বৃত্ত-১ (Circle-One)

( ENGLISH VERSION )

এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।

  • বৃত্ত সম্পর্কে ধারণা।
  • গনিত জগতে বৃত্তের আবির্ভাব।
  • বৃত্তের সঙ্গা।
  • বৃত্ত সম্পর্কিত উপপাদ্য।
  • নির্দিষ্ট কেন্দ এবং ব্যাসার্ধবিশিষ্ট বৃত্তের সমীকরণ ।
  • পোলার স্থানাংকে বৃত্তের সমীকরণ।
  • বৃত্তের সাধারণ সমীকরণ।
  • বিভিন্ন শর্ত সাপেক্ষে বৃত্তের সমীকরণ।
  • সৃজনশীল প্রশ্ন এবং সমাধান

বৃত্ত

The Circle

straight3

ইউক্লিড

৩০০ খ্রিষ্টপূর্বাব্দে ইউক্লিড তাঁর এলিমেন্ট গ্রন্থের ত্রিতীয় খন্ডে বৃত্তের বইশিষ্ট্যসমূহের উপর আলোচনা করেন।

বক্ররেখার মধ্যে বৃত্ত সর্বাধীক পরিচিত এবং গুরুত্বপূর্ণ। স্কুল গণিতে বৃত্ত সম্পর্কিত বিভিন্ন বিষয় আলোচিত হয়েছে। কোনো সমতলে একটি চলমান বিন্দু এমনভাবে পরিভ্রমণ করে যে, চলমান বিন্দু হতে ঐ সমতলস্থ কোনো নির্দিষ্ট বিন্দুর দূরত্ব সর্বদা সমান হয়, তবে উক্ত চলমান বিন্দুর সঞ্চারপথটিই বৃত্ত। নির্দিষ্ট দূরত্বকে বৃত্তের ব্যাসার্ধ এবং নির্দিষ্ট বিন্দুকে বৃত্তের কেন্দ্র বলে। গ্রীক শব্দ ‘Kirkos’ থেকে বৃত্ত (Circle) শব্দটি শব্দটি এসেছে। ‘Kirkos’ শব্দটির অর্থ আংটা।

বৃত্ত সম্পর্কে মানুষের ধারণা আক্রিতিক। গ্রিক দার্শনিক ইউক্লিড, প্লেটো এবং আর্কিমিডিস বৃত্তের পরিমার্জন করেন। ১৭০০ খ্রিস্টাব্দে রাইন্ড প্যাপিরাস ( Rhind Papyrus) বৃত্তের ক্ষেত্রফল নির্ণয়ের একটি পদ্ধতি উদ্ভাবন করেন। গাড়ীর চাকা, চন্দ্র, সূর্য এবং গাছের প্রস্তছেদ প্রভৃতি বস্তু বৃত্তাকার দেখায়। স্থানাংক জ্যামিতিতে, ক্যালকুলাসে, জ্যোতির্বিদ্যায় এবং কম্পিউটার গ্রাফিক্স ডিজাইনে বৃত্ত সম্পর্কিত অধ্যয়ন গুরুত্বপূর্ণ। প্রাচীন সভ্যতায় যোগাযোগের মাধ্যম চাকাবৃত্তের ধারণা থেকে সৃষ্ট, যা এই উত্তর আধুনিক সভ্যতায় বিস্ময় এনেছে।

উচ্চমাধ্যমিক গণিতে বৃত্তকে সমীকরণের মাধ্যমে উপস্থাপন ও সংশ্লিষ্ট কতিপয় বিষয়ের উপর আলোকপাত করা হয়েছে।

বৃত্তের সঙ্গাঃ

সমতলে একটি নির্দিষ্ট বিন্দু হতে সমান দূরত্বে অবস্থিত বিন্দুসমুহের সেট দ্বারা উৎপন্ন জ্যামিতিক চিত্রকে বৃত্ত (Circle) বলা হয়। নির্দিষ্ট বিন্দুকে বৃত্তের কেন্দ্র (Center) এবং স্থির দূরত্বকে বৃত্তের ব্যাসার্ধ (Radius) বলে।

বৃত্তের সমীকরণ চিহ্নিতকরণের উপায়ঃ

\(x\) ও \(y\) এর দ্বিঘাত সমীকরণে \(x^{2}\) ও \(y^{2}\) এর সহগদ্বয় সমান এবং \(xy\) সম্বলিত পদের সহগ শুন্য \((0)\) হলে, তা বৃত্ত প্রকাশ করে।

প্রয়োজনীয় এবং স্মরণীয় সূত্রসমূহ।

straight3

\(1.\) কেন্দ্র মূলবিন্দু তথা \(O(0, 0)\) এবং ব্যাসার্ধ \(r \ (r>0)\) বৃত্তের সমীকরণ।

\(x^{2}+y^{2}=r^{2}\)

Proof

straight3

\(2.\) কেন্দ্র \(P(h, k)\) এবং ব্যাসার্ধ \(r \ (r>0)\) বৃত্তের সমীকরণ।

\((x-h)^{2}+(y-k)^{2}=r^{2}\)

