দুইটি বিন্দুর মধ্যবর্তী দূরত্ব (Distance between two points)



mybarcode

এ অধ্যায়ে আমরা যে বিষয়গুলি আলোচনা করব।

  • দুইটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়ের সূত্র প্রতিষ্ঠা এবং বাস্তব প্রয়োগ।
  • শীর্ষবিন্দুর স্থানাঙ্কের মাধ্যমে বিভিন্ন প্রকার ত্রীভুজ ও চতুর্ভুজের বাস্তব প্রমাণ।
  • দুইয়ের অধিক বিন্দু একই সরলরেখায় অবস্থানের শর্ত।
  • বিভিন্ন শর্তাধীনে বিন্দুর স্থানাঙ্ক নির্ণয়।
  • দূরত্ব বিষয়ক সমস্যা ও তার সমাধান
  • সৃজনশীল প্রশ্ন এবং সমাধান

প্রয়োজনীয় এবং স্মরণীয় সূত্রসমুহ

কার্তেসীয় স্থানাঙ্কে দূরত্বঃ

\(1.\) কোন সমতলের উপর \(P(x_{1}, y_{1})\) ও \(P(x_{2}, y_{2})\) যে কোন দুইটি বিন্দু এদের মধ্যবর্তী দূরত্ব হবে।

\(PQ=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}\)

পোলার স্থানাঙ্কে দূরত্বঃ

\(2.\) কোন সমতলের উপর \(P(r_{1}, \theta_{1})\) ও \(Q(r_{2}, \theta_{2})\) যে কোন দুইটি বিন্দু এদের মধ্যবর্তী দূরত্ব হবে।

\(PQ=\sqrt{r_{1}^{2}+r_{2}^{2}-2r_{1}r_{2}\cos(\theta_{1}-\theta_{2})}\)

You need to login to view the rest of the content. Please . Not a Member? Join Us

Please comment on the Article