সরলরেখা-১ (Straightline-1)

অনুশীলনী \(3.E\) / \(Q.3\)-এর প্রশ্নসমূহ
\(Q.3.(i)\) একটি সরলরেখা \((-2, -3)\) বিন্দু দিয়ে অতিক্রম করে এবং অক্ষদ্বয়কে যথাক্রমে \(A\) ও \(B\) বিন্দুতে ছেদ করে যেন \(OA+2.OB=0\) হয়। \(O\) মূলবিন্দু হলে, সরলরেখাটির সমীকরণ নির্ণয় কর।
উত্তরঃ \(3x-8y-18=0\)।

\(Q.3.(ii)\) একটি সরলরেখা \((-2, -5)\) বিন্দু দিয়ে অতিক্রম করে এবং অক্ষদ্বয়কে যথাক্রমে \(A\) ও \(B\) বিন্দুতে ছেদ করে যেন \(OA+2.OB=0\) হয়। \(O\) মূলবিন্দু হলে, সরলরেখাটির সমীকরণ নির্ণয় কর।
[ যঃ ২০১২, ঢাঃ ২০১৩ ]
উত্তরঃ \(x-2y-8=0\)।

\(Q.3.(iii)\)এমন একটি সরলরেখার সমীকরণ নির্ণয় কর যা \((3, 2)\) বিন্দু দিয়ে অতিক্রম করে এবং অক্ষদ্বয়কে যথাক্রমে \(A\) ও \(B\) বিন্দুতে ছেদ করে যেন \(OA-OB=2\) হয়। যখন \(O\) মূলবিন্দু ।
[ সিঃ,রাঃ ২০১২ ] ।
উত্তরঃ \(2x+3y=12\) বা, \(x-y=1\)।

\(Q.3.(iv)\) \((2, 5)\) বিন্দু দিয়ে গমনকারী সরলরেখাটি অক্ষদ্বয় থেকে সমমানের বিপরীত চিহ্নবিশিষ্ট অংশ ছেদ করে। রেখাটির সমীকরণ নির্ণয় কর। রেখাটির যে বিন্দুতে কটি ভুজের দ্বিগুণ তার স্থানাঙ্ক বের কর।
উত্তরঃ \(x-y+3=0\); \((3, 6)\)।

\(Q.3.(v)\) একটি সরলরেখা অক্ষদ্বয়ের সাথে \(\frac{50}{\sqrt{3}}\) বর্গ একক ক্ষেত্রফল বিশিষ্ট ত্রিভুজ গঠন করে এবং মূলবিন্দু হতে রেখাটির উপর অঙ্কিত লম্ব \(X\) অক্ষের সাথে \(30^{o}\) কোণ উৎপন্ন করে। রেখাটির সমীকরণ নির্ণয় কর ।
উত্তরঃ \(\sqrt{3}x+y-10=0\).

\(Q.3.(vi)\) একটি সরলরেখার সমীকরণ নির্ণয় কর যা অক্ষদ্বয়ের সাথে \(16\) বর্গ একক ক্ষেত্রফল বিশিষ্ট ত্রিভুজ গঠন করে এবং মূলবিন্দু হতে রেখাটির উপর অঙ্কিত লম্ব \(X\) অক্ষের সাথে \(45^{o}\) কোণ উৎপন্ন করে।
[ সিঃ ২০০৫ ]
উত্তরঃ \(x+y=4\sqrt{2}\).

\(Q.3.(vii)\) \(x+2y+7=0\) সরলরেখাটির অক্ষদ্বয়ের মধ্যবর্তী খন্ডিতাংশের মধ্যবিন্দুর স্থানাঙ্ক নির্ণয় কর। উপরক্ত খন্ডিতাংশ কোন বর্গের বাহু হলে তার ক্ষেত্রফল নির্ণয় কর।
[ বঃ ২০১২, যঃ ২০১৩ ]
উত্তরঃ \((-\frac{7}{2}, -\frac{7}{4})\); \(61\frac{1}{4}\) বর্গ একক।

\(Q.3.(viii)\) \(t\)এর যে কোন বাস্থব মানের জন্য \(P\) বিন্দুর স্থানাঙ্ক \((2t+2, t-4)\) হলে, এর সঞ্চারপথের সমীকরণ নির্ণয় কর। সঞ্চারপথটি অক্ষদ্বয়ের সাথে যে ত্রিভুজ উৎপন্ন করে তার ক্ষেত্রফল নির্ণয় কর।
উত্তরঃ \(x-2y=10\); \(25\) বর্গ একক।