Proof

straight3

\(3.\)বৃত্তের সধারণ সমীকরণ।

\(x^{2}+y^{2}+2gx\)\(+2fy+c=0\)

কেন্দ্রঃ \((-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)

বৃত্তের সাধারণ সমীকরণের বৈশিষ্ট্যঃ

\((a)\) এটি \(x, y\) সম্বলিত একটি দ্বিঘাত সমীকরণ।
\((b)\) \(x^{2}\) এবং \(y^{2}\) এর সহগদ্বয় সমান হবে।
\((c)\) \(xy\) সম্বলিত কোনো পদ থাকবে না।
\((d)\) \(g^{2}+f^{2}>c\) হবে।

Proof

straight3

\(4.\) \(x, y\) সম্বলিত সধারণ দ্বিঘাত সমীকরণ।

\(ax^{2}+2hxy+by^{2}\)\(+2gx+2fy+c=0\)

সাধারণ দ্বিঘাত সমীকরণের বৃত্ত প্রকাশ করার শর্তাবলীঃ

\((a)\) \(x^{2}\) এবং \(y^{2}\) এর সহগদ্বয় সমান হবে, অর্থাৎ \(a=b\)।
\((b)\) \(xy\) সম্বলিত কোনো পদ থাকবে না, অর্থাৎ \(h=0\)।
\((c)\) \(g^{2}+f^{2}>c\) হবে।
এই ক্ষেত্রে বৃত্তের,
কেন্দ্রঃ \((-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)

straight3

\(5.\) কেন্দ্র \((h, k)\) এবং \((\alpha, \beta)\) বিন্দুগামী বৃত্তের সমীকরণ।

\((x-h)^{2}+(y-k)^{2}\)\(=(\alpha-h)^{2}+(\beta-k)^{2}\)

কেন্দ্রঃ \((h, k)\)
ব্যাসার্ধঃ \(=\sqrt{(\alpha-h)^{2}+(\beta-k)^{2}}\)

Proof

straight3

\(6.\) \((x_{1}, y_{1})\) এবং \((x_{2}, y_{2})\) বিন্দু দুইটির সংযোগ রেখাংশকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ।

\((x-x_{1})(x-x_{2})+\)\((y-y_{1})(y-y_{2})=0\)

Proof

straight3

\(7.\) মূলবিন্দুগামী বৃত্তের সাধারণ সমীকরণ।

\(x^{2}+y^{2}+2gx+2fy=0\)

Proof

\(8.\) বৃত্তের সাধারণ সমীকরণের অক্ষদ্বয়কে স্পর্শ করার শর্ত।

সাধারণ সমীকরণঃ

\(x^{2}+y^{2}+2gx\)\(+2fy+c=0\)

straight3

\((a)\) \(X\) অক্ষকে স্পর্শ করার শর্তঃ

\(g^{2}=c\)

straight3

\((b)\) \(Y\) অক্ষকে স্পর্শ করার শর্তঃ

\(f^{2}=c\)

straight3

\((c)\) উভয় অক্ষকে স্পর্শ করার শর্তঃ

\(g^{2}=f^{2}=c\)

Proof

\(9.\) বৃত্তের সাধারণ সমীকরণ যখন, অক্ষদ্বয়কে ছেদ করে।

সাধারণ সমীকরণঃ
\(x^{2}+y^{2}+2gx\)\(+2fy+c=0\)

\((a)\) \(X\) অক্ষের ছেদিতাংশের পরিমাণঃ

straight3
\(=2\sqrt{g^{2}-c}\)

\((b)\) \(Y\) অক্ষের ছেদিতাংশের পরিমাণঃ

straight3
\(=2\sqrt{f^{2}-c}\)

Proof

অনুসিদ্ধান্তঃ

straight3

\(10.\) একটি বৃত্ত ও একটি সরলরেখার ছেদবিন্দুগামী বৃত্তের সমীকরণ।

বৃত্তের সমীকরণঃ

\(x^{2}+y^{2}+2gx\)\(+2fy+c=0\)

সরলরেখার সমীকরণঃ

\(ax+by+c_{1}=0\)

নির্ণেয় বৃত্তের সমীকরণঃ

\(x^{2}+y^{2}+2gx+2fy+c+k(ax+by+c_{1})=0\)

\(k\) শুন্য ব্যতীত যে কোনো বাস্তব সংখ্যা (ইচ্ছামূলক ধ্রুবক)।

\(11.\) দুইটি নির্দিষ্ট বিন্দু \((x_{1}, y_{1})\) এবং \((x_{2}, y_{2})\) দিয়ে গমনকারী বৃত্তের সমীকরণ।[ খলিফার নিয়ম।]

\((x-x_{1})(x-x_{2})+(y-y_{1})(y-y_{2})+\)\(k\{(x-x_{1})(y_{1}-y_{2})-(y-y_{1})(x_{1}-x_{2})\}=0\)
straight3

