অধিবৃত্ত (Hyperbola)

ভর্তি পরীক্ষায় আসা প্রশ্নসমুহ
\(Q.5.(i)\) যে কনিকের আড় অক্ষ \(x-2y+1=0\) উপকেন্দ্র \((1, 1)\) উৎকেন্দ্রিকতা \(\sqrt{2}\) এবং নিয়ামকের উপর একটি বিন্দু \((2, -3)\) তার সমীকরণ এবং উপকেন্দ্রিক লম্বের সমীকরণ নির্ণয় কর।
[ বুয়েটঃ ২০১৪-২০১৫ ]
উত্তরঃ \(3x^2+8xy-3y^2+2x+6y-8=0;\) \(2x+y-3=0 \)

\(Q.5.(ii)\) \(16x^2+9y^2-32x-128=0\) উপবৃত্তটির অক্ষদ্বয়ের দৈর্ঘ্য এবং এর ক্ষেত্রফল নির্ণয় কর।
[ বুয়েটঃ ২০১৩-২০১৪ ]
উত্তরঃ \(8, 6; 12\pi\)

\(Q.5.(iii)\) একটি অধিবৃত্তের উপকেন্দ্র দুইটির দূরত্ব \(16\) এবং উৎকেন্দ্রিকতা \(\sqrt{2}\) অধিবৃত্তের অক্ষদ্বয় স্থানাঙ্কের অক্ষ বরাবর হলে সমীকরণটি নির্ণয় কর।
[ বুয়েটঃ ২০১২-২০১৩ ]
উত্তরঃ \(x^2-y^2=32\)

\(Q.5.(iv)\) একটি উপবৃত্ত \(\frac{x}{9}+\frac{y}{4}=1\) রেখাকে \(X\) অক্ষের উপর এবং \(\frac{x}{2}+\frac{y}{3}=1\) রেখাকে \(Y\) অক্ষের উপর ছেদ করে। তার সমীকরণ, উৎকেন্দ্রিকতা এবং উপকেন্দ্রদ্বয়ের স্থানাঙ্ক নির্ণয় কর।
[ বুয়েটঃ ২০১১-২০১২ ]
উত্তরঃ \(\frac{x^2}{81}+\frac{y^2}{9}=1; e=\frac{2\sqrt{19}}{9}; (\pm 2\sqrt{19}, 0)\)

\(Q.5.(v)\) \(9x^2-16y^2+72x-32y-16=0\) বক্ররেখাটির প্রকৃতি, তার কেন্দ্র , শীর্ষবিন্দু , উৎকেন্দ্রিকতা, উপকেন্দ্র , অক্ষ দুইটির দৈর্ঘ্য, উপকেন্দ্রিক লম্বের দৈর্ঘ্য এবং নিয়ামকরেখার সমীকরণ নির্ণয় কর।
[ বুয়েটঃ ২০১০-২০১১ ]
উত্তরঃ \( (-4, -1); (0, -1), (-8, -1);\)\(\frac{5}{4};(1, -1), (-9, -1); 8;6; \frac{9}{2};5(x+4)\pm 16=0\)

\(Q.5.(vi)\) মুখ্য অক্ষদ্বয়কে স্থানাঙ্কের অক্ষদ্বয় ধরে একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার ক্ষুদ্র অক্ষ উপকেন্দ্রদ্বয়ের দূরত্বের সমান এবং যার উপকেন্দ্রিক লম্ব \(10\) একক।
[ বুয়েটঃ ২০০৯-২০১০ ]
উত্তরঃ \(\frac{x^2}{100}+\frac{y^2}{50}=1\)

\(Q.5.(vii)\) \(x-y+2=0\) রেখাটি কোনো পরাবৃত্তের শীর্ষবিন্দুতে তার অক্ষের উপর লম্ব। পরাবৃত্তের উপকেন্দ্র \((1, -1)\) বিন্দুতে অবস্থিত হলে, তার সমীকরণ নির্ণয় কর।
[ বুয়েটঃ ২০০৮-২০০৯ ]
উত্তরঃ \((x+y)^2-16x+16y-32=0\)