\(Q.3.(ix)\) \(t\)এর যে কোন বাস্থব মানের জন্য \(P\) বিন্দুর স্থানাঙ্ক \((t+5, 2t-4)\) হলে, এর সঞ্চারপথের সমীকরণ নির্ণয় কর। সঞ্চারপথটি অক্ষদ্বয় থেকে যে পরিমান অংশ ছেদ করে তার পরিমাণ নির্ণয় কর।
উত্তরঃ \(x-2y=14\); \(7\) এবং (-14\).

\(Q.3.(x)\) \(3x+by+1=0\) এবং \(ax+6y+1=0\) রেখা দুইটি \((5, 4 )\) বিন্দুতে ছেদ করে; \(a\) ও \(b\) এর মান কত? যদি প্রথম রেখাটি \(X\) অক্ষকে \(A\) বিন্দুতে এবং দ্বিতীয় রেখাটি \(Y\) অক্ষকে \(B\) বিন্দুতে ছেদ করে, তবে \(AB\) সরলরেখার সমীকরণ নির্ণয় কর।
উত্তরঃ \(a=-5, \ b=-4\); \(3x+6y+1=0\).

\(Q.3.(xi)\) \(a\) এর মান কত হলে \((i) 3x+2y-5=0\), \((ii) ax+4y-9=0\), \((iii) x+2y-7=0\) রেখাত্রয় সমবিন্দু হবে? বিশেষ অবস্থা দুইটি আলোচনা কর, যখন \(a=2\) এবং \(a=6\)। উত্তরঃ \(a=7\); প্রথম অবস্থাঃ \(a=2\) হলে, \((ii)\) ও \((iii)\) সমান্তরাল হবে। দ্বিতীয় অবস্থাঃ \(a=6\) হলে, \((i)\) ও \((ii)\) সমান্তরাল হবে।

\(Q.3.(xii)\) \(ABC\) ত্রিভুজের শীর্ষবিন্দু \(A(1, 1)\), \(B(3, 4)\) এবং \(C(5, -2)\); \(AB\) ও \(AC\)এর মধ্যবিন্দুর সংযোগ রেখার সমীকরণ নির্ণয় কর এবং দেখাও যে, তা \(BC\) এর সমান্তরাল।
[ ঢঃ ২০১১ ]
উত্তরঃ \(6x+2y-17=0\)।

\(Q.3.(xiii)\) \(A(2, 4)\), \(B(-4, -6)\) এবং \(C(6, -8)\) বিন্দুত্রয় একটি ত্রিভুজের শীর্ষবিন্দু হলে, ঐ ত্রিভুজের মধ্যমাগুলির সমীকরণ নির্ণয় কর । উত্তরঃ \(11x-y-18=0\), \(x-2y-8=0\), \(x+y+2=0\)।

\(Q.3.(xiv)\) \((1, 2)\), \((4, 4)\) এবং \((2, 8)\) বিন্দুত্রয় কোনো ত্রিভুজের বাহুগুলির মধ্যবিন্দু ; ত্রিভুজের বাহুগুলির সমীকরণ নির্ণয় কর ।
উত্তরঃ \(2x+y-4=0\), \(6x-y-20=0\), \(2x-3y+20=0\)।

\(Q.3.(xv)\) \(OABC\) একটি সামান্তরিক। \(X\) অক্ষ বরাবর \(OA\) অবস্থিত । \(OC\) রেখার সমীকরণ \(y=2x\) এবং \(B\) বিন্দুর স্থানাঙ্ক \((4, 2)\) । \(A\) ও \(C\) বিন্দুর স্থানাঙ্ক এবং \(AC\) কর্ণের সমীকরণ নির্ণয় কর।
[ চঃ ২০১১, রাঃ ২০১৩ ]
উত্তরঃ \(A(3, 0)\), \(C(1, 2)\), \(x+y-3=0\)।

