দুইটি বিন্দুর মধ্যবর্তী দূরত্ব (Distance between two points)

mybarcode
এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
  • দুইটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়ের সূত্র প্রতিষ্ঠা এবং বাস্তব প্রয়োগ।
  • শীর্ষবিন্দুর স্থানাঙ্কের মাধ্যমে বিভিন্ন প্রকার ত্রীভুজ ও চতুর্ভুজের বাস্তব প্রমাণ।
  • দুইয়ের অধিক বিন্দু একই সরলরেখায় অবস্থানের শর্ত।
  • বিভিন্ন শর্তাধীনে বিন্দুর স্থানাঙ্ক নির্ণয়।
  • দূরত্ব বিষয়ক সমস্যা ও তার সমাধান
  • সৃজনশীল প্রশ্ন এবং সমাধান
প্রয়োজনীয় এবং স্মরণীয় সূত্রসমুহ
কার্তেসীয় স্থানাঙ্কে দূরত্বঃ
\(1.\) কোন সমতলের উপর \(P(x_{1}, y_{1})\) ও \(P(x_{2}, y_{2})\) যে কোন দুইটি বিন্দু এদের মধ্যবর্তী দূরত্ব হবে।
\(PQ=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}\)
পোলার স্থানাঙ্কে দূরত্বঃ
\(2.\) কোন সমতলের উপর \(P(r_{1}, \theta_{1})\) ও \(Q(r_{2}, \theta_{2})\) যে কোন দুইটি বিন্দু এদের মধ্যবর্তী দূরত্ব হবে।
\(PQ=\sqrt{r_{1}^{2}+r_{2}^{2}-2r_{1}r_{2}\cos(\theta_{1}-\theta_{2})}\)

Continue Reading →

কার্তেসীয় ও পোলার স্থানাঙ্ক (Cartesian and Polar Co-ordinates)

mybarcode
এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
  • সমতলে বিন্দুর স্থানাঙ্ক।
  • সমতলে কার্তেসীয় এবং পোলার স্থানাঙ্কের ধারণা।
  • কার্তেসীয় ও পোলার স্থানাঙ্কের মধ্যে সম্পর্ক প্রতিষ্ঠা।
  • কার্তেসীয় এবং পোলার স্থানাঙ্কের বাস্তব প্রয়োগ।
  • কার্তেসীয় এবং পোলার স্থানাঙ্ক বিষয়ক সমস্যা ও তার সমাধান।
  • সমতলে কার্তেসীয় এবং পোলার সমীকরণ।
  • সৃজনশীল প্রশ্ন এবং সমাধান
জ্যামিতি (Geometry)
euclid
যে শিক্ষায় সুশিক্ষা অর্জন করে ভূমির পরিমাপ সম্পর্কে খুঁটিনাটি যাবতীয় বিষয় নিখুঁত ভাবে জানা যায় তাকে জ্যামিতি বলে। ইতিহাস থেকে নেয়া, প্রাচীন সভ্যতা মেসোপটমিয়া, মিসর এবং সিন্ধু উপত্যকায় কৃষি জমির সীমানা ও পরিমাপ সংক্রান্ত জরিফ কাজের মধ্যদিয়ে সর্বপ্রথম জ্যামিতির সূচনা হয়। গ্রীক দার্শনিক ইউক্লিড straight3 ইউক্লিড (৩০০-২৫০ খ্রিষ্টপূর্ব) বিখ্যাত গ্রিক গণিতজ্ঞ। তার লেখা গ্রন্থগুলির মধ্যে মাত্র তিনটির সন্ধান পাওয়া গিয়েছে এগুলো, ডাটা, অপটিক্স ও এলিমেন্টস। এলিমেন্টস বইটি মোট ১৩ খণ্ডে প্রকাশিত হয়েছিল। খ্রিষ্টপূর্ব ৩০০ অব্দে এই ধারনাকে পুষ্ট করে একটি সুবিন্যস্ত বৈজ্ঞানিক কাঠামো দিয়ে সাস্ত্র রূপে রূপান্তরিত করেন। এ কারণে ইউক্লিডকে জ্যামিতির জনক বলা হয়।

Continue Reading →