Proof

\(12.\) বৃত্তের সাপেক্ষে কোনো বিন্দুর আপেক্ষিক অবস্থান।

\((x_{1}, y_{1})\) বিন্দুটি

\(f(x,y)\equiv x^{2}+y^{2}\)\(+2gx+2fy+c=0\) বৃত্তের,

straight3

\((a)\) বাহিরে অবস্থান করবে যদি,

\(f(x_{1},y_{1})>0\) হয়।

straight3

\((b)\) পরিধীর উপরে অবস্থান করবে যদি,

\(f(x_{1},y_{1})=0\) হয়।

straight3

\((c)\) ভিতরে অবস্থান করবে যদি,

\(0>f(x_{1},y_{1}) \) হয়।

Proof

অনুসিদ্ধান্তঃ

\(13.\) দুইটি বৃত্তের পরস্পরকে স্পর্শ করার শর্ত।

\(S_{1}\equiv x^{2}+y^{2}+2g_{1}x\)\(+2f_{1}y+c_{1}=0 ….(1)\) বৃত্তের,

কেন্দ্রঃ \(C_{1}\)

ব্যাসার্ধঃ \(r_{1}\)

\(S_{2}\equiv x^{2}+y^{2}+2g_{2}x+2f_{2}y+c_{2}=0 ….(2)\) বৃত্তের,

কেন্দ্রঃ \(C_{2}\)

ব্যাসার্ধঃ \(r_{2}\)

কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব \(=C_{1}C_{2}\)

straight3

\((a)\) বৃত্তদ্বয় পরস্পরকে বহিঃস্থভাবে স্পর্শ করবে যদি,

\(C_{1}C_{2}=r_{1}+r_{2}\) হয়।

straight3

\((b)\) বৃত্তদ্বয় পরস্পরকে অন্তঃস্থভাবে স্পর্শ করবে যদি,

\(C_{1}C_{2}=|r_{1}-r_{2}|\) হয়।

অনুসিদ্ধান্তঃ

straight3

\(14.\)দুইটি বৃত্তের ছেদবিন্দুগামী বৃত্তের সমীকরণ।

\(S_{1}\equiv x^{2}+y^{2}+2g_{1}x+2f_{1}y+c_{1}=0 ….(1)\)
\(S_{2}\equiv x^{2}+y^{2}+2g_{2}x+2f_{2}y+c_{2}=0 ….(2)\)

বৃত্তদ্বয়ের সাধারণ জ্যা এর সমীকরণ,

\(S_{1}-S_{2}=0 …..(3)\)

বৃত্তদ্বয়ের ছেদবিন্দুগামী বৃত্তের সমীকরণ,

\(S_{1}+k(S_{1}-S_{2})=0\)

\(k\) শুন্য ব্যতীত যে কোনো বাস্তব সংখ্যা (ইচ্ছামূলক ধ্রুবক)।

\(15.\) পোলার স্থানাঙ্কে বৃত্তের সমীকরণ।

\((a)\) বৃত্তের সমীকরণ।

\(x^{2}+y^{2}=a^{2} ….(1)\)

বৃত্ত \((1)\) এর পোলার সমীকরণ,

\(r=a\)
\((b)\) বৃত্তের সমীকরণ।
\((x-h)^{2}+(y-k)^{2}=a^{2} ….(2)\)

বৃত্ত \((2)\) এর পোলার সমীকরণ,

\(r^{2}-2rr_{1}\cos(\theta-\theta_{1})+r^{2}_{1}=a^{2}\)
\((c)\) বৃত্তের সমীকরণ।
\(x^{2}+y^{2}+2gx+2fy+c=0 ….(3)\)

বৃত্ত \((3)\) এর পোলার সমীকরণ,

\(r^{2}-2rr_{1}\cos(\theta-\theta_{1})+c=0\)

Proof

সুত্র প্রতিপাদন

\(1.\) কেন্দ্র মূলবিন্দু তথা \(O(0, 0)\) এবং ব্যাসার্ধ \(r \ (r>0)\) বৃত্তের সমীকরণ নির্ণয়ঃ

straight3

ধরি,
সঞ্চারপথের উপর চলমান বিন্দুটি \(P(x, y)\) ।
\(O, P\) যোগ করি। \(P\) বিন্দু হতে \(X\) অক্ষের উপর \(PN\) লম্ব টানি।
এখানে,
\(OP=r\) [ বৃত্তের ব্যাসার্ধ ]
\(ON=x, PN=y\)
\(\triangle OPN\) সমকোণী। \(OP\) ইহার অতিভুজ।
\(\therefore ON^{2}+PN^{2}=OP^{2}\)
\(\Rightarrow x^{2}+y^{2}=r^{2}\)
ইহাই নির্ণেয় বৃত্তের সমীকরণ।

