বৃত্ত-২ (Circle-Two)

mybarcode
এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
  • বৃত্তের স্পর্শক এবং অভিলম্বের সমীকরণ।
  • দুইটি বৃত্তের সাধারণ স্পর্শক এবং সাধারণ স্পর্শকের সমীকরণ নির্ণয়।
  • একটি সরলরেখার কোনো বৃত্তের স্পর্শক হওয়ার শর্ত।
  • বৃত্তের উপরোস্থ কোনো বিন্দুতে স্পর্শকের সমীকরণ।
  • বৃত্তের উপরোস্থ কোনো বিন্দুতে অভিলম্বের সমীকরণ।
  • বৃত্তের বহিঃস্থ কোনো বিন্দু হতে অঙ্কিত স্পর্শকের সমীকরণ ও দৈর্ঘ্য।
  • বৃত্তের কোনো স্পর্শকের স্পর্শবিন্দুর স্থানাঙ্ক নির্ণয়।
  • বৃত্তের কোনো জ্যা-এর মধ্যবিন্দু দেওয়া থাকলে, উক্ত জ্যা-এর সমীকরণ নির্ণয়।
  • বৃত্তের স্পর্শ জ্যা এবং স্পর্শ জ্যা-এর সমীকরণ নির্ণয়।
  • দুইটি বৃত্তের সাধারণ জ্যা এবং সাধারণ জ্যা-এর সমীকরণ নির্ণয়।
  • সৃজনশীল প্রশ্ন এবং সমাধান
বৃত্তের স্পর্শক এবং অভিলম্বের সমীকরণ
Tangent and Normal of a circle

straight3

মনে করি, একটি সরলরেখা কোনো বৃত্তকে \(P\) ও \(Q\) বিন্দুতে ছেদ করে। এখন \(Q\) বিন্দুটি বৃত্তের পরিধির উপর দিয়ে ঘুরে \(P\) এর সন্নিকটবর্তী হলে অর্থাৎ \(P\) এর উপর \(Q\) সমপতিত হলে, ছেদক রেখাটিকে \(P\) বিন্দুতে প্রদত্ত বৃত্তের স্পর্শক বলা হয়। এখানে \(PT\) হলো স্পর্শক এবং \(P\) কে স্পর্শবিন্দু বলে। \(PT\) এবং বৃত্ত উভয়ে একই সমতলে অবস্থান করে।
কোনো বৃত্তের স্পর্শবিন্দুতে স্পর্শকের উপর অঙ্কিত লম্বরেখাকে ঐ বিন্দুতে বৃত্তের অভিলম্ব (Normal) বলে। বৃত্তের অভিলম্ব সর্বদা বৃত্তের কেন্দ্র দিয়ে গমন করে।

দুইটি বৃত্তের সাধারণ স্পর্শক এবং সাধারণ স্পর্শকের সমীকরণ
Direct and Trans verse Common tangents

