অধিবৃত্ত-২ (Hyperbola-2)

mybarcode
অনুশীলনী \(5.C\) / \(Q.4\) সৃজনশীল প্রশ্নসমুহ
\(Q.4.(i)\) \((m) 3y^2-10x-12y-18=0\)
\((n)\) উপকেন্দ্র \((-1, 1)\), নিয়ামকরেখা \(x+y+1=0\) ।
\((a)\) \(y^2=12px \) পরাবৃত্তটি \((2, -1)\) বিন্দুগামী হলে, এর উপকেন্দ্রিক লম্বের দৈর্ঘ্য বের কর।
\((b)\) \((m)\) নং পরাবৃত্তের শীর্ষ, উপকেন্দ্র, অক্ষরেখা এবং নিয়ামকরেখার সমীকরণ নির্ণয় কর।
\((c)\) \((n)\) নং এর আলোকে পরাবৃত্তের সমীকরণ নির্ণয় কর। উক্ত পরাবৃত্তের অক্ষের সমীকরণ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য বের কর।
উত্তরঃ \((a) \frac{1}{2}\) \((b) (-3, 2); \left(-\frac{13}{6}, 2\right); y-2=0; 6x+23=0\) \((c) (x-y)^2+2x-6y+3=0; x-y+2=0; \sqrt{2} \). Continue Reading →

অধিবৃত্ত-১ (Hyperbola-1)

mybarcode
এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
  • অধিবৃত্তের সংজ্ঞা।
  • অধিবৃত্তের প্রমিত সমীকরণ।
  • অধিবৃত্তের লেখচিত্র অঙ্কন।
  • অধিবৃত্তের উপকেন্দ্র ও নিয়ামক।
  • অধিবৃত্তের আড় অক্ষ ও অনুবন্ধী অক্ষ।
  • কোনো নির্দিষ্ট বিন্দুতে অধিবৃত্তের পরামিতিক সমীকরণ।
  • অধিবৃত্তের সমীকরণ থেকে উৎকেন্দ্রিকতা নির্ণয়।
  • অধিবৃত্তের সমীকরণ থেকে উপকেন্দ্রের স্থানাঙ্ক ও নিয়ামকের সমীকরণ নির্ণয়।
  • উপকেন্দ্র, উৎকেন্দ্রিকতা ও নিয়ামক রেখার সমীকরণ দেওয়া থাকলে অধিবৃত্তের সমীকরণ নির্ণয়।
  • অধিবৃত্তের উপকেন্দ্রিক লম্ব ও এর দৈর্ঘ্য নির্ণয়।
  • অধিবৃত্তের আদর্শ সমীকরণ হতে এর বিভিন্ন অংশ চিহ্নিত করণ।
  • অধিবৃত্তে অসীমতটের অবস্থান নির্ণয়।
  • \((\alpha, \beta)\) কেন্দ্রবিশিষ্ট অধিবৃত্তের সমীকরণ, যার অক্ষ দুইটি স্থানাংকের অক্ষদ্বয়ের সমান্তরাল ।
  • অধিবৃত্ত বিষয়ক সমস্যা ও তার সমাধান।
  • সৃজনশীল প্রশ্ন এবং তার সমাধান
  • ভর্তি পরীক্ষায় আসা প্রশ্নসমুহ এবং তার সমাধান
অধিবৃত্ত
Hyperbola
hyperbola
অধিবৃত্তঃ কোনো কার্তেসীয় সমতলে একটি বিন্দু যদি এমনভাবে চলে যে ঐ সমতলস্থিত একটি স্থির বিন্দু থেকে দূরত্ব এবং একটি নির্দিষ্ট রেখা থেকে লম্ব দূরত্বের অনুপাত একটি স্থির রাশি এবং ঐ স্থির রাশিটির মান \(1\) অপেক্ষা বৃহত্তর, তবে ঐ বিন্দুর সঞ্চারপথকে অধিবৃত্ত বলা হয়। উক্ত স্থির রাশিকে উৎকেন্দ্রতা (Eccentricity) বলা হয়, এবং ইহাকে \(e\) দ্বারা সূচিত করা হয়,যেখানে \( e > 1\) হবে ।
উপকেন্দ্র দুইটির মধ্যদিয়ে অঙ্কিত অধিবৃত্তের সর্ববৃহত রেখাংশ \(A\acute A\) কে প্রধান বা আড় অক্ষ ( Transverse axis) বলা হয়। প্রধান অক্ষের লম্ব দ্বিখন্ডক রেখাংশ \(B\acute B\) কে অনুবন্ধী অক্ষ ( Conjugate axis) বলা হয়। অক্ষদ্বয়ের মিলিত বিন্দু \(C\) কে কেন্দ্র বলা হয়।

Continue Reading →