিভক্তিকরণ সূত্র
Vector extrinsic formula
\(O\) মূলবিন্দু এবং \(\overrightarrow{OA}\) ও \(\overrightarrow{OB}\) যথাক্রমে \(A\) ও \(B\) বিন্দুর অবস্থান ভেক্টর,
যেখানে, \(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) এবং \(P\) বিন্দু \(AB\) রেখাংশকে \(m:n\) অনুপাতে বহিঃর্বিভক্ত করে।
\(P\) বিন্দুর অবস্থান ভেক্টর,
\(\overrightarrow{OP}=\frac{m\overline{b}-n\overline{a}}{m-n}\)
যেখানে, \(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) এবং \(P\) বিন্দু \(AB\) রেখাংশকে \(m:n\) অনুপাতে বহিঃর্বিভক্ত করে।
\(P\) বিন্দুর অবস্থান ভেক্টর,
\(\overrightarrow{OP}=\frac{m\overline{b}-n\overline{a}}{m-n}\)
অনুসিদ্ধান্ত-১
Postulate-1
\(O\) মূলবিন্দু এবং \(\overrightarrow{OA}\) ও \(\overrightarrow{OB}\) যথাক্রমে \(A\) ও \(B\) বিন্দুর অবস্থান ভেক্টর,
\(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) এবং \(P, \ AB\) রেখাংশের মধ্যবিন্দু হলে,
\(P\) বিন্দুর অবস্থান ভেক্টর,
\(\overrightarrow{OP}=\frac{\overline{a}+\overline{b}}{2}\)
\(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) এবং \(P, \ AB\) রেখাংশের মধ্যবিন্দু হলে,
\(P\) বিন্দুর অবস্থান ভেক্টর,
\(\overrightarrow{OP}=\frac{\overline{a}+\overline{b}}{2}\)
অনুসিদ্ধান্ত-২
Postulate-2
\(O\) মূলবিন্দু এবং \(\overrightarrow{OA}\) ও \(\overrightarrow{OB}\) যথাক্রমে \(A\) ও \(B\) বিন্দুর অবস্থান ভেক্টর,
\(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) এবং \(C, \ AB\) রেখাংশের মধ্যবিন্দু হলে,
\(2\overrightarrow{OC}=(\overrightarrow{OA}+\overrightarrow{OB})\) \(\overrightarrow{OC}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})\)
\(\overrightarrow{OA}=\overline{a}\) এবং \(\overrightarrow{OB}=\overline{b}\) এবং \(C, \ AB\) রেখাংশের মধ্যবিন্দু হলে,
\(2\overrightarrow{OC}=(\overrightarrow{OA}+\overrightarrow{OB})\) \(\overrightarrow{OC}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})\)
Email: Golzarrahman1966@gmail.com
Visitors online: 000003