অধিবৃত্ত-১ (Hyperbola-1)

( ENGLISH VERSION )

এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।

  • অধিবৃত্তের সংজ্ঞা।
  • অধিবৃত্তের প্রমিত সমীকরণ।
  • অধিবৃত্তের লেখচিত্র অঙ্কন।
  • অধিবৃত্তের উপকেন্দ্র ও নিয়ামক।
  • অধিবৃত্তের আড় অক্ষ ও অনুবন্ধী অক্ষ।
  • কোনো নির্দিষ্ট বিন্দুতে অধিবৃত্তের পরামিতিক সমীকরণ।
  • অধিবৃত্তের সমীকরণ থেকে উৎকেন্দ্রিকতা নির্ণয়।
  • অধিবৃত্তের সমীকরণ থেকে উপকেন্দ্রের স্থানাঙ্ক ও নিয়ামকের সমীকরণ নির্ণয়।
  • উপকেন্দ্র, উৎকেন্দ্রিকতা ও নিয়ামক রেখার সমীকরণ দেওয়া থাকলে অধিবৃত্তের সমীকরণ নির্ণয়।
  • অধিবৃত্তের উপকেন্দ্রিক লম্ব ও এর দৈর্ঘ্য নির্ণয়।
  • অধিবৃত্তের আদর্শ সমীকরণ হতে এর বিভিন্ন অংশ চিহ্নিত করণ।
  • অধিবৃত্তে অসীমতটের অবস্থান নির্ণয়।
  • \((\alpha, \beta)\) কেন্দ্রবিশিষ্ট অধিবৃত্তের সমীকরণ, যার অক্ষ দুইটি স্থানাংকের অক্ষদ্বয়ের সমান্তরাল ।
  • অধিবৃত্ত বিষয়ক সমস্যা ও তার সমাধান।
  • সৃজনশীল প্রশ্ন এবং তার সমাধান
  • ভর্তি পরীক্ষায় আসা প্রশ্নসমুহ এবং তার সমাধান

অধিবৃত্ত

Hyperbola

hyperbola
অধিবৃত্তঃ কোনো কার্তেসীয় সমতলে একটি বিন্দু যদি এমনভাবে চলে যে ঐ সমতলস্থিত একটি স্থির বিন্দু থেকে দূরত্ব এবং একটি নির্দিষ্ট রেখা থেকে লম্ব দূরত্বের অনুপাত একটি স্থির রাশি এবং ঐ স্থির রাশিটির মান \(1\) অপেক্ষা বৃহত্তর, তবে ঐ বিন্দুর সঞ্চারপথকে অধিবৃত্ত বলা হয়। উক্ত স্থির রাশিকে উৎকেন্দ্রতা (Eccentricity) বলা হয়, এবং ইহাকে \(e\) দ্বারা সূচিত করা হয়,যেখানে \( e > 1\) হবে ।
উপকেন্দ্র দুইটির মধ্যদিয়ে অঙ্কিত অধিবৃত্তের সর্ববৃহত রেখাংশ \(A\acute A\) কে প্রধান বা আড় অক্ষ ( Transverse axis) বলা হয়। প্রধান অক্ষের লম্ব দ্বিখন্ডক রেখাংশ \(B\acute B\) কে অনুবন্ধী অক্ষ ( Conjugate axis) বলা হয়। অক্ষদ্বয়ের মিলিত বিন্দু \(C\) কে কেন্দ্র বলা হয়।

মূলবিন্দু কেন্দ্রবিশিষ্ট অধিবৃত্তের প্রমিত সমীকরণ।

Standard equation of Hyperbola.

ধরি,hyperbola
অধিবৃত্তের উপকেন্দ্র \(S\) নিয়ামকরেখা \(MZ\) এবং উৎকেন্দ্রিকতা \(e, (e > 1)\), নিয়ামকরেখার উপর \(SZ\) লম্ব আঁকি। \(SZ\) রেখাকে \(A\) ও \(\acute A\) বিন্দুদ্বয় \(e:1\) অনুপাতে যথাক্রমে অন্তর্বিভক্ত ও বহিঃর্বিভক্ত করে, যেন \(SA=e.AZ\) এবং \(S\acute A=e.\acute AZ\)।
তাহলে, \(A\) ও \(\acute A\) অধিবৃত্তের উপর দুইটি বিন্দু।
মনে করি \(A\acute A\)-এর মধ্যবিন্দু \(C\) এবং \(A\acute A=2a\)
তাহলে, \(CA=C\acute A=a\)
এখন,
\(SA=e.AZ\)
\(\therefore CS-a=e(a-CZ) …….(1)\) | \(\because SA=CA-CS=CS-a; AZ=CZ-CA=a-CZ\)
এবং \(S\acute A=e.\acute AZ\)
\(\therefore CS+a=e(a+CZ) ……..(2)\) | \(\because S\acute A=C\acute A+CS=CS+a; \acute AZ=CZ+CA=a+CZ\)
\((1)\) ও \((2)\) যোগ করে,
\(CS-a+CS+a=e(a-CZ)+e(a+CZ)\)
\(\Rightarrow 2CS=e(a-CZ+a+CZ)\)
\(\Rightarrow 2CS=e.2a\)
\(\therefore CS=ae\)
\((2)\) – \((1)\)-এর সাহায্যে,
\(CS+a-CS+a=e(a+CZ)-e(a-CZ)\)
\(\Rightarrow 2a=e(a+CZ-a+CZ)\)
\(\Rightarrow 2a=e.2CZ\)
\(\Rightarrow a=eCZ\)
\(\Rightarrow eCZ=a\)
\(\therefore CZ=\frac{a}{e}\)
\(C\)-কে মূলবিন্দু , \(CX\) ও \(CY\)-কে যথাক্রমে \(x\)-অক্ষ ও \(y\)-অক্ষ বিবেচনা করি। অধিবৃত্তের উপর যে কোনো বিন্দু \(P(x, y)\)। \(P\) বিন্দু হতে \(A\acute A\)-এর উপর \(PN\) ও নিয়ামকরেখার উপর \(PM\) লম্ব আঁকি।
সুতরাং অধিবৃত্তের সংজ্ঞানুসারে, \(SP=e.PM\)
\(\Rightarrow SP=e.NZ\) | \(\because PM=NZ\)
\(\Rightarrow SP^2=e^2.NZ^2\) | উভয় পার্শে বর্গ করে।
\(\Rightarrow SN^2+PN^2=e^2(CN-CZ)^2\) | \(\because SP^2=SN^2+PN^2; NZ=CN-CZ\)
\(\Rightarrow (x-ae)^2+y^2=e^2\left(x-\frac{a}{e}\right)^2\) | \(\because SN=CS+CN=x-ae; NZ=x-\frac{a}{e}\)
\(\Rightarrow (x-ae)^2+y^2=e^2\left(\frac{ex-a}{e}\right)^2\)
\(\Rightarrow (x-ae)^2+y^2=e^2.\frac{(ex-a)^2}{e^2}\)
\(\Rightarrow (x-ae)^2+y^2=(ex-a)^2\)
\(\Rightarrow x^2+a^2e^2-2aex+y^2=e^2x^2-2aex+a^2\)
\(\Rightarrow x^2-e^2x^2+y^2=2aex+a^2-a^2e^2-2aex\)
\(\Rightarrow -x^2(e^2-1)+y^2=a^2-a^2e^2\)
\(\Rightarrow -x^2(e^2-1)+y^2=-a^2(e^2-1)\)
\(\Rightarrow x^2(e^2-1)-y^2=a^2(e^2-1)\) | উভয় পার্শে \(-1\) গুণ করে।
\(\Rightarrow \frac{x^2(e^2-1)}{a^2(e^2-1)}-\frac{y^2}{a^2(e^2-1)}=1\) | উভয় পার্শে \(a^2(e^2-1)\) ভাগ করে।
\(\therefore \frac{x^2}{a^2}-\frac{y^2}{a^2(e^2-1)}=1 …….(3)\)
যেহেতু \(e>1, a^2(e^2-1)\) ধনাত্মক।
অতএব, লিখা যায় \(b^2=a^2(e^2-1)\) | \(b\) একটি ধনাত্মক বাস্তব সংখ্যা।
\(\therefore b^2=a^2(e^2-1) ……..(4)\)
\((4)\)-এর সাহায্য নিয়ে \((3)\) হতে পাই,
\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)
ইহাই অধিবৃত্তের আদর্শ সমীকরণ।