straight3

ধরি,
বৃত্ত দুইটির সমীকরণ,
\((x-\alpha_1)^2+(y-\beta_1)^2=r^2_1 ……..(1)\)
\((x-\alpha_2)^2+(y-\beta_2)^2=r^2_2 ……..(1)\)
\((1)\) এর কেন্দ্র \((\alpha_1, \beta_1)\), ব্যাসার্ধ \(r_1\)
\((2)\) এর কেন্দ্র \((\alpha_2, \beta_2)\), ব্যাসার্ধ \(r_2\)
চিত্রে,
\(A_1A_2\) ও \(\acute A_1\acute A_2\) স্পর্শকদ্বয় বৃত্তদ্বয়ের সরল সাধারণ স্পর্শক (Direct Common tangents) আর \(B_1B_2\) ও \(\acute B_1\acute B_2\) স্পর্শকদ্বয় তীর্যক সাধারণ স্পর্শক (Trans verse Common tangents) নির্দেশ করে। প্রথম জোড়া \(T_1\) বিদুতে এবং দ্বিতীয় জোড়া \(T_2\) বিন্দুতে ছেদ করেছে। বিন্দু দুইটি বৃত্তদ্বয়ের কেন্দ্রগামী \(C_1C_2\) রেখার উপর অবস্থিত।
যেহেতু, \(A_1C_1T_1\) ও \(A_2C_2T_1\) ত্রিভুজ দুইটি সদৃশ
ফলে \(\frac{C_1T_1}{C_2T_1}=\frac{C_1A_1}{C_2A_2}=\frac{r_1}{r_2}\)
\(\Rightarrow C_1T_1:C_2T_1=r_1:r_2\) | অর্থাৎ \(C_1C_2\) রেখাংশকে \(T_1\) বিন্দুটি \(r_1:r_2\) অনুপাতে বহিঃর্বিভক্ত করে।
আবার,
\(A_1C_1T_2\) ও \(A_2C_2T_2\) ত্রিভুজ দুইটি সদৃশ
ফলে \(\frac{C_1T_2}{C_2T_2}=\frac{C_1B_1}{C_2B_2}=\frac{r_1}{r_2}\)
\(\Rightarrow C_1T_2:C_2T_2=r_1:r_2\) | অর্থাৎ \(C_1C_2\) রেখাংশকে \(T_2\) বিন্দুটি \(r_1:r_2\) অনুপাতে অন্তঃর্বিভক্ত করে।
এটা স্পষ্ট যে \(T_1\) ও \(T_2\) বিন্দুদ্বয় \(C_1C_2\) রেখাংশকে যথাক্রমে \(r_1:r_2\) অনুপাতে বহিঃর্বিভক্ত ও অন্তঃর্বিভক্ত করে। \(T_1\) ও \(T_2\) বিন্দুকে সদৃশ কেন্দ্র (Centre of Similitude ) আর \(T_1T_2\) রেখাংশকে ব্যাস ধরে অঙ্কিত বৃত্তকে সাদৃশ্য বৃত্ত (Circle of similitude) বলে।
সঙ্গাঃ দুইটি বৃত্তের কেন্দ্র সংযোজক রেখাংশকে ব্যাসার্ধদ্বয়ের অনুপাতে বহিঃর্বিভক্ত ও অন্তঃর্বিভক্তকারী বিন্দুদ্বয়কে বৃত্ত দুইটির সাদৃশ্য কেন্দ্র আর সাদৃশ্য কেন্দ্র দুইটির সংযোজক রেখাংশকে ব্যাস ধরে অঙ্কিত বৃত্তকে সাদৃশ্য বৃত্ত বলে।
\(T_1\) ও \(T_2\) বিন্দুর স্থানাঙ্ক বের করা এবং সাধারণ স্পর্শকগুলির সমীকরণ নির্ণয় করা সহজ। \(T_1(x_1, y_1)\) বহিঃস্থ বিন্দু থেকে কোন বৃত্তের উপর অঙ্কিত স্পর্শকদ্বয়ের সমীকরণ নির্ণয়ের সাহায্যে সহজেই সরল সাধারণ স্পর্শক এবং \(T_2(x_2, y_2)\) বিন্দুগামী তীর্যক সাধারণ স্পর্শক নির্ণয় করা সম্ভব।
দুইটি বৃত্তের সাধারণ জ্যা
Common Chord of two circles

straight3

যদি,দুইটি বৃত্ত পরস্পরকে দুইটি নির্দিষ্ট বিন্দুতে ছেদ করে। তবে ঐ বিন্দুদ্বয়ের সংযোগ রেখাংশকে উক্ত বৃত্তদ্বয়ের সাধারণ জ্যা বলে।
মনে করি,\(S_1\equiv x^2+y^2+2g_1x+2f_1y+c_1=0\) ও \(S_2\equiv x^2+y^2+2g_2x+2f_2y+c_2=0\) দুইটি বৃত্ত পরস্পরকে \(A\) ও \(B\) দুইটি নির্দিষ্ট বিন্দুতে ছেদ করে। তবে \(A,B\) এর সংযোগ রেখাংশকে উক্ত \(S_1, S_2\) বৃত্তদ্বয়ের সাধারণ জ্যা বলে।
সাধারণ জ্যা-এর সমীকরণ

\(S_{1} -S_{2}=0\)

স্পর্শ জ্যা
Chord of contact

straight3

একটি বৃত্তের বহিঃস্থ কোন বিন্দু হতে বৃত্তটিতে দুইটি স্পর্শক অঙ্কিত হলে স্পর্শবিন্দুদ্বয়ের সংযোজক সরলরেখটিকে ঐ বৃত্তের স্পর্শক জ্যা বলে।
straight3

\(1.\) \(y=mx+c\) রেখাটি \(x^2+y^2=a^2\) বৃত্তের স্পর্শক হওয়ার শর্ত।

\(c=\pm a\sqrt{1+m^2}\)

স্পর্শকের সমীকরণ ।

\(y=mx\pm a\sqrt{1+m^2}\)

