বৃত্ত-১ (Circle-One)



অনুশীলনী \(4.A\) / \(Q.3\)-এর প্রশ্নসমূহ

\(Q.3.(i)\) \(x^{2}+y^{2}-4x+6y-36=0\) এবং \(x^{2}+y^{2}-5x+8y-43=0\) দ্বারা নির্দেশিত বৃত্তদ্বয়ের সাধারণ জ্যা-এর সমীকরণ নির্ণয় কর।
উত্তরঃ \(x-2y+7=0 \)

\(Q.3.(ii)\) একটি বৃত্তের সমীকরণ নির্ণয় কর যার কেন্দ্র \(Y\) অক্ষের উপর অবস্থিত এবং যা মূলবিন্দু ও \((p, q)\) বিন্দু দিয়ে যায়।
[ঢাঃ ২০১২; চঃ রাঃ ২০১৩ ]
উত্তরঃ \(q(x^{2}+y^{2})-(p^{2}+q^{2})y=0 \)

\(Q.3.(iii)\) প্রমাণ কর যে, \(x^{2}+y^{2}+2x-8y+8=0\) এবং \(x^{2}+y^{2}+10x-2y+22=0\) বৃত্ত দুইটি পরস্পরকে বহিঃস্থভাবে স্পর্শ করে। স্পর্শবিন্দুটি নির্ণয় কর।
উত্তরঃ \((-\frac{17}{5}, \frac{11}{5})\)

\(Q.3.(iv)\) \((1, 1)\) এবং \((2, 2)\) বিন্দু দিয়ে গমনকারী বৃত্তের ব্যাসার্ধ \(1\) । বৃত্তের সমীকরণ নির্ণয় কর।
[যঃ ২০০৩ ]
উত্তরঃ \(x^{2}+y^{2}-4x-2y+4=0\);\(x^{2}+y^{2}-2x-4y+4=0\)

\(Q.3.(v)\) এরূপ বৃত্তের সমীকরণ নির্ণয় কর যা \(X\) অক্ষকে স্পর্শ করে এবং \((1, 1)\) বিন্দু দিয়ে যায় এবং যার কেন্দ্র \(x+y=3\) রেখার উপর অবস্থিত।
[কুঃ ২০০৮ ]
উত্তরঃ \(x^{2}+y^{2}-4x-2y+4=0\); \(x^2+y^2+4x-10y+4=0\)

\(Q.3.(vi)\) \(x^{2}+y^{2}+6x+2y+6=0\) এবং \(x^{2}+y^{2}+8x+y+10=0\) বৃত্তের সাধারণ জ্যা যে বৃত্তের ব্যাস তার সমীকরণ নির্ণয় কর।
[বঃ ২০০৫ ]
উত্তরঃ \(5(x^{2}+y^{2})+26x+12y+22=0\)

\(Q.3.(vii)\) \(x^{2}+y^{2}=9\) এবং \(x^{2}+y^{2}+2x+4y+1=0\) বৃত্তদ্বয়ের সাধারণ জ্যা -এর সমীকরণ ও দৈর্ঘ্য নির্ণয় কর।
উত্তরঃ \(x+2y+5=0; 4\)

\(Q.3.(viii)\) একটি বৃত্তের সমীকরণ নির্ণয় কর যা \((0, 0)\) এবং \((3, -4)\) বিন্দু দিয়ে যায় এবং বৃত্তের কেন্দ্র \(X\) অক্ষের উপর অবস্থিত। উত্তরঃ \(3(x^{2}+y^{2})=25x\)

\(Q.3.(ix)\) এরূপ একটি বৃত্তের সমীকরণ নির্ণয় কর যা মূলবিন্দু হতে \(2\) একক দূরত্বে \(X\) অক্ষকে দুইটি বিন্দুতে ছেদ করে এবং যার ব্যাসার্ধ \(5\) একক।
[যঃ ২০০৫; বঃ ২০১১ ]
উত্তরঃ \(x^{2}+y^{2}\pm 2\sqrt{21}y-4=0\)

\(Q.3.(x)\) দেখাও যে, \(A(1, 1)\) বিন্দুটি \(x^{2}+y^{2}+4x+6y-12=0\) বৃত্তের উপর অবস্থিত । \(A\) বিন্দুগামী ব্যাসের অপর প্রান্তবিন্দুর স্থানাঙ্ক নির্ণয় কর। [ঢাঃ ২০১০; দিঃ ২০১২; বঃ ২০১৩ ]
উত্তরঃ \((-5, -7)\)

