সীমা বা লিমিট (limit)



mybarcode

এ অধ্যায়ে আমরা যে বিষয়গুলি আলোচনা করব।

  • সীমা বা লিমিটের ধারণা।
  • সীমা বা লিমিটের সংজ্ঞা।
  • লিমিটের সাহায্যে ঢালের ধারণা।
  • লেখ চিত্রের সাহায্যে ফাংশনের সীমা।
  • একদিকবর্তী লিমিটের ধারণা।
  • কতিপয় বিশেষ সীমার বর্ণনা।
  • অসীম লিমিটের ধারণা।
  • সীমার ধর্মাবলী ও ব্যখ্যা।
  • সীমার সাহায্যে ফাংশনের বিচ্ছিন্নতা ও অবিচ্ছিন্নতা আলোচনা।

সীমা

Limmit

আমরা প্রায়শই বলে থাকি সীমা (limit) ফাংশনের লিমিটঃ চলমান রাশি \(x\)-এর মান উভয় দিক হতে একটি নির্দিষ্ট সংখ্যা \(a\)-এর দিকে অগ্রসর হয়ে \(a\)-এর সন্নিকটবর্তী হওয়ায় যদি ফাংশন \(f(x)\), একটি নির্দিষ্ট সংখ্যা \(l\)-এর যথেচ্ছ সন্নিকটবর্তী হয়, তাহলে \(l\) কে \(f(x)\) ফাংশনের সীমাস্থ মাণ বা সীমা বলা হয়। একে \[\lim_{x \rightarrow a}f(x)=l\] দ্বারা প্রকাশ করা হয়। অতিক্রম কর না, ফাজলামোর একটা সীমা (limit) আছে। এখানে ফাংশনের সীমা (limit) ফাংশনের লিমিটঃ চলমান রাশি \(x\)-এর মান উভয় দিক হতে একটি নির্দিষ্ট সংখ্যা \(a\)-এর দিকে অগ্রসর হয়ে \(a\)-এর সন্নিকটবর্তী হওয়ায় যদি ফাংশন \(f(x)\), একটি নির্দিষ্ট সংখ্যা \(l\)-এর যথেচ্ছ সন্নিকটবর্তী হয়, তাহলে \(l\) কে \(f(x)\) ফাংশনের সীমাস্থ মাণ বা সীমা বলা হয়। একে \[\lim_{x \rightarrow a}f(x)=l\] দ্বারা প্রকাশ করা হয়। সম্পর্কে বলা হচ্ছে অর্থাৎ ফাংশনেরও সীমা (limit) ফাংশনের লিমিটঃ চলমান রাশি \(x\)-এর মান উভয় দিক হতে একটি নির্দিষ্ট সংখ্যা \(a\)-এর দিকে অগ্রসর হয়ে \(a\)-এর সন্নিকটবর্তী হওয়ায় যদি ফাংশন \(f(x)\), একটি নির্দিষ্ট সংখ্যা \(l\)-এর যথেচ্ছ সন্নিকটবর্তী হয়, তাহলে \(l\) কে \(f(x)\) ফাংশনের সীমাস্থ মাণ বা সীমা বলা হয়। একে \[\lim_{x \rightarrow a}f(x)=l\] দ্বারা প্রকাশ করা হয়। আছে। একটি ফাংশনে দুই বা ততোধীক চলক ব্যবহৃত হয়। উচ্চমাধ্যমিক গণিতে দুই চলক বিশিষ্ট ফাংশন আলোচনা করা হয়েছে। এই দুইটি চলকের একটি স্বাধীন চলক এবং অপরটি অধীন। \(y=f(x)\) ফাংশনে \(x\) স্বাধীন চলক এবং \(y\) অধীন। চলকেরও সীমা (limit) চলকের লিমিটঃ যদি \(x\) চলকের মাণ একটি ধ্রূবক \(a\) অপেক্ষা উভয় দিক হতে অর্থাৎ ছোট অথবা বড় হয়ে ক্রমশ \(a\)-এর দিকে অগ্রসর হয়ে এত নিকটবর্তী হয় যে, \(x\) ও \(a\)-এর পার্থক্য অর্থাৎ \(|x-a|\) যে কোনো ক্ষুদ্র ধনাত্মক সংখ্যা \(\delta\) হতে ক্ষুদ্রতর অর্থাৎ \(\delta>|x-a|\) হয়, তবে \(a\) কে \(x\)-এর লিমিট বা সীমা বলা হয় এবং \(x\)-এর মাণ কে \(x\rightarrow a\) প্রতীক দ্বারা প্রকাশ করা হয়। আছে। স্বাধীন চলক \(x\)-এর সীমা (limit) চলকের লিমিটঃ যদি \(x\) চলকের মাণ একটি ধ্রূবক \(a\) অপেক্ষা উভয় দিক হতে অর্থাৎ ছোট অথবা বড় হয়ে ক্রমশ \(a\)-এর দিকে অগ্রসর হয়ে এত নিকটবর্তী হয় যে, \(x\) ও \(a\)-এর পার্থক্য অর্থাৎ \(|x-a|\) যে কোনো ক্ষুদ্র ধনাত্মক সংখ্যা \(\delta\) হতে ক্ষুদ্রতর অর্থাৎ \(\delta>|x-a|\) হয়, তবে \(a\) কে \(x\)-এর লিমিট বা সীমা বলা হয় এবং \(x\)-এর মাণ কে \(x\rightarrow a\) প্রতীক দ্বারা প্রকাশ করা হয়। \(x\rightarrow a\) এবং অধীন চলক \(y\)-এর সীমা (limit) \(y\rightarrow b\)। তেমনিভাবে স্বাধীন চলকের সীমার (limit) সাপেক্ষে \(f(x)\)-এর সীমা (limit) ফাংশনের লিমিটঃ চলমান রাশি \(x\)-এর মান উভয় দিক হতে একটি নির্দিষ্ট সংখ্যা \(a\)-এর দিকে অগ্রসর হয়ে \(a\)-এর সন্নিকটবর্তী হওয়ায় যদি ফাংশন \(f(x)\), একটি নির্দিষ্ট সংখ্যা \(l\)-এর যথেচ্ছ সন্নিকটবর্তী হয়, তাহলে \(l\) কে \(f(x)\) ফাংশনের সীমাস্থ মাণ বা সীমা বলা হয়। একে \[\lim_{x \rightarrow a}f(x)=l\] দ্বারা প্রকাশ করা হয়। \[\lim_{x \rightarrow a}f(x)=l\] দ্বারা প্রকাশ করা হয়। কোনো ফাংশনের মূল নিয়মে অন্তরজ নির্ণয় করতে সীমার (limit) ভুমিকা অপরিহার্য। একটি ফাংশনের বিচ্ছিন্নতা ও অবিচ্ছিন্নতা দেখাতে সীমা (limit) ফাংশনের লিমিটঃ চলমান রাশি \(x\)-এর মান উভয় দিক হতে একটি নির্দিষ্ট সংখ্যা \(a\)-এর দিকে অগ্রসর হয়ে \(a\)-এর সন্নিকটবর্তী হওয়ায় যদি ফাংশন \(f(x)\), একটি নির্দিষ্ট সংখ্যা \(l\)-এর যথেচ্ছ সন্নিকটবর্তী হয়, তাহলে \(l\) কে \(f(x)\) ফাংশনের সীমাস্থ মাণ বা সীমা বলা হয়। একে \[\lim_{x \rightarrow a}f(x)=l\] দ্বারা প্রকাশ করা হয়। ব্যবহার করা হয়। গণিত বিশ্লেষণে লিমিট বা সীমা (limit) ফাংশনের লিমিটঃ চলমান রাশি \(x\)-এর মান উভয় দিক হতে একটি নির্দিষ্ট সংখ্যা \(a\)-এর দিকে অগ্রসর হয়ে \(a\)-এর সন্নিকটবর্তী হওয়ায় যদি ফাংশন \(f(x)\), একটি নির্দিষ্ট সংখ্যা \(l\)-এর যথেচ্ছ সন্নিকটবর্তী হয়, তাহলে \(l\) কে \(f(x)\) ফাংশনের সীমাস্থ মাণ বা সীমা বলা হয়। একে \[\lim_{x \rightarrow a}f(x)=l\] দ্বারা প্রকাশ করা হয়। একটি মৌলিক ধারণা। বিশেষ করে কোনো ফাংশনের অন্তরকলন বিদ্যার ভিত্তি হচ্ছে লিমিট বা সীমা (limit) ফাংশনের লিমিটঃ চলমান রাশি \(x\)-এর মান উভয় দিক হতে একটি নির্দিষ্ট সংখ্যা \(a\)-এর দিকে অগ্রসর হয়ে \(a\)-এর সন্নিকটবর্তী হওয়ায় যদি ফাংশন \(f(x)\), একটি নির্দিষ্ট সংখ্যা \(l\)-এর যথেচ্ছ সন্নিকটবর্তী হয়, তাহলে \(l\) কে \(f(x)\) ফাংশনের সীমাস্থ মাণ বা সীমা বলা হয়। একে \[\lim_{x \rightarrow a}f(x)=l\] দ্বারা প্রকাশ করা হয়।

You need to login to view the rest of the content. Please . Not a Member? Join Us

Please comment on the Article