\(2.\) কেন্দ্র \(C(h, k)\) এবং ব্যাসার্ধ \(r \ (r>0)\) বৃত্তের সমীকরণ নির্ণয়ঃ

straight3

দেওয়া আছে,
কেন্দ্র \(C(h, k)\) এবং ব্যাসার্ধ \(r \ (r>0)\)
ধরি,
সঞ্চারপথের উপর চলমান বিন্দুটি \(P(x, y)\) ।
\(C, P\) যোগ করি। \(C\) এবং \(P\) বিন্দু হতে \(X\) অক্ষের উপর যথাক্রমে \(CM\) এবং \(PN\) লম্ব টানি।
এখানে,
\(CP=r\) [ বৃত্তের ব্যাসার্ধ ]
\(ON=x, PN=y, OM=h, CM=k\)
\(CQ=MN=ON-OM=x-h\)
\(PQ=PN-QN=PN-CM=y-k\) [\(\because CM=QN\)]
\(\triangle CPQ\) সমকোণী। \(CP\) ইহার অতিভুজ।
\(\therefore CQ^{2}+PQ^{2}=CP^{2}\)
\(\Rightarrow (x-h)^{2}+(y-k)^{2}=r^{2}\)
ইহাই নির্ণেয় বৃত্তের সমীকরণ।

\(3.\) বৃত্তের সাধারণ সমীকরণ নির্ণয়ঃ

straight3

আমরা জানি,
কেন্দ্র \(C(h, k)\) এবং ব্যাসার্ধ \(r \ (r>0)\) হলে,
বৃত্তের সমীকরণ হয়,
\(\Rightarrow (x-h)^{2}+(y-k)^{2}=r^{2} ……….(1)\)
এখন,
কেন্দ্র \(C(h, k)\Rightarrow c(-g, -f)\)
অর্থাৎ \(h=-g, k=-f\)
এবং ব্যাসার্ধ \(r \Rightarrow \sqrt{g^{2}+f^{2}-c}\) হলে,
\((1)\) সমীকরণ হতে পাই,
\((x+g)^{2}+(y+f)^{2}=(\sqrt{g^{2}+f^{2}-c})^{2}\)
\(\Rightarrow x^{2}+2gx+g^{2}+y^{2}+2fy+f^{2}=g^{2}+f^{2}-c\)
\(\Rightarrow x^{2}+2gx+g^{2}+y^{2}+2fy+f^{2}-g^{2}-f^{2}+c=0\)
\(\Rightarrow x^{2}+y^{2}+2gx+2fy+c=0\)
ইহাই বৃত্তের নির্ণেয় সাধারণ সমীকরণ।

\(5.\) কেন্দ্র \((h, k)\) এবং \((\alpha, \beta)\) বিন্দুগামী বৃত্তের সমীকরণ নির্ণয়ঃ

straight3

আমরা জানি,
কেন্দ্র \(C(h, k)\) এবং ব্যাসার্ধ \(r \ (r>0)\) হলে,
বৃত্তের সমীকরণ হয়,
\(\Rightarrow (x-h)^{2}+(y-k)^{2}=r^{2} ……….(1)\)
\((1)\) নং বৃত্তটি \((\alpha, \beta)\) বিন্দু দিয়ে যায়,
\(\therefore (\alpha-h)^{2}+(\beta-k)^{2}=r^{2}\)
\(\Rightarrow r^{2}=(\alpha-h)^{2}+(\beta-k)^{2}\)
\(r^{2}\) এর এই মান \((1)\) এ বসিয়ে পাই,
\((x-h)^{2}+(y-k)^{2}=(\alpha-h)^{2}+(\beta-k)^{2} \)
ইহাই নির্ণেয় বৃত্তের সমীকরণ।

\(6.\) \((x_{1}, y_{1})\) এবং \((x_{2}, y_{2})\) বিন্দু দুইটির সংযোগ রেখাংশকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ নির্ণয়ঃ

straight3

মনে করি,
\(A(x_{1}, y_{1})\), \(B(x_{2}, y_{2})\)
এবং বৃত্তের পরিধীর উপর চলমান বিন্দু \(P(x, y)\)
\(A, P\) এবং \(B, P\) যোগ করি।
এখন,
\(\angle APB\) অর্ধবৃত্তস্থ বিধায় এক সমকোণ।
\(\therefore PA\perp PB\)
\(PA\) এর ঢাল \(m_{1}=\frac{y-y_{1}}{x-x_{1}}\)
\(PB\) এর ঢাল \(m_{2}=\frac{y-y_{2}}{x-x_{2}}\)
শর্তমতে,
\(m_{1}\times m_{2}=-1\)
\(\Rightarrow \frac{y-y_{1}}{x-x_{1}}\times \frac{y-y_{2}}{x-x_{2}}=-1\)
\(\Rightarrow \frac{(y-y_{1})(y-y_{2})}{(x-x_{1})(x-x_{2})}=-1\)
\(\Rightarrow (y-y_{1})(y-y_{2})=-(x-x_{1})(x-x_{2})\)
\(\therefore (x-x_{1})(x-x_{2})+(y-y_{1})(y-y_{2})=0\)
ইহাই নির্ণেয় বৃত্তের সমীকরণ।