স্পর্শবিন্দুর স্থানাঙ্ক ।

\((\frac{ma}{\sqrt{1+m^2}}, -\frac{a}{\sqrt{1+m^2}})\)

straight3

\(2.\) \(x^2+y^2=a^2\) বৃত্তের উপরস্থ \((x_1, y_1)\) বিন্দুতে স্পর্শকের সমীকরণ।

\( xx_1+yy_1=a^2\)

straight3

\(3.\) \(x^2+y^2=a^2\) বৃত্তের উপরস্থ \((x_1, y_1)\) বিন্দুতে অভিলম্বের সমীকরণ।

\( x_1y-y_1x=0\)

straight3

\(4.\) \(x^2+y^2+2gx+2fy+c=0\) বৃত্তের উপরস্থ \((x_1, y_1)\) বিন্দুতে স্পর্শকের সমীকরণ।

\(xx_1+yy_1+g(x+x_1)+f(y+y_1)+c=0\)

straight3

\(5.\) \(x^2+y^2+2gx+2fy+c=0\) বৃত্তের উপরস্থ \((x_1, y_1)\) বিন্দুতে অভিলম্বের সমীকরণ।

\((x_1+g)y-(y_1+f)x+fx_1-gy_1=0\)

straight3

\(6.\) \(x^2+y^2=a^2\) বৃত্তের বহিঃস্থ \((x_1, y_1)\) বিন্দু হতে অঙ্কিত স্পর্শকের সমীকরণ।

\( (x^2+y^2-a^2)(x^2_1+y^2_1-a^2)=(xx_1+yy_1-a^2)^2\)

straight3

\(7.\) \(x^2+y^2+2gx+2fy+c=0\) বৃত্তের বহিঃস্থ \((x_1, y_1)\) বিন্দু হতে অঙ্কিত স্পর্শকের সমীকরণ।
\( (x^2+y^2+2gx+2fy+c)(x^2_1+y^2_1+2gx_1+2fy_1+c)\)\(=\{xx_1+yy_1+g(x+x_1)+f(y+y_1)+c\}^2\)
straight3

\(8.\) \(x^2+y^2=a^2\) বৃত্তের বহিঃস্থ \((x_1, y_1)\) বিন্দু হতে অঙ্কিত স্পর্শকের দৈর্ঘ্য।

\(PT=\sqrt{x^2_1+y^2_1-a^2}\)

straight3

\(9.\) \(x^2+y^2+2gx+2fy+c=0\) বৃত্তের বহিঃস্থ \((x_1, y_1)\) বিন্দু হতে অঙ্কিত স্পর্শকের দৈর্ঘ্য।

\( PT=\sqrt{x^2_1+y^2_1+2gx_1+2fy_1+c}\)

straight3

\(10.\) \(S_1\equiv x^2+y^2+2g_1x+2f_1y+c_1=0\) ও \(S_2\equiv x^2+y^2+2g_2x+2f_2y+c_2=0\) বৃত্ত দ্বয়ের সাধারণ জ্যা-এর সমীকরণ ।

\( S_1-S_2\equiv 2(g_1-g_2)x+2(f_1-f_2)y+c_1-c_2=0\)

straight3

\(11.\) \((a)\) \(x^2+y^2=a^2\) বৃত্তে অঙ্কিত জ্যা-এর মধ্যবিন্দু \(C(x_1, y_1)\) হলে, জ্যা-এর সমীকরণ ।
\(xx_1+yy_1\)=\(x^2_1+y^2_1\)
\((b)\) \(x^2+y^2+2gx+2fy+c=0\) বৃত্তে অঙ্কিত জ্যা-এর মধ্যবিন্দু \(C(x_1, y_1)\) হলে, জ্যা-এর সমীকরণ ।
\(xx_1+yy_1+g(x+x_1)+f(y+y_1)\)=\(x^2_1+y^2_1+2gx_1+2fy_1\)
straight3

\(12.\) \(x^2+y^2=a^2\) বৃত্তের বহিঃস্থ \((x_1, y_1)\) বিন্দু হতে অঙ্কিত স্পর্শকদ্বয়ের স্পর্শ জ্যা-এর সমীকরণ।
\(xx_1+yy_1=a^2\)
straight3

\(13.\) \(x^2+y^2+2gx+2fy+c=0\) বৃত্তের বহিঃস্থ \((x_1, y_1)\) বিন্দু হতে অঙ্কিত স্পর্শকদ্বয়ের স্পর্শ জ্যা-এর সমীকরণ।
\(xx_1+yy_1+g(x+x_1)+f(y+y_1)+c=0\)
straight3

\(14.\) \(A(x_1, y_1)\) বিন্দুগামী এবং \(ax+by+c=0\) রেখা ও \(x^2+y^2+2gx+2fy+c=0\) বৃত্তের ছেদবিন্দুগামী বৃত্তের সমীকরণ।
\(\frac{x^2+y^2+2gx+2fy+c}{ax+by+c}=\frac{x^2_1+y^2_1+2gx_1+2fy_1+c}{ax_1+by_1+c}\)
1 2 3 4 5 6 7