মূলদ ভগ্নাংশের যোগজীকরণ ( Integration of Rational Fractions )

mybarcode
এ অধ্যায়ে আমরা যে বিষয়গুলি আলোচনা করব।
  • মূলদ ভগ্নাংশের যোগজীকরণ
  • মূলদ ভগ্নাংশকে আংশিক ভগ্নাংশে রূপান্তরের নিয়ম
  • আংশিক ভগ্নাংশে রূপান্তরের অভিজ্ঞতালব্দধ পদ্ধতি
  • লক্ষণীয় এবং স্মরণীয় তত্তসমুহ
মূলদ ভগ্নাংশের যোগজীকরণঃ
কোনো মূলদ বীজগণিতীয় ভগ্নাংশের যোগজ নির্ণয় করতে হলে প্রথমে তাকে আংশিক ভগ্নাংশে বিশ্লেষণ করে প্রত্যেক অংশের জন্য পৃথক যোজিত মান নির্ণয় করতে হয়। যদি কোনো যোগজ \(\int{\frac{\phi(x)}{\psi(x)}dx}\) আকারের থাকে ও আনুপাতিক ফাংশন \(\frac{\phi(x)}{\psi(x)}\) এর হরের ঘাত লবের ঘাত অপেক্ষা বৃহত্তর হয় এবং \( \psi(x)\) কে বিভিন্ন উৎপাদকে বিশ্লেষণ করা যায়। তবে \(\frac{\phi(x)}{\psi(x)}\) কে আংশিক ভগ্নাংশের সমষ্টিরূপে প্রকাশ করার পর যোগজীকরণ করতে হয়।
যদি লবের ঘাত হরের ঘাতের সমান হয় অথবা হরের ঘাত অপেক্ষা বৃহত্তর হয়, তবে সাধারণ ভাগ প্রক্রিয়ার সাহায্যে \(\phi(x)\) কে \(\psi(x)\) দ্বারা এমনভাবে ভাগ করতে হবে, যেন অবশিষ্টের লবের ঘাত, হর \(\psi(x)\) এর ঘাত অপেক্ষা ক্ষুদ্রতর হয়।

Continue Reading →