\(Q.3.(xi)\) এরূপ বৃত্তের সমীকরণ নির্ণয় কর, যা \(X\) ও \(Y\) অক্ষরেখা হতে যথাক্রমে \(5\) এবং \(2\) একক দৈর্ঘ্যের সমান অংশ কর্তন করে এবং যার কেন্দ্র \(2x-y=6\) রেখার উপর অবস্থিত।
উত্তরঃ \(x^{2}+y^{2}-5x+2y=0\);\(x^{2}+y^{2}-11x-10y+24=0\)

\(Q.3.(xii)\) সাধারণ জ্যা-এর সমীকরণ নির্ণয় কর যখন বৃত্তদ্বয়ের সমীকরণ \(x^{2}+y^{2}-4x+6y-36=0\) এবং \(x^{2}+y^{2}-5x+8y-43=0\)।
উত্তরঃ \(x-2y+7=0 \)

\(Q.3.(xiii)\) একটি বৃত্ত \((-7, 1)\) ও \((-1, 3)\) বিন্দু দিয়ে অতিক্রম করে এবং এর কেন্দ্র \(x+2=0\) রেখার উপর অবস্থিত। বৃত্তটির সমীকরণ নির্ণয় কর।
[সিঃ ২০১০;কুঃ ২০১৩ ]
উত্তরঃ \(x^{2}+y^{2}-8x+7y-3=0\)

\(Q.3.(xiv)\) \(x^{2}+y^{2}-8x+6y+21=0\) বৃত্তের বর্ধিত যে ব্যাসটি \((2, 5)\) বিন্দু দিয়ে অতিক্রম করে তার সমীকরণ নির্ণয় কর।
[কুঃ ২০০১ ]
উত্তরঃ \(4x+y-13=0 \)

\(Q.3.(xv)\)একটি বৃত্তের কেন্দ্র \((0, 3)\) এবং তা \(x^{2}+y^{2}-4y=0\) বৃত্ত ও \(y-2=0\) রেখার ছেদবিন্দু দিয়ে যায়। ঐ বৃত্তের সমীকরণ নির্ণয় কর।
[চঃ ২০০২ ]
উত্তরঃ \(x^{2}+y^{2}-6y+4=0 \)

\(Q.3.(xvi)\) \(\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c}\) হলে, দেখাও যে, \(x^{2}+y^{2}+2ax+c=0\) ও \(x^{2}+y^{2}+2by+c=0\)বৃত্ত দুইটি পরস্পরকে স্পর্শ করে ।

\(Q.3.(xvii)\) একটি বৃত্তের কেন্দ্র \(X\) অক্ষের উপর যা মূলবিন্দু থেকে ধনাত্মক দিকে \(7\) একক দূরে অবস্থিত। বৃত্তটির ব্যাসার্ধ \(4\) একক হলে, এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(r^{2}-14r\cos\theta+33=0\)

\(Q.3.(xviii)\) একটি বৃত্তের কেন্দ্র \(Y\) অক্ষের উপর যা মূলবিন্দু থেকে ধনাত্মক দিকে \(8\) একক দূরে অবস্থিত। বৃত্তটির ব্যাসার্ধ \(5\) একক হলে, এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(r^{2}-16r\sin\theta+39=0\)

\(Q.3.(xix)\) একটি বৃত্তের কেন্দ্র \(Y\) অক্ষের উপর যা মূলবিন্দু থেকে ধনাত্মক দিকে \(6\) একক দূরে অবস্থিত। বৃত্তটির ব্যাসার্ধ \(3\) একক হলে, এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(r^{2}-12r\sin\theta+25=0\)

\(Q.3.(xx)\) একটি বৃত্তের কেন্দ্র \(X\) অক্ষের উপর যা মূলবিন্দু থেকে ধনাত্মক দিকে \(8\) একক দূরে অবস্থিত। বৃত্তটির ব্যাসার্ধ \(5\) একক হলে, এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(r^{2}-16r\cos\theta+39=0\)

\(Q.3.(xxi)\) একটি বৃত্তের কেন্দ্র \((3, 30^{o})\) এবং বৃত্তটি \(X\) অক্ষকে স্পর্শ করে; এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(4r^{2}-24r\cos(\theta-30^{o})+27=0\)

\(Q.3.(xxii)\) একটি বৃত্তের কেন্দ্র \((3, \frac{pi}{6})\) এবং বৃত্তটি \(X\) অক্ষকে স্পর্শ করে; এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(4r^{2}-12r(\sqrt{3}\cos\theta+\sin\theta)+27=0\)

\(Q.3.(xxiii)\) একটি বৃত্তের কেন্দ্র \((4,\frac{\pi}{3})\) এবং বৃত্তটি \(Y\) অক্ষকে স্পর্শ করে; এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(r^{2}-8r\cos(\theta-\frac{\pi}{3})+12=0\)