অধিবৃত্তের আদর্শ সমীকরণ সনাক্তকরণঃ

মূলবিন্দু কেন্দ্রবিশিষ্ট অধিবৃত্তের প্রমিত সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1; \frac{y^2}{b^2}-\frac{x^2}{a^2}=1\)-এ \(x\) বা \(y\) যুক্ত পদ থাকবে না। শুধু \(x^2\) ও \(y^2\) যুক্ত পদ বিদ্যমান। \(x^2\)-এর সহগ \(\frac{1}{a^2}\) এবং \(y^2\)-এর সহগ \(-\frac{1}{b^2}\) অসমান ও ভিন্ন চিহ্নযুক্ত।

অধিবৃত্তের সমীকরণ সনাক্তকরণঃ

অধিবৃত্তের সমীকরণে \(x^2\) ও \(y^2\) যুক্ত পদ বিদ্যমান। \(x^2\)-এর সহগ এবং \(y^2\)-এর সহগ অসমান ও ভিন্ন চিহ্নযুক্ত। \(x\) ও \(y\) যুক্ত পদ থাকতেও পারে নাও থাকতে পারে।

প্রয়োজনীয় এবং স্মরণীয় সূত্রসমূহ।

অধিবৃত্তের আদর্শ সমীকরণ ও বিভিন্ন অংশের বিবরণ।

hyperbola

\(1.\) অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \)

  • অধিবৃত্তের কেন্দ্রের স্থানাঙ্ক \(C(0, 0)\)
  • উৎকেন্দ্রিকতা \(e=\sqrt{1+\frac{b^2}{a^2}}\)
  • আড় অক্ষের দৈর্ঘ্য \(=|2a|\)
  • অনুবন্ধী অক্ষের দৈর্ঘ্য \(=|2b|\)
  • আড় অক্ষের সমীকরণ \(y=0\)
  • অনুবন্ধী অক্ষের সমীকরণ \(x=0\)
  • উপকেন্দ্রের স্থানাঙ্ক \((\pm ae, 0)\)
  • নিয়ামকরেখার সমীকরণ \(x=\pm \frac{a}{e}\)
  • উপকেন্দ্রিক লম্বের দৈর্ঘ্য \(=|\frac{2b^2}{a}|\)
  • উপকেন্দ্রিক লম্বের সমীকরণ \(x=\pm ae\)
  • শীর্ষবিন্দুর স্থানাঙ্ক \((\pm a, 0)\)
  • নিয়ামকরেখার পাদবিন্দুর স্থানাঙ্ক \((\pm \frac{a}{e}, 0)\)
  • উপকেন্দ্রের মধ্যকার দূরত্ব \(=|2ae|\)
  • নিয়ামকদ্বয়ের মধ্যকার দূরত্ব \(=|\frac{2a}{e}|\)
  • একই দিকের উপকেন্দ্র ও অনুরূপ নিয়ামকরেখার মধ্যকার দূরত্ব \(|\frac{a}{e}-ae|\)
  • অসীমতটের সমীকরণ \( y=\pm \frac{b}{a}x\)

hyperbola

\(2.\) অধিবৃত্তের সমীকরণ \(\frac{y^2}{b^2}-\frac{x^2}{a^2}=1 \)

