সরলরেখা-৩ (straightline-3)



mybarcode

এ অধ্যায়ে আমরা যে বিষয়গুলি আলোচনা করব।

  • একটি বিন্দু হতে একটি সরলরেখার লম্ব দূরত্ব।
  • মূলবিন্দু হতে একটি সরলরেখার লম্ব দূরত্ব।
  • দুইটি সমান্তরাল সরলরেখার মধ্যবর্তী লম্ব দূরত্ব।
  • দুইটি পরস্পরছেদী সরলরেখার অন্তর্ভুক্ত কোণের সমদ্বিখন্ডক সরলরেখাদ্বয়ের সমীকরণ।
  • দুইটি পরস্পরছেদী সরলরেখার অন্তর্ভুক্ত স্থুলকোণের বা, সূক্ষ্মকোণের সমদ্বিখন্ডক সরলরেখাদ্বয়ের সমীকরণ।
  • কোনো সরলরেখার ধনাত্মক ও ঋণাত্মক পার্শ।
  • একটি নির্দিষ্ট বিন্দুধারী কোণ ও নির্দিষ্ট বিন্দুধারী কোণের সমদ্বিখন্ডিক সরলরেখার সমীকরণ।
  • মূলবিন্দুধারী কোণ ও মূলবিন্দুধারী কোণের সমদ্বিখন্ডিক সরলরেখার সমীকরণ।
  • সরলরেখার প্রতিচ্ছবি।
  • দুইটি পরস্পরছেদী সরলরেখার সাপেক্ষে একটি নির্দিষ্ট বিন্দুর অবস্থান।
  • একটি ত্রিভুজের শীর্ষবিন্দুর সাপেক্ষে এর কোণগুলি সম্পর্কে ধারণা জ্ঞাপন ।
  • সৃজনশীল প্রশ্ন এবং সমাধান

সরলরেখার ধনাত্মক ও ঋণাত্মক পার্শঃ \(ax+by+c=0\) সরলরেখার যে কোনো পার্শের যে কোনো বিন্দু \((x_{1}, y_{1})\) এর জন্য যদি \(ax_{1}+by_{1}+c\) সর্বদা ধনাত্মক হয় তবে ঐ পার্শটিকে সরলরেখাটির ধনাত্মক পার্শ এবং তার বিপরীত পার্শটিকে ঋনাত্মক পার্শ বলা হয়।

straight3straight3

মূলবিন্দুর অবস্থানঃ যদি \(ax+by+c=0\) সমীকরণের \(c\) ধনাত্মক হয়, তবে মূলবিন্দু \(ax+by+c=0\) সরলরেখার ধনাত্মক পার্শে এবং \(c\) ঋনাত্মক হলে, মূলবিন্দু রেখাটির ঋনাত্মক পার্শে অবস্থিত হবে।

মূলবিন্দু ও অপর যে কোনো বিন্দুর অবস্থানঃ \(ax+by+c=0\) সরলরেখার ক্ষেত্রে, যদি \(ax_{1}+by_{1}+c\) এবং \(c\) একই চিহ্নবিশিষ্ট হয় তবে মূলবিন্দু এবং \((x_{1}, y_{1})\) বিন্দু সরলরেখাটির একই পার্শে অবস্থিত হবে। আর যদি বিপরীত চিহ্নবিশিষ্ট হয় তবে মূলবিন্দু এবং \((x_{1}, y_{1})\) বিন্দু সরলরেখাটির বিপরীত পার্শে অবস্থিত হবে।

প্রয়োজনীয় এবং স্মরণীয় সূত্রসমূহ।

straight3

লম্ব দূরত্ব

\(1.\) একটি বিন্দু হতে একটি সরলরেখার লম্ব দূরত্ব।

\((x_{1}, y_{1})\) বিন্দু থেকে \(ax+by+c=0\) সরলরেখার লম্ব দূরত্ব,

\(d=\frac{\left|ax_{1}+by_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}\)

straight3

\(2.\) মূলবিন্দু হতে একটি সরলরেখার লম্ব দূরত্ব।

মূলবিন্দু তথা \(O(0, 0)\) বিন্দু থেকে \(ax+by+c=0\) সরলরেখার লম্ব দূরত্ব,

\(d=\frac{\left|c \right|}{\sqrt{a^{2}+b^{2}}}\)

straight3

\(3.\) দুইটি সমান্তরাল সরলরেখার মধ্যবর্তী লম্ব দূরত্ব।

\(ax+by+c_{1}=0\) ও \(ax+by+c_{2}=0\) সরলরেখাদ্বয়ের মধ্যবর্তী লম্ব দূরত্ব,

\(d=\frac{\left|c_{1}-c_{2}\right|}{\sqrt{a^{2}+b^{2}}}\)

straight3

\(4.\) দুইটি পরস্পরছেদী সরলরেখার অন্তর্ভুক্ত কোণের সমদ্বিখন্ডক সরলরেখাদ্বয়ের সমীকরণ।

