উপবৃত্ত (Ellipse)

অনুশীলনী \(5.B\) / \(Q.3\)-এর প্রশ্নসমূহ
\(Q.3.(i)\) \(5x^2=1-4y^2\) উপবৃত্তটির দিকাক্ষের সমীকরণ নির্ণয় কর।
[যঃ,সিঃ ২০০২; ]
উত্তরঃ \(2y=\pm \sqrt{5}\)

\(Q.3.(ii)\) মূলবিন্দুকে কেন্দ্র এবং স্থানাঙ্কের অক্ষদ্বয়কে মূখ্য অক্ষ ধরে এরূপ উপবৃত্তের সমীকরণ নির্ণয় কর যার শীর্ষবিন্দু \((\pm 10, 0)\) এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য \(5\)।
উত্তরঃ \(x^2+4y^2=100\)

\(Q.3.(iii)\) \(3x^2+4y^2=12\) উপবৃত্তটির উৎকেন্দ্রতা, ফোকাসের স্থানাঙ্ক, উপকেন্দ্রিক লম্বের দৈর্ঘ্য এবং দিকাক্ষের সমীকরণ নির্ণয় কর।
[ঢাঃ ২০০৩;বঃ২০০১;কুঃ২০০২; ]
উত্তরঃ \(\frac{1}{2}; (\pm 1, 0); 3; x=\pm 4\)

\(Q.3.(iv)\) \(\frac{(x-5)^2}{25}+\frac{(y-4)^2}{16}=1\) উপবৃত্তের কেন্দ্র, ফোকাসদ্বয় এবং ক্ষুদ্রাক্ষের প্রান্তদ্বয়ের স্থানাঙ্ক নির্ণয় কর।
উত্তরঃ \((5, 4), (8, 4), (2, 4),(5,8),(5, 0)\)

\(Q.3.(v)\) \(9x^2+25y^2=225\) উপবৃত্তটির উৎকেন্দ্রতা, ফোকাসের স্থানাঙ্ক, উপকেন্দ্রিক লম্বের দৈর্ঘ্য ও সমীকরণ এবং দিকাক্ষের সমীকরণ নির্ণয় কর।
[ বঃ২০০২;সিঃ ২০০৭; ]
উত্তরঃ \(\frac{4}{5}; (\pm 4, 0); \frac{18}{5}; x=\pm 4; 4x=\pm25\)

\(Q.3.(vi)\) \(2x^2+3y^2=1\) উপবৃত্তটির উপকেন্দ্রিক লম্বের দৈর্ঘ্য এবং ফোকাসের স্থানাঙ্ক, নির্ণয় কর।
[ বঃ২০০৩;যঃ ২০০৪; ঢাঃ ২০০৬]
উত্তরঃ \(\frac{2\sqrt{2}}{3}; (\pm \frac{1}{\sqrt{6}}, 0)\)

\(Q.3.(vii)\) যদি \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) উপবৃত্তের অন্তর্লিখিত বর্গের বাহুগুলি অক্ষদ্বয়ের সমান্তরাল হয়, তবে প্রমাণ কর যে, ঐ বর্গের ক্ষেত্রফল \(=\frac{4ab^2}{\sqrt{a^2e^4+4b^2}}\) ( \(e\) উপবৃত্তের উৎকেন্দ্রতা )।

\(Q.3.(viii)\) \(y=2x+c\) সরলরেখাটি \(\frac{x^2}{4}+\frac{y^2}{3}=1\) উপবৃত্তের স্পর্শ্ক হলে \(c\)-এর মাণ নির্ণয় কর।
উত্তরঃ \(c=\pm \sqrt{19}\)
\(Q.3.(ix)\) যে কোনো বিন্দুতে উপবৃত্তগুলির পরামিতিক স্থানাঙ্ক নির্ণয় কর।
\((a)\) \(9x^2+16y^2=144\)
[ রাঃ ২০১৪ ] উত্তরঃ \( (4\cos\theta, 3\sin\theta)\)

\((b)\) \(16x^2+25y^2=400\)
[ রাঃ, কুঃ২০০৫; মাঃ ২০১৪,২০১০ ]
উত্তরঃ \( (5\cos\theta, 4\sin\theta)\)

\((c)\) \(9x^2+25y^2=225\)
[ সিঃ ২০০৭;মাঃ২০১২ ]
উত্তরঃ \( (5\cos\theta, 3\sin\theta)\)

\((d)\) \(3x^2+4y^2=12\)
[ চঃ ২০১৬ ]
উত্তরঃ \( (2\cos\theta, \sqrt{3}\sin\theta)\)

\(Q.3.(x)\) দেখাও যে, \(2x^2+y^2-8x-2y+1=0\) সমীকরণটি একটি উপবৃত্ত নির্দেশ করে; এর উৎকেন্দ্রিকতা, কেন্দ্র ও উপকেন্দ্র দুইটির স্থানাঙ্ক নির্ণয় কর।
[ কুঃ২০১২; ]
উত্তরঃ \(e=\frac{1}{\sqrt{2}}; (2, 1); (2, 3); (2, -1)\)