\(7.\) মূলবিন্দুগামী বৃত্তের সাধারণ সমীকরণ নির্ণয়ঃ

straight3

আমরা জানি,
বৃত্তের সাধারণ সমীকরণ,
\(x^{2}+y^{2}+2gx+2fy+c=0 ……….(1)\)
\((1)\) নং বৃত্ত মূলবিন্দু তথা \(O(0, 0)\) দিয়ে যায়,
\(0^{2}+0^{2}+2g.0+2f.0+c=0\)
\(\Rightarrow 0+0+0+0+c=0\)
\(\Rightarrow 0+c=0\)
\(\Rightarrow c=0\)
\(c\) এর এই মান \((1)\) এ বসিয়ে পাই,
\(x^{2}+y^{2}+2gx+2fy+0=0\)
\(\therefore x^{2}+y^{2}+2gx+2fy=0\)
ইহাই নির্ণেয় মূলবিন্দুগামী বৃত্তের সাধারণ সমীকরণ।

\(8.\) বৃত্তের সাধারণ সমীকরণের অক্ষদ্বয়কে স্পর্শ করার শর্ত

\((a)\) \(X\) অক্ষকে স্পর্শ করার শর্ত

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(x^{2}+y^{2}+2gx+2fy+c=0 ……….(1)\)
কেন্দ্রঃ \((-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)
\((1)\) নং বৃত্ত , যখন \(X\) অক্ষকে স্পর্শ করে তখন কেন্দ্রের \(y\) স্থানাংক ব্যাসার্ধের সমান হয়,
\(\therefore \sqrt{g^{2}+f^{2}-c}=-f\)
\(\Rightarrow g^{2}+f^{2}-c=(-f)^{2}\)
\(\Rightarrow g^{2}+f^{2}-c=f^{2}\)
\(\Rightarrow g^{2}+f^{2}-c-f^{2}=0\)
\(\Rightarrow g^{2}-c=0\)
\(\therefore g^{2}=c\)
ইহাই নির্ণেয় শর্ত।

\((b)\) \(Y\) অক্ষকে স্পর্শ করার শর্ত

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(x^{2}+y^{2}+2gx+2fy+c=0 ……….(1)\)
কেন্দ্রঃ \((-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)
\((1)\) নং বৃত্ত , যখন \(Y\) অক্ষকে স্পর্শ করে তখন কেন্দ্রের \(x\) স্থানাংক ব্যাসার্ধের সমান হয়,
\(\therefore \sqrt{g^{2}+f^{2}-c}=-g\)
\(\Rightarrow g^{2}+f^{2}-c=(-g)^{2}\)
\(\Rightarrow g^{2}+f^{2}-c=g^{2}\)
\(\Rightarrow g^{2}+f^{2}-c-g^{2}=0\)
\(\Rightarrow f^{2}-c=0\)
\(\therefore f^{2}=c\)
ইহাই নির্ণেয় শর্ত।

\((c)\) উভয় অক্ষকে স্পর্শ করার শর্ত

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(x^{2}+y^{2}+2gx+2fy+c=0 ……….(1)\)
কেন্দ্রঃ \((-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)
\((1)\) নং বৃত্তের উভয় অক্ষকে স্পর্শ করার শর্ত,
\((a)\) ও \((b)\) হতে প্রাপ্ত,
\(g^{2}=f^{2}=c\)
ইহাই নির্ণেয় শর্ত।

\(9.\) বৃত্তের সাধারণ সমীকরণ কতৃক অক্ষদ্বয়ের ছেদিতাংশ নির্ণয়ঃ

\((a)\) \(X\) অক্ষের ছেদিতাংশ নির্ণয়ঃ

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(x^{2}+y^{2}+2gx+2fy+c=0 ……….(1)\)
ধরি,
\((1)\) নং বৃত্তটি \(X\) অক্ষকে \(A(x_{1}, 0)\) ও \(B(x_{2}, 0)\) বিন্দুতে ছেদ করে,
সুতরাং, \((1)\) নং সমীকরণে \(y=0\) বসিয়ে পাই,
\(x^{2}+2gx+c=0\) যা \(x\) এর দ্বিঘাত সমীকরণ যার মূলদ্বয় \(x_{1}\) ও \(x_{2}\)।
\(\therefore\) মূলদ্বয়ের যোগফল, \(x_{1}+x_{2}=-2g\)
এবং মূলদ্বয়ের গুনফল, \(x_{1}x_{2}=c\)
সুতরাং, বৃত্তটি দ্বারা \(X\) অক্ষের ছেদিতাংশের পরিমাণ \(=|x_{1}-x_{2}|\)
\(=\sqrt{(x_{1}-x_{2})^{2}}\)
\(=\sqrt{(x_{1}+x_{2})^{2}-4x_{1}x_{2}}\)
\(=\sqrt{(-2g)^{2}-4c}\)
\(=\sqrt{4g^{2}-4c}\)
\(=\sqrt{4(g^{2}-c)}\)
\(=2\sqrt{g^{2}-c}\)
ইহাই নির্ণেয় ছেদিতাংশ ।