\(a_{1}x+b_{1}y+c_{1}=0 ……..(1)\)
\(a_{2}x+b_{2}y+c_{2}=0 ……..(2)\)
\((1)\) ও \((2)\) এর অন্তর্ভুক্ত কোণের সমদ্বিখন্ডক সরলরেখাদ্বয়ের সমীকরণ,

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=\pm \frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\).

straight3

\(5.\) একটি ত্রিভুজের শীর্ষবিন্দু তিনটি এবং বাহুগুলির মাধ্যমে ত্রিভুজটির অন্তঃকেন্দ্র নির্ণয়।

\(\triangle ABC\) এর শীর্ষবিন্দু তিনটি \((x_{1}, y_{1})\), \((x_{2}, y_{2})\) এবং \((x_{3}, y_{3})\) এবং বাহুগুলি \(BC=a, \ CA=b, \ AB=c \) হলে, এর অন্তঃকেন্দ্র,

\(I(\frac{ax_{1}+bx_{2}+cx_{3}}{a+b+c}, \frac{ay_{1}+by_{2}+cy_{3}}{a+b+c})\).

straight3

\(6.\) \(ax+by+c=0\) সরলরেখার সমান্তরাল এবং \(d\) একক দূরবর্তী সরলরেখার সমীকরণঃ

\(ax+by+c\pm d\sqrt{a^{2}+b^{2}}=0\).

straight3

অনুসিদ্ধান্তঃ

\(7.\) \((x_{1}, y_{1})\) এবং \((x_{2}, y_{2})\) বিন্দুদ্বয় \(ax+by+c=0\) সরলরেখার একই পার্শে অথবা বিপরীত পার্শে অবস্থিত কিনা তা নির্ণয়ঃ

ধরি,
\(f(x,y)\equiv ax+by+c=0 ……(1)\)
\(P(x_{1}, y_{1})\)
\(Q(x_{2}, y_{2})\)
\((a)\) \(f(x_{1},y_{1})\) এবং \(f(x_{2},y_{2})\) রাশিদ্বয় একই চিহ্ন বিশিষ্ট হলে, \(P\) ও \(Q\) বিন্দুদ্বয় \((1)\) নং সরলরেখার একই পার্শে অবস্থান করবে।

straight3
\((b)\) \(f(x_{1},y_{1})\) এবং \(f(x_{2},y_{2})\) রাশিদ্বয় বিপরীত চিহ্ন বিশিষ্ট হলে, \(P\) ও \(Q\) বিন্দুদ্বয় \((1)\) নং সরলরেখার বিপরীত পার্শে অবস্থান করবে।

straight3

অনুসিদ্ধান্তঃ

\(8.\) দুইটি পরস্পরছেদী সরলরেখার অন্তর্ভুক্ত স্থুলকোণের বা, সূক্ষ্মকোণের সমদ্বিখন্ডক সরলরেখাদ্বয়ের সমীকরণ।

\(a_{1}x+b_{1}y+c_{1}=0 ……..(1)\)
\(a_{2}x+b_{2}y+c_{2}=0 ……..(2)\)
\((a)\) যদি,\( (a_{1}a_{2}+b_{1}b_{2})>0\) হয়, তবে
\((1)\) ও \((2)\) এর অন্তর্ভুক্ত স্থুলকোণের সমদ্বিখন্ডক সরলরেখার সমীকরণ,

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\).

এবং
\((1)\) ও \((2)\) এর অন্তর্ভুক্ত সূক্ষ্মকোণের সমদ্বিখন্ডক সরলরেখার সমীকরণ,

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=-\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\).

\((b)\) যদি,\( 0>(a_{1}a_{2}+b_{1}b_{2})\) হয়, তবে
straight3
\((1)\) ও \((2)\) এর অন্তর্ভুক্ত স্থুলকোণের সমদ্বিখন্ডক সরলরেখার সমীকরণ,

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=-\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\).

এবং
\((1)\) ও \((2)\) এর অন্তর্ভুক্ত সূক্ষ্মকোণের সমদ্বিখন্ডক সরলরেখার সমীকরণ,

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\).

straight3

অনুসিদ্ধান্তঃ

\(9.\)একটি নির্দিষ্ট বিন্দুধারী কোণ ও নির্দিষ্ট বিন্দুধারী কোণের সমদ্বিখন্ডিক সরলরেখার সমীকরণ।

