সরলরেখা-১ (Straightline-1)

mybarcode
এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
  • সরলরেখার সঙ্গা ও বিস্তারিত বিবরণ।
  • সরলরেখার সমীকরণ চিনবার উপায়।
  • সরলরেখার ঢাল।
  • সরলরেখার বিভিন্ন আকার।
  • সৃজনশীল প্রশ্ন এবং সমাধান
সরলরেখা (Straight line):
একটি বিন্দু-সেট দ্বারা সৃষ্ট সঞ্চারপথ দিক পরিবর্তন না করলে সেই সঞ্চারপথকে সরলরেখা বলে। সঞ্চারপথের সমীকরণকে সরলরেখার সমীকরণ বলে।
সরলরেখার ঢাল (Slope or Gradient):
কোনো সরলরেখা \(X\) অক্ষের ধনাত্মক দিকের সহিত যে কোণ উৎপন্ন করে তার ত্রিকোণমিতিক ট্যানজেন্টকে রেখাটির ঢাল বলে। ঢালকে সাধারণত \(m\) দ্বারা সূচিত করা হয়। \(AB\) সরলরেখা \(X\) অক্ষের ধনাত্মক দিকের সহিত \(\theta \) কোণ উৎপন্ন করলে, তার ঢাল \(m=\tan\theta\).
সরলরেখার সমীকরণ চিহ্নিত করণের উপায়ঃ
\(x\) এবং \(y\) এর একঘাত সমীকরণ সর্বদা সরলরেখা প্রকাশ করে। যেমনঃ \(ax+by+c=0\) ইহাকে সরলরেখার সাধারণ সমীকরণও বলা হয়ে থাকে।
পরামিতিক সমীকরন (Parametric Equation):
যখন একটি সঞ্চারপথের উপর অবস্থিত কোনো বিন্দু \((x, y)\) এর স্থানাঙ্ক শুধুমাত্র একটি চলরাশি (Variable) এর মাধ্যমে প্রকাশিত হয়, তখন ঐ চলরাশিকে পরামিতি বা প্যারামিটার ( Parameter ) এবং উক্ত বিন্দুর স্থানাঙ্ককে পরামিতিক স্থানাঙ্ক বা প্যারামিটার যুক্ত স্থানাঙ্ক বলা হয়। \(x\) ও \(y\) এর মান জ্ঞাপক সমীকরণদ্বয়কে একত্রে ঐ সঞ্চারপথের পরামিতিক বা প্যারামিটারযুক্ত সমীকরণ বলে। পরামিতিকে অপসারণ করে যে সমীকরণ পাওয়া যাবে, তা কার্তেসীয় সমীকরণ হবে। সরলরেখার পরামিতিক সমীকরণকে লিখা হয়ঃ \(x=a+bt\), \(y=c+dt\) যখন \(a, b, c, d\) ধ্রুবক এবং \(t\) পরিবর্তনশীল রাশি। এখানে \(t\) কে পরামিতি বলা হয় ।

প্রয়োজনীয় এবং স্মরণীয় সূত্রসমূহ।

দুইটি বিন্দুর সংযোগ সরলরেখার ঢাল
\(1.\) দুইটি নির্দিষ্ট বিন্দু \(A(x_{1}, y_{1})\), \(B(x_{2}, y_{2})\) দিয়ে গমনকারী সরলরেখা \(X\) অক্ষের ধনাত্মক দিকের সহিত \(\theta \) কোণ উৎপন্ন করলে, তার ঢাল

\(m=\tan\theta=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\).

\(2.\) \(X\) অক্ষের সমীকরণ

\(y=0\).

\(3.\) \(Y\) অক্ষের সমীকরণ

\(x=0\).

\(4.\) \(X\) অক্ষের সমান্তরাল বা, \(Y\) অক্ষের উপর লম্ব সরলরেখার সমীকরণ

\(y=b\).

\(5.\) \(Y\) অক্ষের সমান্তরাল বা, \(X\) অক্ষের উপর লম্ব সরলরেখার সমীকরণ

\(x=a\).

\(6.\) মূলবিন্দুগামী সরলরেখার সাধারণ সমীকরণ

\(y=mx\).

এখানে, \(m\) সরলরেখাটির ঢাল।

\(7.\) \(Y\) অক্ষের ছেদিতাংশ \((c)\) এবং ঢাল \((m)\) দেওয়া থাকিলে সরলরেখার সমীকরণ

\(y=mx+c\).

