বিশেষ আকারের যোগজীকরণ-২ (Integration of spacial type-2)

mybarcode
এ অধ্যায়ে আমরা যে বিষয়গুলি আলোচনা করব।
  • কতিপয় আদর্শ যোগজ
  • আদর্শ সূত্র হতে অনুসিদ্ধান্ত
  • আদর্শ সূত্র ব্যবহার করে যোগজ নির্ণয়
  • বিশেষ আকারের যোগজ গুলির উদাহরণসহ ব্যাখ্যা
  • যোগজ নির্ণয়ের বিভিন্ন কৌশল
কতিপয় আদর্শ যোগজ
ক্রমিক নং যোগজীকরণের সূত্রাবলী
1 \(\int{\frac{1}{a^2+x^2}dx}=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+c\)
2 \(\int{\frac{1}{\sqrt{a^2-x^2}}dx}=\sin^{-1}\left(\frac{x}{a}\right)+c\)
3 \(\int{\frac{1}{x\sqrt{x^2-a^2}}dx}=\frac{1}{a}\sec^{-1}\left(\frac{x}{a}\right)+c\)
4 \(\int{\frac{1}{a^2-x^2}dx}=\frac{1}{2a}\ln{\left|\frac{a+x}{a-x}\right|}+c\)
5 \(\int{\frac{1}{x^2-a^2}dx}=\frac{1}{2a}\ln{\left|\frac{x-a}{x+a}\right|}+c\)
6 \(\int{\frac{1}{\sqrt{a^2+x^2}}dx}=\ln{|\sqrt{a^2+x^2}+x|}+c\)
7 \(\int{\frac{1}{\sqrt{x^2-a^2}}dx}=\ln{|\sqrt{x^2-a^2}+x|}+c\)
8 \(\int{\sqrt{a^2-x^2}dx}=\frac{x\sqrt{a^2-x^2}}{2}+\frac{a^2}{2}\sin^{-1}{\left(\frac{x}{a}\right)}+c\)

বিশেষ আকারের যোগজ
\(1.\) \(\int{\frac{1}{ax^2+bx+c}dx}\) আকারের যোগজের ক্ষেত্রে।
\(\int{\frac{1}{ax^2+bx+c}dx}\)
\(=\int{\frac{1}{a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)}dx}\)
\(=\frac{1}{a}\int{\frac{1}{x^2+\frac{b}{a}x+\frac{c}{a}}dx}\)
\(=\frac{1}{a}\int{\frac{1}{x^2+2.x.\frac{b}{2a}+\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2+\frac{c}{a}}dx}\)
\(=\frac{1}{a}\int{\frac{1}{\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a^2}+\frac{c}{a}}dx}\)
\(=\frac{1}{a}\int{\frac{1}{\left(x+\frac{b}{2a}\right)^2+\frac{c}{a}-\frac{b^2}{4a^2}}dx}\)
\(=\frac{1}{a}\int{\frac{1}{\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a^2}}dx}\)
\(=\frac{1}{a}\int{\frac{1}{\left(x+\frac{b}{2a}\right)^2+\left(\frac{\sqrt{4ac-b^2}}{2a}\right)^2}dx}\)
এখন \(x+\frac{b}{2a}\) কে \(t\) দ্বারা প্রতিস্থাপন করে আদর্শ যোগজের সূত্র প্রয়োগ করে সমাধান করতে হয়।

যেমনঃ
\(1.\) \(\int{\frac{1}{x^2+8x+25}dx}\) এর যোজিত ফল নির্ণয় কর।
\(2.\) \(\int{\frac{1}{(ax+b)\sqrt{cx+d}}dx}\) আকারের যোগজের ক্ষেত্রে।
\(\sqrt{cx+d}\) কে \(t\) দ্বারা প্রতিস্থাপন করে আদর্শ যোগজের সূত্র প্রয়োগ করে সমাধান করতে হয়।

যেমনঃ
\(2.\) \(\int{\frac{1}{(2x+3)\sqrt{4x+5}}dx}\) এর যোজিত ফল নির্ণয় কর।
\(3.\) \(\int{\frac{1}{(cx+d)\sqrt{ax^2+bx+c}}dx}\) আকারের যোগজের ক্ষেত্রে।
\(\sqrt{cx+d}\) কে \(\frac{1}{t}\) দ্বারা প্রতিস্থাপন করে আদর্শ যোগজের সূত্র প্রয়োগ করে সমাধান করতে হয়।