  • অধিবৃত্তের কেন্দ্রের স্থানাঙ্ক \(C(0, 0)\)
  • উৎকেন্দ্রিকতা \(e=\sqrt{1+\frac{a^2}{b^2}}\)
  • আড় অক্ষের দৈর্ঘ্য \(=|2b|\)
  • অনুবন্ধী অক্ষের দৈর্ঘ্য \(=|2a|\)
  • আড় অক্ষের সমীকরণ \(x=0\)
  • অনুবন্ধী অক্ষের সমীকরণ \(y=0\)
  • উপকেন্দ্রের স্থানাঙ্ক \((0, \pm be)\)
  • নিয়ামকরেখার সমীকরণ \(y=\pm \frac{b}{e}\)
  • উপকেন্দ্রিক লম্বের দৈর্ঘ্য \(=|\frac{2a^2}{b}|\)
  • উপকেন্দ্রিক লম্বের সমীকরণ \(y=\pm be\)
  • শীর্ষবিন্দুর স্থানাঙ্ক \((0, \pm b)\)
  • নিয়ামকরেখার পাদবিন্দুর স্থানাঙ্ক \((0, \pm \frac{b}{e})\)
  • উপকেন্দ্রের মধ্যকার দূরত্ব \(=|2be|\)
  • নিয়ামকদ্বয়ের মধ্যকার দূরত্ব \(=|\frac{2b}{e}|\)
  • একই দিকের উপকেন্দ্র ও অনুরূপ নিয়ামকরেখার মধ্যকার দূরত্ব \(|\frac{b}{e}-be|\)
  • অসীমতটের সমীকরণ \( y=\pm \frac{b}{a}x\)

hyperbola

\(3.\) অধিবৃত্তের সমীকরণ \(\frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1\)

  • অধিবৃত্তের শীর্ষবিন্দুর স্থানাঙ্ক \((\pm a+\alpha, 0)\)
  • অধিবৃত্তের কেন্দ্রের স্থানাঙ্ক \(C(\alpha, \beta)\)
  • উৎকেন্দ্রিকতা \(e=\sqrt{1+\frac{b^2}{a^2}}\)
  • আড় অক্ষের দৈর্ঘ্য \(=|2a|\)
  • অনুবন্ধী অক্ষের দৈর্ঘ্য \(=|2b|\)
  • আড় অক্ষের সমীকরণ \(y-\beta=0\)
  • অনুবন্ধী অক্ষের সমীকরণ \(x-\alpha=0\)
  • উপকেন্দ্রের স্থানাঙ্ক \((\pm ae+\alpha, \beta)\)
  • নিয়ামকরেখার সমীকরণ \(x-\alpha=\pm \frac{a}{e}\)
  • উপকেন্দ্রিক লম্বের দৈর্ঘ্য \(=|\frac{2b^2}{a}|\)
  • উপকেন্দ্রিক লম্বের সমীকরণ \(x-\alpha=\pm ae\)
  • অসীমতটের সমীকরণ \( y-\beta=\pm \frac{b}{a}(x-\alpha)\)

hyperbola

\(4.\) অধিবৃত্তের সমীকরণ \(\frac{(y-\beta)^2}{b^2}-\frac{(x-\alpha)^2}{a^2}=1\)

  • অধিবৃত্তের শীর্ষবিন্দুর স্থানাঙ্ক \((0, \pm b+\beta)\)
  • অধিবৃত্তের কেন্দ্রের স্থানাঙ্ক \(C(\alpha, \beta)\)
  • উৎকেন্দ্রিকতা \(e=\sqrt{1+\frac{a^2}{b^2}}\)
  • আড় অক্ষের দৈর্ঘ্য \(=|2b|\)
  • অনুবন্ধী অক্ষের দৈর্ঘ্য \(=|2a|\)
  • আড় অক্ষের সমীকরণ \(x-\alpha=0\)
  • অনুবন্ধী অক্ষের সমীকরণ \(y-\beta=0\)
  • উপকেন্দ্রের স্থানাঙ্ক \((\alpha, \pm be+\beta)\)
  • নিয়ামকরেখার সমীকরণ \(y-\beta=\pm \frac{b}{e}\)
  • উপকেন্দ্রিক লম্বের দৈর্ঘ্য \(=|\frac{2a^2}{b}|\)
  • উপকেন্দ্রিক লম্বের সমীকরণ \(y-\beta=\pm be\)
  • অসীমতটের সমীকরণ \( y-\beta=\pm \frac{b}{a}(x-\alpha)\)

\(5.\) কোনো সরলরেখা অধিবৃত্তের স্পর্শক হওয়ার শর্ত, স্পর্শকের সমীকরণ এবং স্পর্শবিন্দুর স্থানাঙ্ক।

মনে করি,
সরলরেখা ও অধিবৃত্তটির সমীকরণ যথাক্রমে
\(y=mx+c ………….(1) \)
\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 ……..(2) \)

\((1)\) নং সরলরেখা \((2)\) নং অধিবৃত্তকে স্পর্শ করার শর্তঃ \(c=\pm \sqrt{(a^2m^2-b^2)}\)

স্পর্শকের সমীকরণঃ \(y=mx\pm \sqrt{(a^2m^2-b^2)}\)

স্পর্শবিন্দুর স্থানাঙ্কঃ \(\left(\frac{\pm a^2m}{\sqrt{(a^2m^2-b^2)}}, \frac{\pm b^2}{\sqrt{(a^2m^2-b^2)}}\right)\)

\(5.1\) কোনো সরলরেখা উপবৃত্তের স্পর্শক হওয়ার শর্ত এবং স্পর্শবিন্দুর স্থানাঙ্ক।

মনে করি,
সরলরেখা ও অধিবৃত্তটির সমীকরণ যথাক্রমে
\(x\cos\alpha + y\sin\alpha=p………….(1) \)
\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 ……..(2) \)

\((1)\) নং সরলরেখা \((2)\) নং অধিবৃত্তকে স্পর্শ করার শর্তঃ \(p^2=a^2\cos^2\alpha-b^2\sin^2\alpha\)

স্পর্শকের সমীকরণঃ \(x\cos\alpha + y\sin\alpha \pm \sqrt{(a^2\cos^2\alpha-b^2\sin^2\alpha)}=0\)

স্পর্শবিন্দুর স্থানাঙ্কঃ \(\left(\frac{a^2\cos\alpha}{p}, \frac{b^2\sin\alpha}{p}\right)\)