\(8.\) উভয় অক্ষের ছেদিতাংশ \((a, b)\) দেওয়া থাকিলে সরলরেখার সমীকরণ

\(\frac{x}{a}+\frac{y}{b}=1\).

\(9.\) একটি নির্দিষ্ট বিন্দু \((x_{1}, y_{1})\) দিয়ে গমনকারী এবং তার ঢাল \((m)\) দেওয়া থাকিলে সরলরেখার সমীকরণ

\(y-y_{1}=m(x-x_{1})\).

\(10.\) দুইটি নির্দিষ্ট বিন্দু \((x_{1}, y_{1})\) এবং \((x_{2}, y_{2})\) দিয়ে গমনকারী সরলরেখার সমীকরণ

\(\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}\).

\(11.\) মূলবিন্দু এবং একটি নির্দিষ্ট বিন্দু \((x_{1}, y_{1})\) দিয়ে গমনকারী সরলরেখার সমীকরণ

\(y=\frac{y_{1}}{x_{1}}x\).

\(12.\) মূলবিন্দু হতে কোনো সরলরেখার উপর অঙ্কিত লম্বের দৈর্ঘ্য \(P\) এবং লম্বটি \(X\) অক্ষের ধনাত্মক দিকের সহিত \(\alpha \) কোণ উৎপন্ন করলে, সরলরেখাটির সমীকরণ

\(x\cos\alpha+y\sin\alpha=p\).

\(13.\) একটি নির্দিষ্ট বিন্দু \((x_{1}, y_{1})\) দিয়ে গমনকারী এবং \(X\) অক্ষের ধনাত্মক দিকের সহিত \(\theta \) কোণ উৎপন্ন করলে, সরলরেখাটির সমীকরণ

\(\frac{x-x_{1}}{\cos\theta}=\frac{y-y_{1}}{\sin\theta}=r\).

যেখানে, \((x, y)\) বিন্দু হতে \((x_{1}, y_{1})\) বিন্দুর দূরত্ব=\(r\).
\(14.\) তিনটি সরলরেখা দ্বারা গঠিত ত্রিভুজের ক্ষেত্রফলঃ
ধরি,
\(a_{1}x+b_{1}y+c_{1}=0 ……..(1)\)
\(a_{2}x+b_{2}y+c_{2}=0 ……..(2)\)
\(a_{3}x+b_{3}y+c_{3}=0 ……..(3)\)
উপরক্ত \((1)\), \((2)\) এবং \((3)\) রেখাগুলি দ্বারা গঠিত ত্রিভুজের ক্ষেত্রফল

= \(\frac{1}{2} \frac{\Delta^{2}}{C_{1}C_{2}C_{3}}\)

যেখানে,\(\Delta=\left|\begin{array}{c}a_{1} \ \ \ \ b_{1} \ \ \ \ c_{1}\\a_{2} \ \ \ \ b_{2} \ \ \ \ c_{2}\\ a_{3} \ \ \ \ b_{3} \ \ \ \ c_{3}\end{array}\right|\) এবং \(C_{1}, C_{2}, C_{3}\) হচ্ছে \(\Delta\) নির্ণায়কটির যথাক্রমে \(c_{1}, c_{2}, c_{3}\) উপাদানের সহ-গুণক।
অর্থাৎ \(C_{1}=(a_{2}b_{3}-a_{3}b_{2}),\) \(C_{2}= -(a_{1}b_{3}-a_{3}b_{1}),\) \(C_{3}=(a_{1}b_{2}-a_{2}b_{1})\)
St81

\(15.\) দুইটি সরলরেখার ছেদবিন্দুঃ
ধরি,
\(a_{1}x+b_{1}y+c_{1}=0 ……..(1)\)
\(a_{2}x+b_{2}y+c_{2}=0 ……..(2)\)
উপরক্ত \((1)\) এবং \((2)\) সরলরেখাদ্বয়ের ছেদবিন্দু

\(P\left(\frac{b_{1}c_{2}-b_{2}c_{1}}{a{1}b_{2}-a_{2}b_{1}}, \frac{a_{2}c_{1}-a_{1}c_{2}}{a{1}b_{2}-a_{2}b_{1}}\right)\)

\(16.\) দুইটি সমীকরণ একই সরলরেখা নির্দেশ করার শর্তঃ
ধরি,
\(a_{1}x+b_{1}y+c_{1}=0 ……..(1)\)
\(a_{2}x+b_{2}y+c_{2}=0 ……..(2)\)
উপরক্ত \((1)\) এবং \((2)\) সমীকরণদ্বয় একই সরলরেখা নির্দেশ করবে যদি,

\(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)

1 2 3 4 5 6