অন্বয় ও ফাংশন (Relation and Function)

অনুশীলনী \(8.\) উদাহরণ সমুহ

উদাহরণ \(1.\) সকল স্বাভাবিক সংখ্যার সেট \(\mathbb{N}\) এবং \(F=\{(x, y):x\in \mathbb{N}, y\in \mathbb{N}, x+3y=10\}\) হলে, অন্বয় \(F\) কে ক্রমজোড়ের সেটরূপে প্রকাশ কর। ডোমেন রেঞ্জ এবং \(F^{-1}\) নির্ণয় কর।

উদাহরণ \(2.\) \(f:\mathbb{R}\rightarrow \mathbb{R}\) ফাংশনটি \(f(x)=\begin{cases}3x+1 \ যখন \ x > 3\\x^2-2 \ যখন \ -2 \leq x\leq 3\\2x+3 \ যখন \ -2>x \end{cases} \) দ্বারা সংজ্ঞায়িত।
\(f(2), f(4), f(-1), f(-3)\) এবং \(f(0)\) নির্ণয় কর।
[ রাঃ,চঃ ২০০৮;যঃ ২০০৭]

উদাহরণ \(3.\) \(f\)-এর ডোমেন ও রেঞ্জ নির্ণয় কর যখন
\((i)\) \(A=\{-1, 0, 2, 4\}\) এবং \(f:A\rightarrow \mathbb{R}\) ফাংশন, \(f(x)=2x^2-3x+1\) দ্বারা সংজ্ঞায়িত।
\((ii)\) \(A=\{1, 3\}\) এবং \(f:A\rightarrow \mathbb{R}\) ফাংশন, \(f(x)=2x+3\) দ্বারা সংজ্ঞায়িত।

উদাহরণ \(4.\) \(f:\mathbb{R}\rightarrow \mathbb{R}, g:\mathbb{R}\rightarrow \mathbb{R}, f(x)=x^2+3x+1\) এবং \(g(x)=2x-3\) হলে, \(fog\), \(gof\), \(fof\), \(fog(2)\) এবং \(gof(2)\) নির্ণয় কর।
[ রুয়েট ২০১২-২০১৩, ২০০৮-২০০৯; বুটেক্স ২০০৯-২০১০; চুয়েট ২০১১-২০১২; রাঃ২০০৭; চঃ২০০৫; সিঃ২০১০,২০০৪; বঃ২০১২]

উদাহরণ \(5.\) \(f(x)=e^x+e^{-x}\) হলে প্রমাণ কর যে, \(f(x+y)f(x-y)=f(2x)+f(2y)\)।
[ কুঃ২০১০,২০০৪;সিঃ ২০০৭,২০০৪; চঃ ২০১৩,২০০৯,২০০৬.২০০৩; রাঃ২০১৫,২০১৪,২০১০,২০০৫; বঃ ২০০৯,২০০৫;ঢাঃ ২০১২; যঃ ২০১২,২০০৮;মাঃ২০১২ ]

উদাহরণ \(6.\) \(f(x)=\cos(\ln x)\) \(f(x)f(y)-\frac{1}{2}\left[f(\frac{x}{y})+f(xy)\right]\)-এর মাণ নির্ণয় কর।
[ চঃ২০০৭; কুঃ২০১৪,২০০৯; যঃ ২০০৫; দিঃ ২০১৬,২০১১; সিঃ ২০১৫,২০১৫,২০১১ ]

উদাহরণ \(7.\) \(f(x)=\frac{x-3}{2x+1}\) এবং \(g(x)=2x-3\) দুইটি ফাংশন।
\((i)\) \(h(x)=3x^2-12x+19\)-এর ক্ষুদ্রতম মাণ নির্ণয় কর।
\((ii)\) দেখাও যে, \(fog\ne gof\).
\((iii)\) \(f:A\rightarrow \mathbb{R}-\{\frac{1}{2}\}\) শর্ত সাপেক্ষে সম্ভব হলে \(f^{-1}\) নির্ণয় কর।

উদাহরণ \(8.\) দেখাও যে, \(f(x)=x^3\) দ্বারা বর্ণিত \(f:\mathbb{R}\rightarrow \mathbb{R}\) ফাংশনটি এক-এক।

উদাহরণ \(9.\) \(f:\mathbb{R}\rightarrow \mathbb{R}\) কে \(f(x)=x^2\) দ্বারা সংজ্ঞায়িত। দেখাও যে, \(f(x)\) ফাংশনটি এক-এক নয়।

উদাহরণ \(10.\) \(f:\mathbb{R}\rightarrow \mathbb{R}\) কে \(f(x)=x^2\) দ্বারা সংজ্ঞায়িত। দেখাও যে, \(f(x)\) ফাংশনটি সার্বিক নয়।

