বৃত্ত-১ (Circle-One)

অনুশীলনী \(4.A\) / \(Q.4\)সৃজনশীল প্রশ্নসমুহ
\(Q.4.(i)\) দৃশ্যকল্পঃ \(x^2+y^2-10x-16y+64=0\) একটি বৃত্ত এবং \(4x+3y+8=0\) একটি রেখা।
\((a)\) \(2x^2+2y^2+4x+6y+4=0\) বৃত্তের কেন্দ্র ও ব্যসার্ধ নির্ণয় কর।
\((b)\) দেখাও যে দৃশ্যকল্পের বৃত্তটিকে, \(3x-4y-8=0\) রেখাটি স্পর্শ করে এবং স্পর্শবিন্দু নির্ণয় কর।
\((c)\) \((0, -1)\) কেন্দ্রবিশিষ্ট বৃত্তের সমীকরণ নির্ণয় কর যা দৃশ্যকল্পের রেখাকে স্পর্শ করে।
উত্তরঃ \((a) \left(-1, -\frac{3}{2}\right), \frac{\sqrt{5}}{2} ;\) \((b) \ (8, 4) ;\) \((c) \ x^2+y^2+2y=0 \)

\(Q.4.(ii)\) চিত্রটি লক্ষণীয়,
locus4
\((a)\) \(3(x^2+y^2)-5x+y+1=0\) বৃত্তের কেন্দ্র ও ব্যসার্ধ নির্ণয় কর।
\((b)\) \(OA=4\) এবং \(OB=3\) হলে, চিত্রে প্রদত্ত বৃত্তের সমীকরণ নির্ণয় কর।
\((c)\) \(AB\parallel CD\) হলে, \(F\) ও \(D\) বিন্দুর সংযোজক রেখাকে ব্যস ধরে অঙ্কিত বৃত্তের সমীকরণ নির্ণয় কর ।
উত্তরঃ \((a) \left(\frac{5}{6}, -\frac{1}{6}\right), \frac{\sqrt{14}}{6} ;\) \((b) \ 25x^2+25y^2-150x-150y+369=0;\) \((c) \ 25x^2+25y^2-352x-111y+1020=0 \)
\(Q.4.(iii)\)
কোনো বৃত্তের একটি ব্যাসের প্রান্ত বিন্দু দুইটির স্থানাঙ্ক \((2, -4)\) এবং \((-3, 1)\) ।
\((a)\) ব্যাসের দৈর্ঘ্য নির্ণয় কর।
\((b)\) বৃত্তটি অক্ষদ্বয় হতে যে পরিমাণ অংশ কর্তন করে তা নির্ণয় কর।
\((c)\) উদ্দীপকের বৃত্তটির সাপেক্ষে \((1, -3)\) এবং \((2, 3)\) বিন্দু দুইটির অবস্থান এবং প্রথমোক্ত বিন্দুগামী ব্যাসের সমীকরণ নির্ণয় কর।
উত্তরঃ \((a) 5\sqrt{2}\) একক। \((b) \sqrt{41}\) একক; \(=7\) একক।
\((c) (1, -3)\) বিন্দু বৃত্তের ভিতরে। \((2, 3)\) বিন্দু বৃত্তের বাহিরে এবং ব্যাসের সমীকরণ \(x+y+2=0\)

\(Q.4.(iv)\) একটি বৃত্ত \((3, 5)\) ও \((6, 4)\) বিন্দু দিয়ে যায় এবং এর কেন্দ্র,
\((a)\) \(x+2y-10=0\) রেখার উপর অবস্থিত।
\((b)\) \(X\) অক্ষের উপর অবস্থিত।
\((c)\) \(Y\) অক্ষের উপর অবস্থিত।
বৃত্তের সমীকরণ নির্ণয় কর।
[ঢাঃ ২০০২; দিঃ ২০১০ ]
উত্তরঃ \((a) x^{2}+y^{2}-8x-6y+20=0 \); \((b) x^{2}+y^{2}-6x-16=0 \); \((c) x^{2}+y^{2}+18y-124=0 \)

নিজে কর।

\(Q.4.(v)\) \(x^{2}+y^{2}-8x+4y+4=0\) এবং \(x^{2}+y^{2}+10x+4y+4=0\) বৃত্ত দুইটি পরস্পরকে বহিঃস্থভাবে স্পর্শ করে।
\((a)\) বৃত্ত দুইটির কেন্দ্র ও ব্যসার্ধ নির্ণয় কর।
\((b)\) বৃত্ত দুইটির কেন্দ্রদ্বয়ের সংযোগ রেখার সমীকরণ নির্ণয় কর।
\((c)\) স্পর্শবিন্দুটি নির্ণয় কর।
উত্তরঃ \((a)\) কেন্দ্র \((4, -2)\), \((-5, -2)\) এবং ব্যাসার্ধ \(4\) একক, \(\sqrt{21}\) একক। \((b) y+2=0 \); \((c) (0, -2) \)

নিজে কর।

\(Q.4.(vi)\) একটি বৃত্তের ব্যাসের প্রান্তবিন্দুদ্বয় \((-1, 3)\) এবং \((4, 2)\) ।
\((a)\) \((0, 3)\) কেন্দ্র ও \(3\) ব্যসার্ধবিশিষ্ট বৃত্তের পোলার সমীকরণ নির্ণয় কর।
\((b)\) বৃত্তটির সমীকরণ নির্ণয় করে \(Y\) অক্ষ হতে কি পরিমাণ অংশ ছেদ করে তা নির্ণয় কর।
\((c)\) এমন একটি বৃত্তের সমীকরণ নির্ণয় কর যার কেন্দ্র \(\left(\frac{1}{2}, \frac{1}{2}\right)\) এবং প্রদত্ত বৃত্তের কেন্দ্র দিয়ে যায়।
উত্তরঃ \((a) r=6\sin\theta \) \((b) \sqrt{17} \); \((c) 2x^2+2y^2-2x+2y-19=0 \)

নিজে কর।
1 2 3 4 5 6

Leave a Reply