\(Q.5.(viii)\) একটি উপবৃত্তের অক্ষ দুইটি স্থানাঙ্কের অক্ষ দুইটির উপর অবস্থিত। উপবৃত্তটি \(5x+9y=45\) রেখাকে \(X\) অক্ষের উপর এবং \(7x+5y=36\) রেখাকে \(Y\) অক্ষের উপর ছেদ করে। তার উৎকেন্দ্রতা এবং উপকেন্দ্রদ্বয়ের স্থানাঙ্ক নির্ণয় কর।
[বুয়েটঃ২০০৭-২০০৮]
উত্তরঃ \(\frac{3}{5}; (\pm \frac{27}{5}, 0)\)

\(Q.5.(ix)\) \((3, 4)\) উপকেন্দ্র এবং \((0, 0)\) শীর্ষবিন্দুবিশিষ্ট পরাবৃত্তের দিকাক্ষের সমীকরণ নির্ণয় কর।
[বুয়েটঃ২০০৬-২০০৭]
উত্তরঃ \(3x+4y+25=0\)।

\(Q.5.(x)\) \(5x^2+9y^2-20x=25\) উপবৃত্তটির কেন্দ্র এবং উপকেন্দ্র নির্ণয় কর।
[বুয়েটঃ২০০২-২০০৩]
উত্তরঃ \((2, 0); (0, 0), (4, 0)\)

\(Q.5.(xi)\) \((1, 1)\) বিন্দু দিয়ে অতিক্রমকারী একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার একটি উপকেন্দ্র \((1, -1)\) এবং অনুরূপ দিকাক্ষের সমীকরণ \(x-y-4=0\)।
[বুয়েটঃ২০০৩-২০০৪]
উত্তরঃ \(3(x^2+y^2)+2xy-8=0\)

\(Q.5.(xii)\) একটি পরাবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র মূলবিন্দুতে অবস্থিত এবং \(x-y+1=0\) রেখাটি পরাবৃত্তকে এর শীর্ষবিন্দুতে স্পর্শ করে।
[বুয়েটঃ২০০৫-২০০৬]
উত্তরঃ \((x+y)^2-4x+4y-4=0\)।

\(Q.5.(xiii)\) \(\sqrt{x}+\sqrt{y}=\sqrt{a}\) কে দুইবার বর্গ করে কণিকটি সনাক্ত কর। অক্ষের সমীকরণ, শীর্ষবিন্দু এবং স্থানাঙ্ক অক্ষদ্বয়ের স্পর্শবিন্দু দেখিয়ে ছবি আঁক।
[বুয়েটঃ২০০২-২০০৩]
উত্তরঃ পরাবৃত্ত; \(x-y=0; (\frac{a}{4}, \frac{a}{4}) (a, 0), (0, a)\)।
\(Q.5.(xiv)\) \(x^2+4x+2y=0\) পরাবৃত্তের শীর্ষবিন্দু, উপকেন্দ্রিক লম্বের সমীকরণ, উপকেন্দ্রের স্থানাঙ্ক এবং পরাবৃত্তের অক্ষ ও নিয়ামকরেখার সমীকরণ নির্ণয় কর।
[বুয়েটঃ ২০০২-২০০৩; ২০০৪-২০০৫]
উত্তরঃ \((-2, 2), 2y-5=0\)।

\(Q.5.(xv)\) কোনো উপবৃত্তের উপকেন্দ্র দুইটির স্থানাংক \((-1, -1)\) ও \((1, 1)\) এবং তার বৃহদাক্ষের দৈর্ঘ্য \(2\sqrt{3}\) এর সমান; উপবৃত্তটির সমীকরণ নির্ণয় কর।
[ বুয়েটঃ২০০০-২০০১ ]
উত্তরঃ \(2x^2+2y^2-2xy-3=0\)

\(Q.5.(xvi)\) একটি উপবৃত্তের অক্ষ দুইটি স্থানাঙ্কের অক্ষ দুইটির উপর অবস্থিত। উপবৃত্তটি \(3x+2y-9=0\) সরলরেখাটি উপবৃত্তটিকে অক্ষদ্বয়ের উপর ছেদ করে। উপবৃত্তটির সমীকরণ এবং উপকেন্দ্রদ্বয়ের স্থানাঙ্ক নির্ণয় কর।
[বুটেক্সঃ২০০৪-২০০৫]
উত্তরঃ \( 9x^2+4y^2=81; (0, \pm \frac{\sqrt{45}}{2})\)

\(Q.5.(xvii)\) \((-8, -2)\) উপকেন্দ্র এবং \(2x-y-9=0\) নিয়ামক রেখা বিশিষ্ট পরাবৃত্তের সমীকরণ নির্ণয় কর।
[ রুয়েটঃ২০০৮-২০০৯]
উত্তরঃ \( x^2+4xy+4y^2+116x+2y+259=0\)