\((b)\) \(Y\) অক্ষের ছেদিতাংশ নির্ণয়ঃ

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(x^{2}+y^{2}+2gx+2fy+c=0 ……….(1)\)
ধরি,
\((1)\) নং বৃত্তটি \(Y\) অক্ষকে \(C(x_{1}, 0)\) ও \(D(x_{2}, 0)\) বিন্দুতে ছেদ করে,
সুতরাং, \((1)\) নং সমীকরণে \(x=0\) বসিয়ে পাই,
\(y^{2}+2fy+c=0\) যা \(y\) এর দ্বিঘাত সমীকরণ যার মূলদ্বয় \(y_{1}\) ও \(y_{2}\)।
\(\therefore\) মূলদ্বয়ের যোগফল, \(y_{1}+y_{2}=-2f\)
এবং মূলদ্বয়ের গুনফল, \(y_{1}y_{2}=c\)
সুতরাং, বৃত্তটি দ্বারা \(Y\) অক্ষের ছেদিতাংশের পরিমাণ \(=|y_{1}-y_{2}|\)
\(=\sqrt{(y_{1}-y_{2})^{2}}\)
\(=\sqrt{(y_{1}+y_{2})^{2}-4y_{1}y_{2}}\)
\(=\sqrt{(-2f)^{2}-4c}\)
\(=\sqrt{4f^{2}-4c}\)
\(=\sqrt{4(f^{2}-c)}\)
\(=2\sqrt{f^{2}-c}\)
ইহাই নির্ণেয় ছেদিতাংশ ।

\(11.\) দুইটি নির্দিষ্ট বিন্দু \((x_{1}, y_{1})\) এবং \((x_{2}, y_{2})\) দিয়ে গমনকারী বৃত্তের সমীকরণ নির্ণয়ঃ [ খলিফার নিয়ম। ]

straight3

ধরি,
\(A(x_{1}, y_{1})\) ও \(B(x_{2}, y_{2})\)
\(AB\) কে ব্যাস ধরে বৃত্তের সমীকরণ,
\((x-x_{1})(x-x_{2})+(y-y_{1})(y-y_{2})=0 ……(1)\)
আবার,
\(AB\) সরলরেখার সমীকরণ,
\(\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}\)
\(\Rightarrow (x-x_{1})(y_{1}-y_{2})=(y-y_{1})(x_{1}-x_{2})\)
\(\Rightarrow (x-x_{1})(y_{1}-y_{2})-(y-y_{1})(x_{1}-x_{2})=0 ….(2)\)
\((1)\) নং বৃত্ত ও \((2)\) নং সরলরেখার ছেদবিন্দুগামী বৃত্তের সমীকরণ,
\((x-x_{1})(x-x_{2})+(y-y_{1})(y-y_{2})+\)\(k[(x-x_{1})(y_{1}-y_{2})-(y-y_{1})(x_{1}-x_{2})]=0\)
ইহাই নির্ণেয় বৃত্তের সমীকরণ।

\(12.\) বৃত্তের সাপেক্ষে কোনো বিন্দুর আপেক্ষিক অবস্থান নির্ণয়ঃ

\((a)\) \(A(x_{1}, y_{1})\) বিন্দু বৃত্তের বাহিরে অবস্থিত।

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(f(x,y)\equiv x^{2}+y^{2}+2gx+2fy+c=0 …(1)\)
কেন্দ্রঃ \(C(-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)
\((1)\) হতে \(f(x_{1},y_{1})\equiv x_{1}^{2}+y_{1}^{2}+2gx_{1}+2fy_{1}+c=0 …(2)\)
\(A, C\) যোগ করি,
\(AC\) রেখা বৃত্তের পরিধীকে \(D\) বিন্দুতে ছেদ করে।
এখানে,
ব্যাসার্ধঃ \(CD=\sqrt{g^{2}+f^{2}-c}\)
\(\because A\) বৃত্তের বাহিরে অবস্থিত,
\(\therefore AC>CD\)
\(\Rightarrow AC^{2}>CD^{2}\)
\(\Rightarrow (x_{1}+g)^{2}+(y_{1}+f)^{2}>(\sqrt{g^{2}+f^{2}-c})^{2}\)
\(\Rightarrow x^{2}_{1}+2x_{1}g+g^{2}+y^{2}_{1}+2y_{1}f+f^{2}>g^{2}+f^{2}-c\)
\(\Rightarrow x^{2}_{1}+2x_{1}g+g^{2}+y^{2}_{1}+2y_{1}f+f^{2}-g^{2}-f^{2}+c>0\)
\(\Rightarrow x^{2}_{1}+y^{2}_{1}+2x_{1}g+2y_{1}f+c>0\)
\(\therefore f(x_{1},y_{1})>0\)
\(\therefore A(x_{1}, y_{1})\) বিন্দু বৃত্তের বাহিরে অবস্থিত হবে যদি,
\(f(x_{1},y_{1})>0\) হয়।