\(5.2\) কোনো সরলরেখা অধিবৃত্তের স্পর্শক হওয়ার শর্ত এবং স্পর্শবিন্দুর স্থানাঙ্ক।

মনে করি,
সরলরেখা ও অধিবৃত্তটির সমীকরণ যথাক্রমে
\(lx+my+n=0………….(1) \)
\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 ……..(2) \)

\((1)\) নং সরলরেখা \((2)\) নং অধিবৃত্তকে স্পর্শ করার শর্তঃ \(a^2l^2-b^2m^2=n^2\)

স্পর্শকের সমীকরণঃ \(lx+my \pm \sqrt{(a^2l^2-b^2m^2)}=0\)

স্পর্শবিন্দুর স্থানাঙ্কঃ \(\left(\frac{-a^2l}{n}, \frac{b^2m}{n}\right)\)

\(5.3\) অধিবৃত্ত সাপেক্ষে কোনো বিন্দুর আপেক্ষিক অবস্থান।

মনে করি,
একটি নির্দিষ্ট বিন্দু এবং একটি অধিবৃত্ত যথাক্রমে \(P(x_1, y_1)\)
এবং \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 ……..(1) \)

\(P(x_1, y_1)\) বিন্দুটি \((1)\) নং অধিবৃত্তের উপরে অবস্থান করার শর্তঃ \(\frac{x^2_1}{a^2}-\frac{y^2_1}{b^2}=0\)

\(P(x_1, y_1)\) বিন্দুটি \((1)\) নং অধিবৃত্তের ভিতরে অবস্থান করার শর্তঃ \(\frac{y^2_1}{b^2}>\frac{x^2_1}{a^2}\)

\(P(x_1, y_1)\) বিন্দুটি \((1)\) নং উপবৃত্তের বাহিরে অবস্থান করার শর্তঃ \(\frac{x^2_1}{a^2}>\frac{y^2_1}{b^2}\)

\(5.4\) অধিবৃত্তের উপরিস্থিত কোনো নির্দিষ্ট বিন্দুতে স্পর্শকের সমীকরণ।

মনে করি,
একটি নির্দিষ্ট বিন্দু এবং একটি অধিবৃত্ত যথাক্রমে \(P(x_1, y_1)\)
এবং \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 ……..(1) \)

\((1)\) নং উপবৃত্তের উপরিস্থিত \(P(x_1, y_1)\) বিন্দুতে স্পর্শকের সমীকরণ \(\frac{xx_1}{a^2}-\frac{yy_1}{b^2}=1\)

\(6.\) অধিবৃত্তের উপকেন্দ্র ও নিয়ামকরেখা

Focus and directrix of Hyperbola

hyperbola

একটি অধিবৃত্তের দুইটি উপকেন্দ্র ও নিয়ামকরেখা আছে। যেহেতু, অধিবৃত্তটি \(y\) অক্ষ বরাবর প্রতিসম তাই তাকে \(B\acute B\) বরাবর ভাঁজ করা হলে অধিবৃত্তের ডান ও বাম পক্ষ দুইটি পরস্পরের সাথে সমাপতিত হয়। এখন \(x\) অক্ষের উপর \(\acute S\) ও \(\acute Z\) দুইটি বিন্দু এমনভাবে নেওয়া হয়, যেন \(C\acute S=CS=ae \) এবং \(C\acute Z=CZ=\frac{a}{e}\) হয়। \(Z\acute Z\)-এর উপর \(\acute M\acute Z\) লম্ব আঁকি। তাহলে প্রতিসাম্য অনুযায়ী, এটি স্পষ্ট যে, \(\acute S\)-কে উপকেন্দ্র এবং \(\acute M\acute Z\)-কে নিয়ামকরেখা ধরে আমরা একই অধিবৃত্ত পাই। অতএব, অধিবৃত্তের দুইটি উপকেন্দ্র এবং দুইটি নিয়ামকরেখা আছে।

\(7.\) অধিবৃত্তের আড় অক্ষ ও অনুবন্ধী অক্ষের দৈর্ঘ্য

Transverse and Conjugate axis of Hyperbola

hyperbola

অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 ……..(1)\)
\(C(0, 0)\) বিন্দু উপবৃত্তের কেন্দ্র।
\((1)\) নং সমীকরণে \(y=0\) বসিয়ে পাই \(\frac{x^2}{a^2}+\frac{0^2}{b^2}=1\)
\(\Rightarrow \frac{x^2}{a^2}-\frac{0}{b^2}=1\)
\(\Rightarrow \frac{x^2}{a^2}-0=1\)
\(\Rightarrow \frac{x^2}{a^2}=1\)
\(\Rightarrow x^2=a^2\)
\(\therefore x=\pm a\)
সুতরাং অধিবৃত্ত \(X\)-অক্ষকে \(A(a, 0)\) এবং \(\acute A(-a, 0)\) বিন্দুতে ছেদ করে।
\(A\acute A\) আড় অক্ষ এবং এর দৈর্ঘ্য
\(A\acute A=AC+C\acute A=a+a=2a\)
\(\therefore \) আড় অক্ষের দৈর্ঘ্য \(=|2a|\)।
আবার,
\((1)\) নং সমীকরণে \(x=0\) বসিয়ে পাই \(\frac{0^2}{a^2}-\frac{y^2}{b^2}=1\)
\(\Rightarrow \frac{0}{a^2}-\frac{y^2}{b^2}=1\)
\(\Rightarrow 0-\frac{y^2}{b^2}=1\)
\(\Rightarrow -\frac{y^2}{b^2}=1\)
\(\Rightarrow y^2=-b^2\)
\(\Rightarrow y=\sqrt{-b^2}\)
\(\Rightarrow y=b\sqrt{-1}\)
\(\therefore y=\pm ib\) | \(\because i=\sqrt{-1}\)
সুতরাং অধিবৃত্ত \(Y\)-অক্ষকে কাল্পনিকভাবে \(B(0, ib)\) এবং \(\acute B(0, -ib)\) ( কাল্পনিক ) বিন্দুতে ছেদ করে।
\(B\acute B\) অনুবন্ধী অক্ষ এবং এর দৈর্ঘ্য \(B\acute B=BC+C\acute B=b+b=2b\)
\(\therefore \) অনুবন্ধী অক্ষের দৈর্ঘ্য \(=|2b|\)।