যেমনঃ
\(3.\) \(\int{\frac{1}{(x-1)\sqrt{x^2+1}}dx}\) এর যোজিত ফল নির্ণয় কর।
\(4.\) \(\int{\frac{1}{(ax^2+b)\sqrt{cx^2+d}}dx}\) আকারের যোগজের ক্ষেত্রে।
\(\frac{\sqrt{cx^2+d}}{x}\) কে \(t\) দ্বারা প্রতিস্থাপন করে আদর্শ যোগজের সূত্র প্রয়োগ করে সমাধান করতে হয়।

যেমনঃ
\(4.\) \(\int{\frac{1}{(x^2+1)\sqrt{x^2+4}}dx}\) এর যোজিত ফল নির্ণয় কর।
\(5.\) \(\int{\frac{1}{\sin^{m}{x}\cos^{n}{x}}dx}\), \(m+n=p\) জোড় সংখ্যা, আকারের যোগজের ক্ষেত্রে।
লব ও হরের সহিত \(\sec^{p}{x}\) দ্বারা গুণ করে, অতঃপর \(\tan{x}\) কে \(t\) দ্বারা প্রতিস্থাপন করে সমাধান করতে হয়।

যেমনঃ
\(5.\) \(\int{\frac{1}{\sqrt{\sin^3{x}}\sqrt{\cos^5{x}}}dx}\) এর যোজিত ফল নির্ণয় কর।
\(6.\) \(\int{\frac{1}{\sin^{m}{x}+\cos^{m}{x}}dx}\), \(m\) জোড় সংখ্যা, আকারের যোগজের ক্ষেত্রে।
লব ও হরের সহিত \(\sec^{m}{x}\) দ্বারা গুণ করে, অতঃপর \(\tan{x}\) কে \(t\) দ্বারা প্রতিস্থাপন করে সমাধান করতে হয়।

যেমনঃ
\(6.\) \(\int{\frac{\sin{x}\cos{x}}{\sin^4{x}+\cos^4{x}}dx}\) এর যোজিত ফল নির্ণয় কর।
\(7.\) \(\int{\frac{1}{x^{\frac{1}{a}}-x^{\frac{1}{b}}}dx}\), \(\int{\frac{x^{\frac{1}{a}}}{1+x^{\frac{1}{b}}}dx}\), \(b>a\) আকারের যোগজের ক্ষেত্রে।
\(a\) ও \(b\) এর ল. সা. গু. \(c\) হলে, \(x\) কে \(t^{c}\) দ্বারা প্রতিস্থাপন করে সমাধান করতে হয়।

যেমনঃ
\(7.\) \(\int{\frac{dx}{x^{\frac{1}{2}}-x^{\frac{1}{4}}}}\) এর যোজিত ফল নির্ণয় কর।
\(8.\) \(\int{\sqrt{\frac{a-x}{a+x}}dx}\) আকারের যোগজের ক্ষেত্রে।
লবকে কে বর্গমূল \((\sqrt{})\) মুক্ত করে সমাধান করতে হয়।

যেমনঃ
\(8.\) \(\int{\sqrt{\frac{1-x}{1+x}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\sin^{-1}{x}+\sqrt{1-x^2}+c\)
\(9.\) \(\int{\frac{dx}{\sqrt{(x-\alpha)(x-\beta)}}}\), \(\int{\frac{dx}{\sqrt{(x-\alpha)(\beta-x)}}}\) আকারের যোগজের ক্ষেত্রে।
১ম যোগজের ক্ষেত্রে \(\sqrt{x-\alpha}+\sqrt{x-\beta}=t\) ধরে সমাধান করতে হয়।
২য় যোগজের ক্ষেত্রে \(\sqrt{x-\alpha}=t\) ধরে সমাধান করতে হয়।

যেমনঃ
\(9.(i)\) \(\int{\frac{dx}{\sqrt{(x-2)(x-3)}}}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(2\ln{|\sqrt{x-2}+\sqrt{x-3}|}+c\)
যেমনঃ
\(9.(ii)\) \(\int{\frac{dx}{\sqrt{(x-2)(3-x)}}}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(2\sin^{-1}{(\sqrt{x-2})}+c\)
\(10.\) \(\int{\frac{dx}{a+b\sin{x}}}\), \(\int{\frac{dx}{a+b\cos{x}}}\) এবং \(\int{\frac{dx}{a\sin{x}+b\cos{x}+c}}\) আকারের যোগজের ক্ষেত্রে।
\(\sin{x}\) এবং \(\cos{x}\) কে \(\tan{\frac{x}{2}}\) এ রুপান্তর করে, অতঃপর \(\tan{\frac{x}{2}}=t\) ধরে সমাধান করতে হয়।