\((b)\) \(A(x_{1}, y_{1})\) বিন্দু বৃত্তের পরিধীর উপর অবস্থিত।

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(f(x,y)\equiv x^{2}+y^{2}+2gx+2fy+c=0 …(1)\)
কেন্দ্রঃ \(C(-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)
\((1)\) হতে \(f(x_{1},y_{1})\equiv x_{1}^{2}+y_{1}^{2}+2gx_{1}+2fy_{1}+c…(2)\)
\(A, C\) যোগ করি,
এখানে,
ব্যাসার্ধঃ \(AC=\sqrt{g^{2}+f^{2}-c}\)
\(\because A\) বৃত্তের পরিধীর উপর অবস্থিত,
\(\therefore AC=\sqrt{g^{2}+f^{2}-c}\)
\(\Rightarrow AC^{2}=\sqrt{g^{2}+f^{2}-c}^{2}\)
\(\Rightarrow (x_{1}+g)^{2}+(y_{1}+f)^{2}=(\sqrt{g^{2}+f^{2}-c})^{2}\)
\(\Rightarrow x^{2}_{1}+2x_{1}g+g^{2}+y^{2}_{1}+2y_{1}f+f^{2}=g^{2}+f^{2}-c\)
\(\Rightarrow x^{2}_{1}+2x_{1}g+g^{2}+y^{2}_{1}+2y_{1}f+f^{2}-g^{2}-f^{2}+c=0\)
\(\Rightarrow x^{2}_{1}+y^{2}_{1}+2x_{1}g+2y_{1}f+c=0\)
\(\therefore f(x_{1},y_{1})=0\)
\(\therefore A(x_{1}, y_{1})\) বিন্দু বৃত্তের পরিধীর উপর অবস্থিত হবে যদি,
\(f(x_{1},y_{1})=0\) হয়।

\((c)\) \(A(x_{1}, y_{1})\) বিন্দু বৃত্তের ভিতরে অবস্থিত।

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(f(x,y)\equiv x^{2}+y^{2}+2gx+2fy+c=0 …(1)\)
কেন্দ্রঃ \(C(-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)
\((1)\) হতে \(f(x_{1},y_{1})\equiv x_{1}^{2}+y_{1}^{2}+2gx_{1}+2fy_{1}+c=0 …(2)\)
\(A, C\) যোগ করি,
\(CA\) রেখার বর্ধিতাংশ বৃত্তের পরিধীকে \(D\) বিন্দুতে ছেদ করে।
এখানে,
ব্যাসার্ধঃ \(CD=\sqrt{g^{2}+f^{2}-c}\)
\(\because A\) বৃত্তের ভিতরে অবস্থিত,
\(\therefore CD>AC \)
\(\Rightarrow CD^{2}>AC^{2}\)
\(\Rightarrow (\sqrt{g^{2}+f^{2}-c})^{2}>(x_{1}+g)^{2}+(y_{1}+f)^{2}\)
\(\Rightarrow g^{2}+f^{2}-c>x^{2}_{1}+2x_{1}g+g^{2}+y^{2}_{1}+2y_{1}f+f^{2}\)
\(\Rightarrow 0>x^{2}_{1}+2x_{1}g+g^{2}+y^{2}_{1}+2y_{1}f+f^{2}-g^{2}-f^{2}+c\)
\(\Rightarrow 0>x^{2}_{1}+y^{2}_{1}+2x_{1}g+2y_{1}f+c\)
\(\therefore 0>f(x_{1},y_{1})\)
\(\therefore A(x_{1}, y_{1})\) বিন্দু বৃত্তের ভিতরে অবস্থিত হবে যদি,
\(0>f(x_{1},y_{1})\) হয়।

\(15.\) পোলার স্থানাঙ্কে বৃত্তের সমীকরণ নির্ণয়ঃ

\((a)\) বৃত্তের সমীকরণ \(x^{2}+y^{2}=a^{2}\)।

আমরা জানি, straight3
কেন্দ্র মূলবিন্দু তথা \(O(0, 0)\) এবং ব্যাসার্ধ \(a \ (a>0)\) বৃত্তের সমীকরণ
\(x^{2}+y^{2}=a^{2} ……..(1)\)
বৃত্তের উপর যে কোনো বিন্দু \(P(x, y)\) এর পোলার স্থানাঙ্ক \(P(r\cos\theta, r\sin\theta)\) হলে,
\(x=r\cos\theta, \ y=r\sin\theta\)
তবে, \( (1)\) হতে পাই,
\((r\cos\theta)^{2}+(r\sin\theta)^{2}=a^{2}\)
\(\Rightarrow r^{2}\cos^{2}\theta+r^{2}\sin^{2}\theta=a^{2}\)
\(\Rightarrow r^{2}(\cos^{2}\theta+\sin^{2}\theta)=a^{2}\)
\(\Rightarrow r^{2}.1=a^{2}\) [\(\because \cos^{2}\theta+\sin^{2}\theta=1\)]
\(\Rightarrow r^{2}=a^{2}\)
\(\therefore r=a\)
ইহাই নির্ণেয় পোলার সমীকরণ।