উদাহরণ \(11.\) \(f:\mathbb{R}\rightarrow \mathbb{R}\) কে \(f(x)=x^3\) দ্বারা সংজ্ঞায়িত। দেখাও যে, \(f(x)\) ফাংশনটি সার্বিক।
উদাহরণ \(12.\) নিচের চিত্রে \(f:A\rightarrow B\) এবং \(g:B\rightarrow C\) দেখানো হয়েছে।
hyperbola
\((i)\) সংজ্ঞায়িত ফাংশন \(fog:A\rightarrow C\) নির্ণয় কর।
\((ii)\) \(f, g\)এবং \(gof\)-এর রেঞ্জ নির্ণয় কর।
উদাহরণ \(13.\) \(f:R\rightarrow \mathbb{R}, \ f(x)=2x+1\) এবং \(g:\mathbb{R}\rightarrow \mathbb{R}, \ g(x)=x^2-2\) দুইটি ফাংশন।
\((i)\) \(gof\) নির্ণয় কর।
\((ii)\) \(fog\) নির্ণয় কর।

উদাহরণ \(14.\) বাস্তব সংখ্যার সেট \(R\)-এর উপর বর্ণিত \(f\) এবং \(g\) দুইটি ফাংশন যথাক্রমে \(f(x)=x^2+2x-3\) এবং \(g(x)=3x-4\) ।
\((i)\) \(gof\) এবং \(fog\) নির্ণয় কর।
\((ii)\) \(gof(2)\) এবং \(fog(2)\) নির্ণয় কর।

উদাহরণ \(15.\) \(f(x)=\sqrt{x}\) এবং \(g(x)=x^2-1\) হলে \(gof(x)\) এবং \(fog(x)\) নির্ণয় কর এবং প্রত্যেক ক্ষেত্রে সংযোজিত ফাংশনের ডোমেন ও রেঞ্জ নির্ণয় কর।
[ চঃ২০০৯; সিঃ২০০৫]

উদাহরণ \(16.\) \(f:\mathbb{R}\rightarrow \mathbb{R}\) কে \(f(x)=2x-3\) দ্বারা সংজ্ঞায়িত। দেখাও যে, ফাংশনটি এক-এক এবং সার্বিক। \(f^{-1}\) নির্ণয় কর।
[ কুয়েট ২০১৩-২০১৪; চঃ২০১৩,২০১০; রাঃ২০১১ ]

উদাহরণ \(17.\) \(f:\mathbb{R}\rightarrow \mathbb{R}\) কে \(f(x)=x^3\) সূত্র দ্বারা সংজ্ঞায়িত। যদি ফাংশনটি এক-এক এবং সার্বিক হয় তবে \(f(x)\)-এর বিপরীত ফাংশন নির্ণয় কর।
উদাহরণ \(18.\) নিচের চিত্রে \(f:A\rightarrow B\) দেখানো হয়েছে। উহা হতে \(f^{-1}:B\rightarrow A\) নির্ণয় কর।
hyperbola
উদাহরণ \(19.\) \(f:\mathbb{R}\rightarrow \mathbb{R}\) কে \(f(x)=x^2+1\) দ্বারা সংজ্ঞায়িত করা হলো। \(f^{-1}(5)\) কে সেট আকারে প্রকাশ কর।
[ চঃ২০০০]

উদাহরণ \(20.\) \(f:\mathbb{R}\rightarrow \mathbb{R}\) কে \(f(x)=x^2\) দ্বারা সংজ্ঞায়িত করা হলো। \(f^{-1}(36)\) \(f^{-1}(16)\) কে সেট আকারে প্রকাশ কর।
[ বঃ২০০৬; কুঃ২০০৫; ঢাঃ,চঃ,যঃ ২০০৪]

উদাহরণ \(21.\) \(\mathbb{R}\) বাস্তব সংখ্যার সেট এবং \(A=\{-3, -1, 0, 1, 3\}; \ f:A\rightarrow \mathbb{R} \) ফাংশনটি \(f(x)=x^2+x+1\) দ্বারা সংজ্ঞায়িত হলে \(f(x)\)-এর রেঞ্জ নির্ণয় কর।
[ যঃ ২০০০]

উদাহরণ \(22.\) যদি \(A, B\subseteq \mathbb{R}; \ B=\mathbb{R}-\{1\}\) এবং \(f:A\rightarrow B\) কে \(f(x)=\frac{x-2}{x-3}\) সূত্র দ্বারা সংজ্ঞায়িত । ফাংশনটির ডোমেন এবং রেঞ্জ নির্ণয় কর। দেখাও যে, ফাংশনটি এক-এক এবং সার্বিক। \(f^{-1}\) নির্ণয় কর।
[ কুঃ ২০১৪; ঢাঃ ২০০৯; সিঃ ২০০৭]
1 2 3 4 5 6