যেমনঃ
\(10.(i)\) \(\int{\frac{dx}{3+2\sin{x}}}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{2}{\sqrt{5}}\tan^{-1}{\left\{\frac{1}{\sqrt{5}}(3\tan{\frac{x}{2}}+2)\right\}}+c\)
যেমনঃ
\(10.(ii)\) \(\int{\frac{dx}{3+2\cos{x}}}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{2}{\sqrt{5}}\tan^{-1}{\left(\frac{\tan{\frac{x}{2}}}{\sqrt{5}}\right)}+c\)
যেমনঃ
\(10.(iii)\) \(\int{\frac{dx}{\sin{x}-\cos{x}+1}}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\ln{\left|\frac{\tan{\frac{x}{2}}}{1+\tan{\frac{x}{2}}}\right|}+c\)
[ বুয়েটঃ২০১১-২০১২ ]
\(11.\) \(\int{\frac{dx}{a\sin{x}+b\cos{x}}}\) আকারের যোগজের ক্ষেত্রে।
\(a=r\cos{\alpha}\) এবং \(b=r\sin{\alpha}\) বসালে যোগজটি \(\frac{1}{r}\int{cosec \ {x+\alpha}}\) আকার ধারণ করে, যেখানে \(r=\sqrt{a^2+b^2}\) অতঃপর \(x+\alpha=t\) ধরে সমাধান করতে হয়।

যেমনঃ
\(11.\) \(\int{\frac{dx}{a\cos{x}+b\sin{x}}}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{1}{\sqrt{a^2+b^2}}\ln{\left|\tan{\frac{1}{2}\left\{x+\tan^{-1}{\left(\frac{a}{b}\right)}\right\}}\right|}+c\)
[ কুয়েটঃ২০০৯-২০১০ ]
\(12.\) \(\int{\frac{p\cos{x}+q\sin{x}}{a\cos{x}+b\sin{x}}dx}\) এবং \(\int{\frac{p\cos{x}+q\sin{x}+r}{a\cos{x}+b\sin{x}+c}dx}\) আকারের যোগজের ক্ষেত্রে।
১ম যোগজের ক্ষেত্রে লব= \(L\times\) ( হর ) +\(M\times\) ( হরের অন্তরকসহগ ) ধরে উভয় পার্শ হতে \(\sin{x}\) ও \(\cos{x}\) এর সহগ সমীকৃত করে, অতঃপর \(L\) ও \(M\) নির্ণয় করে সমাধান করতে হয়।
২য় যোগজের ক্ষেত্রে লব= \(L\times\) ( হর ) +\(M\times\) ( হরের অন্তরকসহগ ) +\(N\) ধরে উভয় পার্শ হতে \(\sin{x}\) ও \(\cos{x}\) এর সহগ এবং ধ্রুবক রাশি সমীকৃত করে, অতঃপর \(L\), \(M\) ও \(N\) নির্ণয় করে সমাধান করতে হয়।

যেমনঃ
\(12.(i)\) \(\int{\frac{2\sin{x}+3\cos{x}}{7\sin{x}-2\cos{x}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{8x}{53}+\frac{25}{53}\ln{|7\sin{x}-2\cos{x}|}+c\)
যেমনঃ
\(12.(ii)\) \(\int{\frac{1-\sin{x}+\cos{x}}{1+\sin{x}-\cos{x}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(-x+2\ln{\left|\frac{\tan{\frac{x}{2}}}{1+\tan{\frac{x}{2}}}\right|}+c\)
\(13.\) \(\int{\frac{1}{(x-a)^m(x-b)^n}dx}\) আকারের যোগজের ক্ষেত্রে।
\(x-a=t(x-b)\) ধরে সমাধান করতে হয়।

যেমনঃ
\(13.\) \(\int{\frac{dx}{(x-b)^3(x-a)^2}}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{1}{(a-b)^4}\left[\frac{3(x-a)}{x-b}+3\ln{\left|\frac{x-b}{x-a}\right|}-\frac{(x-a)^2}{2(x-b)^2}-\frac{x-b}{x-a}\right]+c\)
1 2 3 4 5