\((b)\) বৃত্তের সমীকরণ \((x-h)^{2}+(y-k)^{2}=a^{2}\)।

আমরা জানি, straight3
কেন্দ্র \(C(h, k)\) ব্যাসার্ধ \(a\)
বৃত্তের সমীকরণ,
\((x-h)^{2}+(y-k)^{2}=a^{2} ….(2)\)
মনে করি,
বৃত্তের উপর যে কোনো বিন্দু \(P(x, y)\) এর পোলার স্থানাঙ্ক \(P(r\cos\theta, r\sin\theta)\)
এবং কেন্দ্র \(C(h, k)\) এর পোলার স্থানাঙ্ক \(P(r_{1}\cos\theta_{1}, r_{1}\sin\theta_{1})\)
তাহলে,
\(x=r\cos\theta, y=r\sin\theta\) এবং \(h=r_{1}\cos\theta_{1}, k=r_{1}\sin\theta_{1}\)
\((2)\) হতে,
\(\Rightarrow (r\cos\theta-r_{1}\cos\theta_{1})^{2}+(r\sin\theta-r_{1}\sin\theta_{1})^{2}=a^{2}\)
\(\Rightarrow r^{2}\cos^{2}\theta+r^{2}_{1}\cos^{2}\theta_{1}-2rr_{1}\cos\theta\cos\theta_{1}+r^{2}\sin^{2}\theta+\)\(r^{2}_{1}\sin^{2}\theta_{1}-2rr_{1}\sin\theta\sin\theta_{1}=a^{2}\)
\(\Rightarrow r^{2}(\cos^{2}\theta+\sin^{2}\theta)-2rr_{1}(\cos\theta\cos\theta_{1}+\sin\theta\sin\theta_{1})\)\(+r^{2}_{1}(\cos^{2}\theta_{1}+\sin^{2}\theta_{1})=a^{2}\)
\(\Rightarrow r^{2}.1-2rr_{1}\cos(\theta-\theta_{1})+r^{2}_{1}.1=a^{2}\)
\(\therefore r^{2}-2rr_{1}\cos(\theta-\theta_{1})+r^{2}_{1}=a^{2}\)
ইহাই নির্ণেয় পোলার সমীকরণ।

\((c)\) বৃত্তের সমীকরণ \(x^{2}+y^{2}+2gx+2fy+c=0\)।

আমরা জানি, straight3
বৃত্তের সাধারণ সমীকরণ,
\(x^{2}+y^{2}+2gx+2fy+c=0 …(3)\)
কেন্দ্রঃ \(C(-g, -f)\)
ব্যাসার্ধঃ \(=\sqrt{g^{2}+f^{2}-c}\) যখন, \((g^{2}+f^{2}>c)\)
মনে করি,
বৃত্তের উপর যে কোনো বিন্দু \(P(x, y)\) এর পোলার স্থানাঙ্ক \(P(r\cos\theta, r\sin\theta)\)
এবং কেন্দ্র \(C(-g, -f)\) এর পোলার স্থানাঙ্ক \(P(r_{1}\cos\theta_{1}, r_{1}\sin\theta_{1})\)
তাহলে,
\(x=r\cos\theta, y=r\sin\theta\) এবং \(-g=r_{1}\cos\theta_{1}, -f=r_{1}\sin\theta_{1}\)
\((3)\) হতে,
\(x^{2}+y^{2}+2gx+2fy+c=0\)
\(\Rightarrow x^{2}+2gx+g^{2}+y^{2}+2fy+f^{2}-g^{2}-f^{2}+c=0\)
\(\Rightarrow (x+g)^{2}+(y+f)^{2}-g^{2}-f^{2}+c=0\)
\(\Rightarrow [x-(-g)]^{2}+[y-(-f)]^{2}-(-g)^{2}-(-f)^{2}+c=0\)
\(\Rightarrow (r\cos\theta-r_{1}\cos\theta_{1})^{2}+(r\sin\theta-r_{1}\sin\theta_{1})^{2}-\)\((r_{1}\cos\theta_{1})^{2}-(r_{1}\sin\theta_{1})^{2}+c=0\)
\(\Rightarrow r^{2}\cos^{2}\theta+r^{2}_{1}\cos^{2}\theta_{1}-2rr_{1}\cos\theta\cos\theta_{1}+r^{2}\sin^{2}\theta+\)\(r^{2}_{1}\sin^{2}\theta_{1}\)\(-2rr_{1}\sin\theta\sin\theta_{1}-r^{2}_{1}\cos^{2}\theta_{1}-r^{2}_{1}\sin^{2}\theta_{1}+c=0\)
\(\Rightarrow r^{2}(\cos^{2}\theta+\sin^{2}\theta)-2rr_{1}(\cos\theta\cos\theta_{1}+\)\(\sin\theta\sin\theta_{1})+c=0\)
\(\Rightarrow r^{2}.1-2rr_{1}\cos(\theta-\theta_{1})+c=0\)
\(\therefore r^{2}-2rr_{1}\cos(\theta-\theta_{1})+c=0\)
ইহাই নির্ণেয় পোলার সমীকরণ।

1 2 3 4 5 6

Leave a Reply