\(8.\) অধিবৃত্তের সমীকরণ থেকে উৎকেন্দ্রতা ।

Eccentricity from the equation of Hyperbola

আমরা জানি,
অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)
এবং
\(b^2=a^2(e^2-1)\)
\(\Rightarrow \frac{b^2}{a^2}=e^2-1\)
\(\Rightarrow \frac{b^2}{a^2}+1=e^2\)
\(\Rightarrow e^2=1+\frac{b^2}{a^2}\)
\(\therefore e=\sqrt{1+\frac{b^2}{a^2}}\)
যেহেতু, অধিবৃত্তের \(e\)-এর মান \(e > 1\)
সুতরাং \(e\)-কে ধনাত্মক হিসাবে বিবেচনা করা হয়েছে।
অধিবৃত্তের আড় অক্ষ হতে \(a\)-এর মান এবং অনুবন্ধী অক্ষ হতে \(b\)-এর মান জানা থাকলে উৎকেন্দ্রতা \(e\)-এর মান নির্ণয় করা যায়।

\(9.\) অধিবৃত্তের সমীকরণ থেকে উপকেন্দ্রের স্থানাঙ্ক ও নিয়ামকের সমীকরণ।

The co-ordinates of focus and the equation of directrix from the equation of Hyperbola

hyperbola

মনে করি,
অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)
এবং
\(b^2=a^2(e^2-1)\) | এখানে \(e\) উৎকেন্দ্রিকতা।
আবার,
উপবৃত্তের উপকেন্দ্র \(S\) ও \(\acute S\) এবং নিয়ামক রেখা \(MZ\) ও \(\acute M\acute Z\)।
\(Z\acute Z\) রেখা \(S\) এবং \(\acute S\) বিন্দুগামী। \(Z\acute Z\) রেখা নিয়ামকদ্বয়ের উপর লম্ব।
\(SZ\)-এর উপর \(A\) এমন একটি বিন্দু নেওয়া হল যেন \(SA=eAZ ……..(1)\)
আবার,
\(SZ\)-এর বর্দ্ধিতাংশের উপর \(\acute A\) এমন একটি বিন্দু নেওয়া হল যেন \(S\acute A=e\acute AZ\)
ধরি,
\(A\acute A=2a\) এবং \(C\) হল \(A\acute A\)-এর মধ্যবিন্দু। \(C\)-কে কেন্দ্র বিন্দু বলা হয় যার স্থানাঙ্ক \(C(0, 0)\)।
\((1)\) ও \((2)\) যোগ করে পাই
\(SA+S\acute A=eAZ+e\acute AZ\)
\(\Rightarrow A\acute A=e(AZ+\acute AZ)\)
\(\Rightarrow 2a=e(AZ+A\acute A+AZ)\) | \(\because \acute AZ=A\acute A+AZ\)
\(\Rightarrow 2a=e(A\acute A+2AZ)\)
\(\Rightarrow 2a=e(2a+2AZ)\)
\(\Rightarrow 2a=2e(a+AZ)\)
\(\Rightarrow a=e(a+AZ)\)
\(\Rightarrow a=eCZ\) | \(\because CZ=CA+AZ=a+AZ\)
\(\Rightarrow eCZ=a\)
\(\therefore CZ=\frac{a}{e} ……(3)\)
আবার,
\(CS=CA-AS\)
\(\Rightarrow CS=CA-eAZ\) | \(\because AS=eAZ\)
\(\Rightarrow CS=CA-e(CZ-CA)\)
\(\Rightarrow CS=a-e\left(\frac{a}{e}-a\right)\)
\(\Rightarrow CS=a-a+ae\)
\(\therefore CS=ae ………(4)\)
\(C\) বিন্দুকে মূলবিন্দু ধরে \(CX\)-কে \(x\) অক্ষ এবং \(CY\)-কে \(y\) অক্ষ বিবেচনা করি। যেহেতু \(S\) বিন্দু \(x\) অক্ষের উপর অবস্থিত ।
অতএব, \(S\)-এর স্থানাঙ্ক \((ae, 0)\) এখানে \(S\)-কে উপকেন্দ্র বলে। যেহেতু উপকেন্দ্র \(S\) ও \(\acute S\) সুতরাং এদের স্থানাঙ্ক লেখা হয় \((\pm ae, 0)\)।
এবং নিয়ামক রেখা \(\acute M\acute Z\)-এর সমীকরণ \(x=CZ=\frac{a}{e}\)
\(\therefore x=\frac{a}{e}\)
অনুরূপভাবে, নিয়ামক রেখা \(MZ\)-এর সমীকরণ \(x=-\frac{a}{e}\)
সুতরাং উপবৃত্তের নিয়ামক রেখার সমীকরণ \(x=\pm \frac{a}{e}\)

\(10.\) উপকেন্দ্র ও নিয়ামকের সমীকরণ থেকে অধিবৃত্তের সমীকরণ নির্ণয়।

Determination of the equation of Hyperbola from focus and equation of directrix.

hyperbola

ধরি,
অধিবৃত্তের উপকেন্দ্র \(S(\alpha, \beta)\), নিয়ামকরেখার সমীকরণ, \(ax+by+c=0\) এবং উৎকেন্দ্রিকতা \(e; (e>1)\)।
অধিবৃত্তের উপর যে কোনো বিন্দু \(P(x, y)\) । \(P\) বিন্দু থেকে নিয়ামকরেখার উপর \(PM\) লম্ব আঁকি এবং \(S, p\) যোগ করি।
এখন,
\(P(x, y)\) ও \(S(\alpha, \beta)\) বিন্দুদ্বয়ের দূরত্ব \(PS=\sqrt{(x-\alpha)^2+(y-\beta)^2}\)
এবং \(P(x, y)\) হতে নিয়ামকরেখার লম্ব দূরত্ব \(PM=\frac{ax+by+c}{\sqrt{a^2+b^2}}\)
অধিবৃত্তের সংজ্ঞানুসারে, \(PS=e.PM\)
\(\Rightarrow \sqrt{(x-\alpha)^2+(y-\beta)^2}=e.\frac{ax+by+c}{\sqrt{a^2+b^2}}\)
\(\Rightarrow (x-\alpha)^2+(y-\beta)^2=e^2.\frac{(ax+by+c)^2}{a^2+b^2}\) | উভয় পার্শে বর্গ করে।
\(\therefore (a^2+b^2)\{(x-\alpha)^2+(y-\beta)^2\}=e^2(ax+by+c)^2\)
ইহাই নির্ণেয় অধিবৃত্তের সমীকরণ।

