রেখা বিভক্তকারী বিন্দুর স্থানাঙ্ক (Co-ordinates of the line Division point)

অনুশীলনী \(3.B\) / \(Q.3\)-এর প্রশ্নসমূহ
\(Q.3.(i)\) \(ABCD\) সামান্তরিকের \(A, \ B, \ C\) এর স্থানাঙ্ক যথাক্রমে \((-2, -1)\), \((1, 3)\) এবং \((1, 6)\) হলে, \(D\) বিন্দুর স্থানাঙ্ক নির্ণয় কর।
উত্তরঃ \((-2, 2)\)

\(Q.3.(ii)\) \(ABCD\) রম্বসের \(A, \ B, \ C\) এর স্থানাঙ্ক যথাক্রমে \((-2, -1)\), \((1, 3)\) এবং \((5, 6)\) হলে, \(D\) বিন্দুর স্থানাঙ্ক এবং রম্বসটির ক্ষেত্রফল নির্ণয় কর।
উত্তরঃ \(D(2, 2)\)

\(Q.3.(iii)\) \(ABCD\) বর্গক্ষেত্রের তিনটি শীর্ষবিন্দুর স্থানাঙ্ক যথাক্রমে \(A(8, 8)\), \(B(9, -5)\) এবং \(C(-4, -6)\) হলে, এর চতুর্থ শীর্ষবিন্দুর স্থানাঙ্ক এবং বর্গক্ষেত্রটির ক্ষেত্রফল নির্ণয় কর।
উত্তরঃ \((-5, 7)\); \(170\) বর্গ একক।
\(Q.3.(iv)\) \(ABCD\) আয়তক্ষেত্রের তিনটি শীর্ষবিন্দুর স্থানাঙ্ক যথাক্রমে \(A(3, 2)\), \((2, -1)\) এবং \((8, -3)\)। এর চতুর্থ শীর্ষবিন্দু \(D\) এর স্থানাঙ্ক এবং আয়তক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
উত্তরঃ \((9, 0)\); \(20\) বর্গ একক।
[ঢাঃ ২০০৩, চঃ ২০০৬, বঃ ২০১৪]

\(Q.3.(v)\) যদি \(A(2, 5)\), \((5, 9)\) এবং \((6, 8)\) বিন্দু তিনটি \(ABCD\) রম্বসের শীর্ষবিন্দু হয়, তাহলে চতুর্থ শীর্ষবিন্দু \(C\) এর স্থানাঙ্ক এবং রম্বসটির ক্ষেত্রফল নির্ণয় কর।
উত্তরঃ \(C(9, 12)\).
[ঢাঃ ২০১০, ২০০৫, সিঃ ২০০৯, বঃ ২০০৯ ]

\(Q.3.(vi)\) কোন সামান্তরিকের একটি কর্ণের প্রান্তবিন্দু দুইটির স্থানাঙ্ক \((3, -4)\) এবং \((-6, 5)\)। এর তৃতীয় শীর্ষবিন্দু \((-2, -1)\) হলে চতুর্থ শীর্ষবিন্দুর স্থানাঙ্ক নির্ণিয় কর।
উত্তরঃ চতুর্থ শীর্ষবিন্দুর স্থানাঙ্ক \((-1, 2)\).
[ঢাঃ ২০০৭, রাঃ ২০১৪, চঃ ২০১৪, সিঃ ২০১৪, যঃ ২০১১, বঃ ২০০৮]
1 2 3 4 5 6

Leave a Reply