অন্তরীকরণ-৪ ( Differentiation-4 )

mybarcode
এ অধ্যায়ে আমরা যে বিষয়গুলি আলোচনা করব।
  • স্বাধীন ও অধীন চলকের অন্তরীকরণ।
  • লগারিদমের সাহায্যে অন্তরীকরণ।
  • নেপিয়ার অথবা প্রাকৃতিক লগারিদমের সাহায্যে অন্তরীকরণ।
  • দুইয়ের অধিক ফাংশনের গুনফল ও ভাগফল দ্বারা গঠিত ফাংশনের অন্তরীকরণ।
স্বাধীন ও অধীন চলকের অন্তরীকরণ।
Differentiation of dependent and independent variable.

কোনো ফাংশনের পরিবর্তনের হার নির্ণয়ের পদ্ধতিই হলো ঐ ফাংশনের অন্তরীকরণ। \(f(x)\) ফাংশনের স্বাধীন চলক \(x\) এর অন্তরক হচ্ছে \(dx=x\) এর ক্ষুদ্র বৃদ্ধি \((increment of x)\delta{x}\). অধীন চলক \(y\) এর অন্তরক হচ্ছে \(dy=f^{‘}(x)dx\) অর্থাৎ অধীন চলকের অন্তরক = স্বাধীন চলকের অন্তরজ \(\times\) স্বাধীন চলকের অন্তরক ।
লগারিদমের সাহায্যে অন্তরীকরণ।
Logarithmic differentiation.
কোনো ফাংশনের সূচক অন্য আরেকটি ফাংশন হলে অথবা কোনো ফাংশন কয়েকটি ফাংশনের গুনফল ও ভাগফল দ্বারা গঠিত হলে, প্রথমে ফাংশনটিতে \(\ln\) সংযোজন করে অন্তরজ নির্ণয় সহজতর হয়।
যখন, \(u, \ v\) ও \(w\) প্রত্যেকে \(x\) এর ফাংশন এবং \(y=\frac{uv}{w}\) এই ক্ষেত্রে।
\((1)\) \(\frac{dy}{dx}=\frac{uv}{w}\left(\frac{1}{u}\frac{du}{dx}+\frac{1}{v}\frac{dv}{dx}-\frac{1}{w}\frac{dw}{dx}\right)\)
যখন, \(u\) ও \(v\) প্রত্যেকে \(x\) এর ফাংশন এবং \(y=u^{v}\) এই ক্ষেত্রে।
\((2)\) \(\frac{dy}{dx}=u^{v}\left(\frac{v}{u}\frac{du}{dx}+\ln{u}\frac{dv}{dx}\right)\)
ধ্রুবক বা স্থির রাশি \(c\) এবং ফাংশন \(f\) এই দুইটির মধ্যে সূচকের চারটি রূপ দেখা যায়। যেমনঃ
\((a).\) ফাংশনের সূচক ধ্রুবক \(f^{c}\)
\((b).\) ধ্রুবকের সূচক ফাংশন \(c^{f}\)
\((c).\) ধ্রুবকের সূচক ধ্রুবক \(c^{c}\)
\((d).\) ফাংশনের সূচক ফাংশন \(f^{f}\)
উদাহরণসহ ব্যাখ্যাঃ
\((a).\) ফাংশনের সূচক ধ্রুবক \(f^{c}\): এই ক্ষেত্রে \(\frac{d}{dx}x^{n}\) এর সূত্র ব্যবহার করা হয়।
যেমনঃ \(\frac{d}{dx}(\sin^{2}{x})\)
\(=2\sin{x}.\frac{d}{dx}\sin{x}\) | প্রথমে \(\frac{d}{dx}x^{n}=nx^{n-1}\) সূত্র প্রয়োগ করা হয়েছে।
\(=2\sin{x}\cos{x}\) | \(\because \frac{d}{dx}\sin{x}=\cos{x}\)
\(=\sin{2x}\) | \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\((b).\) ধ্রুবকের সূচক ফাংশন \(c^{f}\): এই ক্ষেত্রে \(\frac{d}{dx}a^{x}\) এর সূত্র ব্যবহার করা হয়।
যেমনঃ \(\frac{d}{dx}(5^{\sin{x}})\)
\(=5^{\sin{x}}\ln{5}.\frac{d}{dx}\sin{x}\) | প্রথমে \(\frac{d}{dx}a^{x}=a^{x}\ln{a}\) সূত্র প্রয়োগ করা হয়েছে।
\(=5^{\sin{x}}\ln{5}\cos{x}\) | \(\because \frac{d}{dx}\sin{x}=\cos{x}\)
\((c).\) ধ্রুবকের সূচক ধ্রুবক \(c^{c}\): এই ক্ষেত্রে \(\frac{d}{dx}(c)=0\), (c=ধ্রুবক) এর সূত্র ব্যবহার করা হয়।
যেমনঃ \(\frac{d}{dx}(a^{c})\)
\(=0\) | \(\frac{d}{dx}(c)=0\) সূত্র প্রয়োগ করা হয়েছে।
\((d).\) ফাংশনের সূচক ফাংশন \(f^{f}\): এই ক্ষেত্রে ফাংশনের সূচক একটি ফাংশন তাই এটিকে সরাসরি অন্তরীকরণ করা কষ্টসাধ্য। প্রথমে ফাংশনটিতে \(\ln\) সংযোজন করে সূচক অপসারণ করা হয় অথবা \(z=e^{\ln{z}}\) সূত্র প্রয়োগ করা হয়, অতপর ফাংশনটির অন্তরজ নির্ণয় করা হয়।
যেমনঃ \(\frac{d}{dx}(x^{\sin{x}})\)
\(=\frac{d}{dx}(e^{\ln{x^{\sin{x}}}})\) | \(z=e^{\ln{z}}\) সূত্র প্রয়োগ করা হয়েছে।
\(=\frac{d}{dx}(e^{\sin{x}\ln{x}})\) | \(\because \ln{x^n}=n\ln{x}\)
\(=e^{\sin{x}\ln{x}}.\frac{d}{dx}(\sin{x}\ln{x})\) | \(\because \frac{d}{dx}(e^{x})=e^{x}\)
\(=e^{\ln{x^{\sin{x}}}}\{\sin{x}\frac{d}{dx}(\ln{x})+\ln{x}\frac{d}{dx}(\sin{x})\}\) | \(\because \frac{d}{dx}(uv)=u\frac{d}{dx}(v)+v\frac{d}{dx}(u)\)
\(=x^{\sin{x}}\left(\sin{x}\frac{1}{x}+\ln{x}\cos{x}\right)\) | \(\because \frac{d}{dx}(\ln{x})=\frac{1}{x}, \ \frac{d}{dx}(\sin{x})=\cos{x}\)
\(=x^{\sin{x}}\left(\frac{1}{x}\sin{x}+\ln{x}\cos{x}\right)\) | \(\because \frac{d}{dx}(\ln{x})=\frac{1}{x}, \ \frac{d}{dx}(\sin{x})=\cos{x}\)
1 2 3 4 5

Please comment on the Article