\(11.\) অধিবৃত্তের সমীকরণ থেকে উপকেন্দ্রিক লম্ব ও এর দৈর্ঘ্য।

Latus rectum and it’s length.

hyperbola

অধিবৃত্তের যে কোনো উপকেন্দ্রের মধ্য দিয়ে অঙ্কিত আড় অক্ষের উপর লম্ব রেখার অধিবৃত্তের অন্তর্গত অংশই উপকেন্দ্রিক লম্ব। যদি \(L\acute L\) উপকেন্দ্রিক লম্ব হয়, তবে \(SL=S\acute L\) এবং \(\acute L\)-এর স্থানাঙ্ক \((-ae, SL)\) ।
\(\acute L(-ae, SL)\) বিন্দুটি উপবৃত্তের আদর্শ সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)-এর উপর অবস্থিত।
\(\Rightarrow \frac{(-ae)^2}{a^2}-\frac{SL^2}{b^2}=1 \)
\(\Rightarrow \frac{a^2e^2}{a^2}-\frac{SL^2}{b^2}=1 \)
\(\Rightarrow e^2-\frac{SL^2}{b^2}=1 \)
\(\Rightarrow e^2-1=\frac{SL^2}{b^2} \)
\(\Rightarrow \frac{SL^2}{b^2}=e^2-1 \)
\(\Rightarrow SL^2=b^2(e^2-1) \)
\(\Rightarrow SL^2=b^2\times \frac{b^2}{a^2} \) | \(\because e^2-1=\frac{b^2}{a^2}\)
\(\Rightarrow SL^2=\frac{b^4}{a^2} \)
\(\therefore SL=\frac{b^2}{a} \)
\(\therefore L\acute L=2SL=\frac{2b^2}{a} \)

\(12.\) কোনো নির্দিষ্ট বিন্দুতে অধিবৃত্তের পরামিতিক স্থানাঙ্ক।

Parametric coordinates of Hyperbola at fixed point.

hyperbola

ধরি,
অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1……..(1)\)
এবং অধিবৃত্তের উপরিস্থিত একটি বিন্দু \(P(x, y)\)
অধিবৃত্তের আড় অক্ষকে ব্যাস ধরে সহায়ক বৃত্ত অঙ্কন করি, যার সমীকরণ \(x^2+y^2=a^2 …….(2)\)
\(P(x, y)\) বিন্দু থেকে আড় অক্ষের উপর \(PN\) লম্ব অঙ্কন করি। \(N\) থেকে সহায়ক বৃত্তে \(NQ\) স্পর্শক আঁকি এবং \(C\) ও \(Q\) যোগ করি।
মনে করি,
\(\angle QCN=\theta\), এখানে \(\theta\)-কে উপকেন্দ্র কোণ বলা হয়। \(C(0, 0)\) অধিবৃত্তের কেন্দ্র।
\(\therefore \angle QCN=90^{o}\)
\(P\) বিন্দুর স্থানাঙ্ক \((x, y)\) হওয়ায়, \(CN=x\) এবং \(PN=y\)
এখন, \(CQN\) সমকোণী ত্রিভুজ থেকে পাই,
\(\cos \theta=\frac{CQ}{CN}\)
\(\Rightarrow \frac{1}{\cos \theta}=\frac{CN}{CQ}\)
\(\Rightarrow \sec \theta=\frac{CN}{CQ}\)
\(\Rightarrow CN=CQ\sec \theta\)
\(\therefore x=a\sec\theta ……..(3)\) | \(\because CQ=a=\)বৃত্তের ব্যাসার্ধ।
\(x=a\sec\theta\)-এর এই মান \((1)\)-এ বসিয়ে,
\(\frac{(a\sec\theta)^2}{a^2}-\frac{y^2}{b^2}=1\)
\(\Rightarrow \frac{a^2\sec^2\theta}{a^2}-\frac{y^2}{b^2}=1\)
\(\Rightarrow \sec^2\theta-\frac{y^2}{b^2}=1\)
\(\Rightarrow \sec^2\theta-1=\frac{y^2}{b^2}\)
\(\Rightarrow \frac{y^2}{b^2}=1+\sec^2\theta\)
\(\Rightarrow \frac{y^2}{b^2}=\tan^2\theta\)
\(\Rightarrow y^2=b^2\tan^2\theta\)
\(\therefore y=b\tan\theta ……(4)\)
সুতরাং, \(P(a\sec\theta, b\tan\theta)\)
\(\theta\)-এর যে কোনো মানের জন্য \(P(a\sec\theta, b\tan\theta)\) বিন্দুটি অধিবৃত্তের উপর অবস্থিত, যাকে অধিবৃত্তের পরামিতিক স্থানাঙ্ক বলা হয় এবং \(\theta\)-কে পরামিতি (parameter) বলা হয়।
আবার,
\((4)\) হতে যথাক্রমে,
\(b\tan\theta=y\)
\(\Rightarrow \tan\theta=\frac{y}{b}\)
\(\Rightarrow \theta=\tan^{-1}\left(\frac{y}{b}\right)\)
\(\therefore \theta=\tan^{-1}\left(\frac{y}{b}\right)\)
\(\theta \)-এর এই মাণ নির্ণয়ের সময় বিন্দুটি কোন চতুর্ভাগে অবস্থিত তা লক্ষনীয়।
\(x=a\sec\theta\) এবং \(y=b\tan\theta\)-কে একত্রে \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) অধিবৃত্তের পরামিতিক সমীকরণ বলে।
\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \) অধিবৃত্তের উপর \(P(x, y)\) বিন্দুর পরামিতিক স্থানাংক \(P(a\sec\theta, b\tan\theta)\), যেখানে \(\theta=\tan^{-1}\left(\frac{y}{b}\right)\)।
\(\frac{y^2}{b^2}-\frac{x^2}{a^2}=1 \) অধিবৃত্তের উপর \(P(x, y)\) বিন্দুর পরামিতিক স্থানাংক \(P(a\tan\theta, b\sec\theta)\), যেখানে \(\theta=\tan^{-1}\left(\frac{x}{a}\right)\)।