\(Q.5.(xviii)\) \(\frac{x^2}{p}+\frac{y^2}{5^2}=1\) উপবৃত্তটি \((6, 4)\) বিন্দু দিয়ে অতিক্রম করে। উপবৃত্তের উৎকেন্দ্রিকতা এবং উপকেন্দ্রদ্বয়ের স্থানাঙ্ক নির্ণয় কর।
[রুয়েটঃ ২০০৮-২০০৯; ২০০৮-২০০৯]
উত্তরঃ \(e=\frac{\sqrt{3}}{2}; (\pm 5\sqrt{3}, 0)\)

\(Q.5.(xix)\) একটি পরাবৃত্তের সমীকরণ নির্ণয় কর, যার শীর্ষ \((4, -3)\) বিন্দুতে অবস্থিত, উপকেন্দ্রিক লম্বের দৈর্ঘ্য \(4\) এবং অক্ষটি \(x\)-অক্ষের সমান্তরাল।
[ রুয়েটঃ ২০০৪-২০০৫; ২০০৫-২০০৬; ২০১০-২০১১]
উত্তরঃ \( (y+3)^2=4(x-4)\)।

\(Q.5.(xx)\) একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র দুইটি \(S(2, 0)\) ও \(\acute S(-2, 0)\) এবং যা \(P\left(\frac{3}{2}, \frac{\sqrt{15}}{2}\right)\) বিন্দু দিয়ে যায়।
[ রুয়েটঃ ২০০৫-২০০৬]
উত্তরঃ \( \frac{x^2}{9}+\frac{y^2}{5}=1\)।

\(Q.5.(xxi)\) একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র দুইটি \((0, 4)\) ও \((0, -4)\) এবং যা \((3, 0)\) বিন্দু দিয়ে যায়।
[ রুয়েটঃ ২০০৩-২০০৪]
উত্তরঃ \( \frac{x^2}{9}+\frac{y^2}{25}=1\)।

\(Q.5.(xxii)\) একটি ত্রিভুজের ক্ষেত্রফল নির্ণয় কর যার শীর্ষবিন্দু তিনটি মূলবিন্দু এবং \(9(x-2)^2+25(y-3)^2=225\) উপবৃত্তের উপকেন্দ্রদ্বয়।
[ কুয়েটঃ ২০০৪-২০০৫]
উত্তরঃ \(12 \) বর্গ একক।

\(Q.5.(xxiii)\) \(y^2=16x\) পরাবৃত্তের উপরিস্থিত যে বিন্দুর উপকেদ্রিক দূরত্ব \(6\) তার স্থানাঙ্ক নির্ণয় কর।
[ চুয়েটঃ ২০০৫-২০০৬]
উত্তরঃ \((2, \pm 4\sqrt{2})\)।

\(Q.5.(xxiv)\) \(y=3x+1\) সরলরেখা \(y^2=4ax\) পরাবৃত্তকে স্পর্শ করলে \(a\)-এর মাণ, স্পর্শবিন্দুর স্থানাঙ্ক, উপকেন্দ্রের স্থানাঙ্ক, উপকেন্দ্রিক লম্বের দৈর্ঘ্য ও নিয়ামকের সমীকরণ নির্ণয় কর।
[ চুয়েটঃ ২০০৪-২০০৫]
উত্তরঃ \(3;(\frac{1}{3}, 2); (3, 0); 12; x+3=0\)।

\(Q.5.(xxv)\) \(y^2=12x\) পরাবৃত্তের শীর্ষবিন্দু ও উপকেন্দ্রিক লম্বের ধনাত্মক দিকের প্রান্তবিন্দুর সংযোজক রেখার সমীকরণ নির্ণয় কর।
[ চুয়েটঃ ২০০৩-২০০৪]
উত্তরঃ \( y=2x \)।

\(Q.5.(xxvi)\) দেখাও যে, \(\sqrt{x}+\sqrt{y}=\sqrt{a}\) পরাবৃত্ত এবং স্থানাঙ্কের অক্ষ দুইটির অন্তর্গত ক্ষেত্রের ক্ষেত্রফল \(\frac{1}{6}a^2\)।
[ বুয়েটঃ ২০০৮-২০০৯]
1 2 3 4 5 6 7