\(f(x,y)\equiv a_{1}x+b_{1}y+c_{1}=0\)
\(g(x,y)\equiv a_{2}x+b_{2}y+c_{2}=0\)
\((a)\) যদি,\( f(\alpha,\beta)\times g(\alpha,\beta)>0\) হয়, তবে \(f(x,y)\) ও \(g(x,y)\) রেখাদ্বয়ের অন্তর্ভুক্ত কোণদ্বয়ের \(P(\alpha,\beta)\) বিন্দুধারী কোণটির সমদ্বিখন্ডকের সমীকরণ হবে,

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\)

\((b)\) যদি, \( f(\alpha,\beta)\times g(\alpha,\beta) < 0 \) হয়, তবেstraight3
\(f(x,y)\) ও \(g(x,y)\) রেখাদ্বয়ের অন্তর্ভুক্ত কোণদ্বয়ের \(P(\alpha,\beta)\) বিন্দুধারী কোণটির সমদ্বিখন্ডকের সমীকরণ হবে,

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=-\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\)

straight3

অনুসিদ্ধান্তঃ

\(10.\)মূলবিন্দুধারী কোণ ও মূলবিন্দুধারী কোণের সমদ্বিখন্ডিক সরলরেখার সমীকরণ।

\(a_{1}x+b_{1}y+c_{1}=0 ……(1)\)
\(a_{2}x+b_{2}y+c_{2}=0 …….(2)\)
\((a)\) যদি,\( c_{1}\) ও \( c_{2}\) সমচিহ্নযুক্ত হয়, তবে
\((1)\) ও \((2)\) রেখাদ্বয়ের অন্তর্ভুক্ত কোণদ্বয়ের মূলবিন্দুধারী কোণটির সমদ্বিখন্ডকের সমীকরণ হবে,
\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\)

\((b)\) যদি, \( c_{1}\) ও \( c_{2}\) বিপরীত চিহ্নযুক্ত হয়, তবেstraight3
\((1)\) ও \((2)\) রেখাদ্বয়ের অন্তর্ভুক্ত কোণদ্বয়ের মূলবিন্দুধারী কোণটির সমদ্বিখন্ডকের সমীকরণ হবে,

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=-\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\)

straight3

অনুসিদ্ধান্তঃ

\(11.\)সরলরেখার প্রতিচ্ছবি।

\(\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_1^{2}+b_1^{2}}}=\pm \frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_2^{2}+b_2^{2}}}\) রেখাদ্বয়ের সাপেক্ষে \(a_{1}x+b_{1}y+c_{1}=0\) ও \(a_{2}x+b_{2}y+c_{2}=0\) রেখা দুইটি পরস্পর প্রতিচ্ছবি

অনুসিদ্ধান্তঃ

\(12.\)দুইটি পরস্পরছেদী সরলরেখার সাপেক্ষে একটি নির্দিষ্ট বিন্দুর অবস্থান।

\((a)\) যদি,\( (a_{1}\acute{x}+ b_{1}\acute{y}+c_{1})(a_{2}\acute{x}+ b_{2}\acute{y}+c_{2})(a_{1}a_{2}+b_{1}b_{2})>0\) হয়, তবে
\(P(\acute{x}, \acute{y})\) বিন্দুটি \(a_{1}x+b_{1}y+c_{1}=0\) ও \(a_{2}x+b_{2}y+c_{2}=0\) রেখাদ্বয়ের অন্তর্ভুক্ত স্থুলকোণের মধ্যে অবস্থিত হবে।

\((b)\) যদি,\( 0>(a_{1}\acute{x}+ b_{1}\acute{y}+c_{1})(a_{2}\acute{x}+ b_{2}\acute{y}+c_{2})(a_{1}a_{2}+b_{1}b_{2})\) হয়, তবে
\(P(\acute{x}, \acute{y})\) বিন্দুটি \(a_{1}x+b_{1}y+c_{1}=0\) ও \(a_{2}x+b_{2}y+c_{2}=0\) রেখাদ্বয়ের অন্তর্ভুক্ত সূক্ষ্মকোণের মধ্যে অবস্থিত হবে।

অনুসিদ্ধান্তঃ

\(13.\)একটি ত্রিভুজের শীর্ষবিন্দুর সাপেক্ষে এর কোণগুলি সম্পর্কে ধারণা জ্ঞাপন।

\(ABC\) ত্রিভুজের শীর্ষবিন্দু তিনটি \(A(x_{1}, y_{1})\), \(B(x_{2}, y_{2})\), \(C(x_{3}, y_{3})\)।
\((a)\) যদি,\( (x_{1}-x_{2})(x_{1}-x_{3})+(y_{1}-y_{2})(y_{1}-y_{3})>0\) হয়, তবে \(\angle A\) হবে সূক্ষ্মকোণ

\((b)\) যদি,\( 0>(x_{1}-x_{2})(x_{1}-x_{3})+(y_{1}-y_{2})(y_{1}-y_{3})\) হয়, তবে \(\angle A\) হবে স্থুলকোণ

1 2 3 4 5 6

Please comment on the Article