\(13.\) অধিবৃত্তের অসীমতটের অবস্থান নির্ণয়।

Determination of the position of asymptotes of Hyperbola.

hyperbola

অসীমতটঃ একটি সরলরেখা কোনো বক্ররেখার সহিত অসীম দূরে অবস্থিত দুইটি সমাপতিত বিন্দুতে ছেদ করলে, ঐ সরলরেখা নিজে সম্পুর্ণ অসীমে অবস্থিত নয়, তবে ঐ সরলরেখাকে বক্ররেখাটির অসীমতট বলে।

অধিবৃত্তের অসীমতটঃ কোনো রেখাকে বর্ধিত করলে যদি অধিবৃত্তকে অসীমে ছেদ করে কিন্তু রেখা নিজে অসীমে অবস্থিত নয় তবে ঐ রেখাকে অধিবৃত্তের অসীমতট বলা হয়। অধিবৃত্তের সমীকরণের ডান পক্ষে \(1\)-এর পরিবর্তে \(0\) প্রতিস্থাপন করলে এর দইটি অসীমতট পাওয়া যায়।
ধরি,
অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1……..(1)\)
এবং সরলরেখার সমীকরণ, \(y=mx+c ….(2)\)
\((2)\) হতে \(y\)-এর মাণ \((1)\)-এ বসিয়ে,
\(\frac{x^2}{a^2}-\frac{(mx+c)^2}{b^2}=1\)
\(\Rightarrow \frac{b^2x^2-a^2(mx+c)^2}{a^2b^2}=1\)
\(\Rightarrow b^2x^2-a^2(mx+c)^2=a^2b^2\)
\(\Rightarrow b^2x^2-a^2(m^2x^2+2mcx+c^2)=a^2b^2\)
\(\Rightarrow b^2x^2-a^2m^2x^2-2a^2mcx-a^2c^2=a^2b^2\)
\(\Rightarrow x^2(b^2-a^2m^2)-2a^2mcx-a^2c^2-a^2b^2=0\)
\(\therefore x^2(b^2-a^2m^2)-2a^2mcx-a^2(c^2+b^2)=0 ….(3)\)
\((1)\) নং অধিবৃত্তকে \((2)\) নং সরলরেখা অসীমে ছেদ করলে সেক্ষেত্রে \((3)\) নং দ্বিঘাত সমীকরনের \(x^2\) ও \(x\)-এর সহগ শুন্য হবে। অর্থাৎ \((3)\) নং দ্বিঘাত সমীকরনের উভয় মূলই অসীম হবে।
\(\therefore b^2-a^2m^2=0; -2a^2mc=0\)
\(\Rightarrow -a^2m^2=-b^2; c=0; -2a^2m\ne 0\)
\(\Rightarrow m^2=\frac{b^2}{a^2}; c=0\)
\(\therefore m=\pm \frac{b}{a}; c=0\)
\(m\) ও \(c\)-এর মাণ \((2)\) -এ বসিয়ে,
\(y=\pm \frac{b}{a}x+0 \)
\(\therefore y=\pm \frac{b}{a}x \)
ইহাই নির্ণেয় অসীমতটের সমীকরণ।

\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) অধিবৃত্তের অসীমতট রেখার সমীকরণ \( y=\pm \frac{b}{a}x\)
\(\frac{y^2}{b^2}-\frac{x^2}{a^2}=1\) অধিবৃত্তের অসীমতট রেখার সমীকরণ \( y=\pm \frac{b}{a}x\)
\(\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1\) অধিবৃত্তের অসীমতট রেখার সমীকরণ \( y-k=\pm \frac{b}{a}(x-h)\)
\(\frac{(y-k)^2}{b^2}-\frac{(x-h)^2}{a^2}=1\) অধিবৃত্তের অসীমতট রেখার সমীকরণ \( y-k=\pm \frac{b}{a}(x-h)\)

\(14.\) অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)-এর লেখচিত্র ।

hyperbola

অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) থেকে দেখা যাচ্ছে যে, যখন \(y=0; x=\pm a\) অতএব অধিবৃত্ত \(X\) অক্ষকে \(A(a, 0)\) এবং \(\acute{A}(-a, 0)\) বিন্দু দইটিতে ছেদ করে। \(A\) ও \(\acute{A}\) বিন্দু দুইটি অধিবৃত্তের শীর্ষবিন্দু এবং \(A\acute{A}\) অধিবৃত্তের আড় অক্ষ।
অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)-এ যখন \(x=0; y^2=-b^2\) এ ক্ষেত্রে \(y\)-এর কোনো বাস্তব মাণ পাওয়া যায় না। \(Y\) অক্ষের উপর \(B(0, b)\) এবং \(\acute{B}(0, -b)\) বিন্দু দুইটি নেই। উল্লেখ্য যে, \(B\acute{B}\) অধিবৃত্তের অনুবন্ধী অক্ষ।
অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)থেকে পাই, \(\frac{x^2}{a^2}=1+\frac{y^2}{b^2}\geq 1\)
অতএব, \(|x|\leq a\) অর্থাৎ \(x\leq +a\) এবং \(x\geq -a\) সুতরাং \(x=a\) এবং \(x=-a\) রেখা দুইটির মধ্যে লেখের কোনো বিন্দু নেই। প্রত্যেক অধিবৃত্তের তাই দুইটি শাখা রয়েছে। যদি \((x, y)\) লেখের উপর কোনো বিন্দু হয় তবে \((-x, y)\) বিন্দুটিও লেখের উপর অবস্থিত। অর্থাৎ, লেখটি \(Y\) অক্ষের সাপেক্ষে প্রতিসম। অনুরূপভাবে এটি দেখানো যায় যে, লেখটি \(X\) অক্ষের সাপেক্ষেও প্রতিসম। \(x\)-এর মাণ বৃদ্ধির সাথে সাথে \(y\)-এর মাণ অসীম পর্যন্ত বৃদ্ধি পায়। অতএব, অধিবৃত্ত দুইদিকে অসীমে বিস্তৃত হয়।