\(Q.3.(xxiv)\) একটি বৃত্তের কেন্দ্র \((2,\frac{\pi}{6})\) এবং বৃত্তটি \(Y\) অক্ষকে স্পর্শ করে; এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(r^{2}-2r(\cos\theta+\sqrt{3}\sin\theta)+3=0\)

\(Q.3.(xxv)\) একটি বৃত্তের কেন্দ্র \((4,\frac{\pi}{3})\) এবং ব্যাসার্ধ \(3\) একক হলে; এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(r^{2}-4r(\cos\theta+\sqrt{3}\sin\theta)+7=0\)

\(Q.3.(xxvi)\) যদি বৃত্তের উপরস্থ \((4, 1)\) বিন্দুটি \((1+5\cos\theta, -3+5\sin\theta)\) দ্বারা প্রকাশিত হয়, তবে এ বিন্দুগামী ব্যাসের অপর প্রান্তের স্থানাঙ্ক নির্ণয় কর।
উত্তরঃ \((-2, -7)\)

\(Q.3.(xxvii)\) দেখাও যে, \(2x^{2}+2y^{2}-3x-4y+1=0\) এবং \(16x^{2}+16y^{2}-32x-1=0\) বৃত্ত দুইটির প্রতিটির কেন্দ্র, অপরটির পরিধির উপর অবস্থিত ।

\(Q.3.(xxviii)\) একটি বৃত্তের কেন্দ্র \((3,\frac{\pi}{2})\) এবং ব্যাসার্ধ \(2\) একক হলে ; এর পোলার সমীকরণ নির্ণয় কর।
উত্তরঃ \(r^{2}+6r\sin\theta+5=0\)

\(Q.3.(xxix)\) \(x=a(\cos\theta-1)\) এবং \(y=a(\sin\theta+1)\) হলে, বৃত্তটির কার্তেসীয় সমীকরণ, ব্যাসার্ধ এবং কেন্দ্রের স্থানাঙ্ক নির্ণয় কর ।
উত্তরঃ \(x^{2}+y^{2}+2ax-2ay+a^{2}=0, (-a, a), a\)

\(Q.3.(xxx)\) প্রমাণ কর যে, \(x^{2}+y^{2}-6x+6y-18=0\) এবং \(x^{2}+y^{2}+4x-18y+36=0\) বৃত্ত দুইটি পরস্পরকে বহিঃস্থভাবে স্পর্শ করে। স্পর্শবিন্দুটি নির্ণয় কর।
উত্তরঃ \(\left(\frac{9}{13}, \frac{33}{13}\right)\)

\(Q.3.(xxxi)\) প্রমাণ কর যে, \(x^{2}+y^{2}-4x+6y+8=0\) এবং \(x^{2}+y^{2}-10x-6y+14=0\) বৃত্ত দুইটি পরস্পরকে \((3, -1)\) বিন্দুতে স্পর্শ করে।

\(Q.3.(xxxii)\) প্রমাণ কর যে, \(x^{2}+y^{2}-4x+6y+8=0\) বৃত্তটি উভয় অক্ষকে স্পর্শ করে। এর মূলবিন্দুগামী ব্যাসের সমীকরণ নির্ণয় কর।
উত্তরঃ \(y=x\)

\(Q.3.(xxxiii)\) দেখাও যে, \((0, 1)\) ও \((a, b)\) বিন্দুদ্বয়ের সংযোগ রেখকে ব্যাস ধরে অঙ্কিত বৃত্ত \(X\) অক্ষকে এমন বিন্দুতে ছেদ করে যার ভুজ হবে \(x^{2}-ax+b=0\) সমীকরণের মূলদ্বয়।

\(Q.3.(xxxiv)\) \(ABC\) সমবাহু ত্রিভুজের \(A\) ও \(B\) বিন্দুর স্থানাঙ্ক যথাক্রমে \((1, 0)\) ও \((2, 0)\) ; \(BC\) বাহুকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ নির্ণয় কর।
উত্তরঃ \(2(x^2+y^2)-7x-\sqrt{3}y+3=0 \)

\(Q.3.(xxxv)\) \(x^{2}+2ax-b^{2}=0\) এর মূলদ্বয় \(A\) ও \(B\) বিন্দুর ভুজ এবং \(x^{2}+2px-q^{2}=0\) এর মূলদ্বয় তাদের কটি হলে \(AB\) ব্যাসবিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর।
উত্তরঃ \(x^{2}+y^{2}+2ax+2py-b^{2}-q^{2}=0 \)

\(Q.3.(xxxvi)\) \((x-3)^{2}+(y-4)^{2}=25\) বৃত্তের কেন্দ্র হতে \(3\) একক দূরে অবস্থিত জ্যা-এর দৈর্ঘ্য নির্ণয় কর।
উত্তরঃ \( 8\)

1 2 3 4 5 6

Please comment on the Article