\(Q.3.(xvi)\) \(x+by=b\) রেখাটি অক্ষদ্বয়কে যথক্রমে \(A\) ও \(B\) বিন্দুতে ছেদ করে। যদি \(OA=3.OB\), যখন \(O\) মূলবিন্দু এবং \(Q\) এর স্থনাংক \((0, -9)\) হয়, তবে \(AQ\) এর সমীকরণ নির্ণয় কর এবং দেখাও যে, \(AQ\perp AB\) ।
উত্তরঃ \(3x-y=9\)।

\(Q.3.(xvii)\) \(x=4\), \(x=8\), \(y=6\) এবং \(y=10\) রেখাগুলি দ্বারা উৎপন্ন আয়তক্ষেত্রের কর্ণদ্বয়ের সমীকরণ নির্ণয় কর এবং দেখাও যে, তার পরস্পর লম্ব ।
[ চঃ ২০০২ ]
উত্তরঃ \(x-y+2=0\), \(x+y-14=0\)।

\(Q.3.(xviii)\) \(x-4=0\), \(y-5=0\), \(x+3=0\) এবং \(y+2=0\) সমীকরণ চারটি একটি চতুর্ভুজের চারটি বাহু নির্দেশ করে। চতুর্ভুজটির কর্ণদ্বয়ের সমীকরণ নির্ণয় কর ।
[ ঢঃ ২০১২ ]
উত্তরঃ \(x-y+1=0\), \(x+y-2=0\)।

\(Q.3.(xix)\) \(X\) অক্ষের উপর \(P, Q\) বিন্দুদ্বয় \(Y\) অক্ষের উপর \(R, S\) বিন্দুদ্বয় অবস্থিত। \(PR\) ও \(QS\) রেখাদ্বয়ের সমীকরণ যথাক্রমে \(4x+3y+6=0\) এবং \(x+2y-1=0\) ; দেখাও যে, \(PQ=RS\) ।
[ ঢঃ ২০০৮ ] ।

\(Q.3.(xx)\) \((2, -1)\) বিন্দুগামী একটি সরলরেখা ঢাল \(-\frac{3}{4}\) এ রেখার উপর \((2, -1\) বিন্দু হতে \(15\) একক দূরে অবস্থিত দুইটি বিন্দুর স্থানাঙ্ক নির্ণয় কর ।
উত্তরঃ \((14, -10)\), \((-10. 8)\)।

\(Q.3.(xxi)\) \((-1, 1)\) বিন্দুগামী একটি সরলরেখা ঢাল \(\frac{5}{12}\) এ রেখার উপর \((-1, 1\) বিন্দু হতে \(26\) একক দূরে অবস্থিত দুইটি বিন্দুর স্থানাঙ্ক নির্ণয় কর ।
উত্তরঃ \((23, 11)\), \((-25, -9)\)।

\(Q.3.(xxii)\) \(A(3, -\frac{7}{2})\) বিন্দুগামী একটি সরলরেখা ঢাল \(-\frac{5}{12}\) এ রেখার উপর \(P\) বিন্দুর স্থানাঙ্ক নির্ণয় কর যেন, \(AP=\frac{13}{2}\) হয়।
উত্তরঃ \((9, -1)\), \((-3. -6)\)।

\(Q.3.(xxiii)\) একটি কারখনায় \(75\) একক এবং \(100\) একক জিনিস তৈরী করতে যথাক্রমে \(350\) টাকা এবং \(400\) টাকা খরচ হয়। জিনিস্টির খরচ ও পরিমানের মধ্যকার বিদ্যমান সরলরৈখিক সম্পর্ক নির্ণয় কর এবং তা থেকে \(150\) একক জিনিস তৈরী করার খরচ বের কর।
উত্তরঃ \(y=2x+200\); \(500\) টাকা ।

\(Q.3.(xxiv)\) কোনো একটি ছাত্রাবাসের মোট ব্যায় \(y\) এবং সদস্য সংখ্যা \(x\); \(12\) জন সদস্যের জন্য মোট খরচ \(1040\) টাকা এবং \(20\) জন সদস্যের জন্য মোট খরচ \(1600\) টাকা হলে, \((a)\) \(x\) এবং \(y\) এর মধ্যে সরলরৈখিক সম্পর্ক নির্ণয় কর। \((b)\) সদস্য সংখ্যা \(15\) হলে, মোট ব্যায় কত হবে? । উত্তরঃ \(y=70x+200\); \(1250\) টাকা।
1 2 3 4 5 6