\(Q.3.(xi)\) \(16x^2+9y^2=144\) উপবৃত্তের উপরস্থ \((-3, 0)\), \((1, 3.77)\), \((-1, -3.77)\) বিন্দুগুলির পরামিতিক স্থানাঙ্ক , উপকেন্দ্রিক কোণ উল্লেখপূর্বক বের কর।
উত্তরঃ \((3\sin\theta, 4\cos\theta)\); যেখানে, \(\theta=180^{o},11^{o}1\acute{5},191^{o}1\acute{5}\)

\(Q.3.(xii)\) \(9x^2+25y^2=225\) উপবৃত্তের \((-5, 0)\), \((0, 3)\) , \((3, \frac{12}{5})\), \((-3, \frac{12}{5})\), \((-4, -\frac{9}{5})\), \((4, -\frac{9}{5})\), উপকেন্দ্রিক কোণ উল্লেখপূর্বক বিন্দুগুলির পরামিতিক স্থানাঙ্ক নির্ণয় কর।
[ রাঃ ২০০৩ ]
উত্তরঃ \((5\cos\theta, 3\sin\theta)\) যেখানে, \(\theta=180^{o}, 90^{o}, 53.13^{o}, 126.87^{o}, 216.87^{o}, 323.13^{o}\)

\(Q.3.(xiii)\) একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্রদ্বয়ের স্থানাঙ্ক \((3, -1)\) এবং \((1, -1)\) এবং যে কোনো উপকেন্দ্র হতে শীর্ষদ্বয়ের দূরত্বের গুণফল \(4\) একক।
উত্তরঃ \( \frac{(x-2)^2}{5}+\frac{(y+1)^2}{4}=1\)

\(Q.3.(xiv)\) দুইটি উপবৃত্তের সমীকরণ নির্ণয় কর যার বৃহদাক্ষ \(X\) অক্ষের সমান্তরাল, ক্ষুদ্রাক্ষের দৈর্ঘ্য \(6\) একক এবং উপকেন্দ্র \((-2, 3)\) ও এর অনুরূপ শীর্ষের মধ্যকার দূরত্ব \(1\) একক।
উত্তরঃ \( \frac{(x-2)^2}{25}+\frac{(y-3)^2}{9}=1;\)\( \frac{(x+6)^2}{25}+\frac{(y-3)^2}{9}=1\)

\(Q.3.(xv)\) দেখাও যে, \(x-y=5\) সরলরেখা \(\frac{x^2}{16}+\frac{y^2}{9}=1\) উপবৃত্তকে স্পর্শ করে।
[ঢাঃ ২০০৩,২০০৪;চঃ ২০০৪ ]

\(Q.3.(xvi)\) \(\frac{x^2}{16}+\frac{y^2}{9}=1\) উপবৃত্তের একটি জ্যা \((1, -2)\) বিন্দুতে সমদ্বিখন্ডিত হয়; জ্যাটির সমীকরণ নির্ণয় কর।
উত্তরঃ \( 9x-32y-73=0 \)

\(Q.3.(xvii)\) একটি ত্রিভুজের ক্ষেত্রফল নির্ণয় কর যার শীর্ষবিন্দু তিনটি মূলবিন্দু এবং \(9(x-2)^2+25(y-3)^2=225\) উপবৃত্তের উপকেন্দ্রদ্বয়।
উত্তরঃ \(12 \) বর্গ একক।

\(Q.3.(xviii)\) \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) উপবৃত্তে \(y=mx+c\) রেখাটি স্পর্শক হলে, প্রমাণ কর যে, \(c^2=a^2m^2+b^2\)।

\(Q.3.(xix)\) যেসব বিন্দু থেকে \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) উপবৃত্তে অঙ্কিত স্পর্শক দুইটি পরস্পর লম্ব হয় তাদের সঞ্চারপথের সমীকরণ নির্ণয় কর।
উত্তরঃ \( x^2+y^2=a^2+b^2\)

\(Q.3.(xx)\) পৃথিবীর কক্ষপথ উপবৃত্তাকার। এর একটি উপকেন্দ্রে সূর্য অবস্থিত। উপবৃত্তের অর্ধ-বৃহদাক্ষ \(9.3\times 10^{7}\) মাইল এবং উৎকেন্দ্রিকতা \(\frac{1}{62}\) ( প্রায় ) হলে সূর্য ও পৃথিবীর বৃহত্তম ও ক্ষুদ্রতম দূরত্ব নির্ণয় কর।
উত্তরঃ ক্ষুদ্রতম দূরত্ব \(9.15\times 10^{7} \) মাইল। বৃহত্তম দূরত্ব \(9.45\times 10^{7} \) মাইল।
1 2 3 4 5 6