hyperbola

অধিবৃত্তের সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \) নির্ণয়।

আমরা জানি,
অধিবৃত্তের উপকেন্দ্র \(S(ae, 0)\)
অধিবৃত্তের দিকাক্ষের সমীকরণ \(x-\frac{a}{e}=0\)
অধিবৃত্তের উপরিস্থিত যে কোনো বিন্দু \(P(x, y)\)
উৎকেন্দ্রিকতা \(e=\sqrt{1+\frac{b^2}{a^2}}\)
\(\Rightarrow e^2=1+\frac{b^2}{a^2}\) | উভয় পার্শে বর্গ করে।
\(\Rightarrow e^2-1=\frac{b^2}{a^2}\)
\(\Rightarrow \frac{b^2}{a^2}=e^2-1\)
\(\therefore b^2=a^2(e^2-1) ……..(1)\)
সংজ্ঞানুসারে,
\(PS=e.PM\)
\(\Rightarrow PS^2=e^2.PM^2\) | উভয় পার্শে বর্গ করে।
\(\Rightarrow (x-ae)^2+(y-0)^2=e^2.\left(\frac{|x-\frac{a}{e}|}{\sqrt{1^2+0^2}}\right)^2\)
\(\Rightarrow x^2-2aex+a^2e^2+y^2=e^2.\left(\frac{|x-\frac{a}{e}|}{\sqrt{1+0}}\right)^2\)
\(\Rightarrow x^2-2aex+a^2e^2+y^2=e^2.\left(\frac{|x-\frac{a}{e}|}{\sqrt{1}}\right)^2\)
\(\Rightarrow x^2-2aex+a^2e^2+y^2=e^2.\left(|x-\frac{a}{e}|\right)^2\)
\(\Rightarrow x^2-2aex+a^2e^2+y^2=e^2.\left(x-\frac{a}{e}\right)^2\)
\(\Rightarrow x^2-2aex+a^2e^2+y^2=e^2.\left(\frac{ex-a}{e}\right)^2\)
\(\Rightarrow x^2-2aex+a^2e^2+y^2=e^2.\frac{(ex-a)^2}{e^2}\)
\(\Rightarrow x^2-2aex+a^2e^2+y^2=(ex-a)^2\)
\(\Rightarrow x^2-2aex+a^2e^2+y^2=e^2x^2-2aex+a^2\)
\(\Rightarrow x^2-e^2x^2+y^2=2aex-a^2e^2-2aex+a^2\)
\(\Rightarrow -x^2(e^2-1)+y^2=a^2-a^2e^2\)
\(\Rightarrow -x^2(e^2-1)+y^2=-a^2(e^2-1)\)
\(\Rightarrow x^2(e^2-1)-y^2=a^2(e^2-1)\)
\(\Rightarrow \frac{x^2}{a^2}.a^2(e^2-1)-y^2=a^2(e^2-1)\)
\(\Rightarrow \frac{x^2}{a^2}.b^2-y^2=b^2\) | \((1)\)-এর সাহায্যে \(\because b^2=a^2(1-e^2) \)
\(\Rightarrow \frac{x^2}{a^2}.\frac{b^2}{b^2}-\frac{y^2}{b^2}=\frac{b^2}{b^2}\) | উভয় পার্শে \(b^2\) ভাগ করে।
\(\therefore \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)
ইহাই নির্ণেয় অধিবৃত্তের সমীকরণ।

hyperbola

অধিবৃত্তের সমীকরণ \(\frac{y^2}{b^2}-\frac{x^2}{a^2}=1 \) নির্ণয়।

আমরা জানি,
অধিবৃত্তের উপকেন্দ্র \(S(0, be)\)
অধিবৃত্তের দিকাক্ষের সমীকরণ \(y-\frac{b}{e}=0\)
অধিবৃত্তের উপরিস্থিত যে কোনো বিন্দু \(P(x, y)\)
উৎকেন্দ্রিকতা \(e=\sqrt{1+\frac{a^2}{b^2}}\)
\(\Rightarrow e^2=1+\frac{a^2}{b^2}\) | উভয় পার্শে বর্গ করে।
\(\Rightarrow e^2-1=\frac{a^2}{b^2}\)
\(\Rightarrow \frac{a^2}{b^2}=e^2-1\)
\(\therefore a^2=b^2(e^2-1) ……..(1)\)
সংজ্ঞানুসারে,
\(PS=e.PM\)
\(\Rightarrow PS^2=e^2.PM^2\) | উভয় পার্শে বর্গ করে।
\(\Rightarrow (x-0)^2+(y-be)^2=e^2.\left(\frac{|y-\frac{b}{e}|}{\sqrt{0^2+1^2}}\right)^2\)
\(\Rightarrow x^2+y^2-2bey+b^2e^2=e^2.\left(\frac{|y-\frac{b}{e}|}{\sqrt{0+1}}\right)^2\)
\(\Rightarrow x^2+y^2-2bey+b^2e^2=e^2.\left(\frac{|y-\frac{b}{e}|}{\sqrt{1}}\right)^2\)
\(\Rightarrow x^2+y^2-2bey+b^2e^2=e^2.\left(|y-\frac{b}{e}|\right)^2\)
\(\Rightarrow x^2+y^2-2bey+b^2e^2=e^2.\left(y-\frac{b}{e}\right)^2\)
\(\Rightarrow x^2+y^2-2bey+b^2e^2=e^2.\left(\frac{ey-b}{e}\right)^2\)
\(\Rightarrow x^2+y^2-2bey+b^2e^2=e^2.\frac{(ey-b)^2}{e^2}\)
\(\Rightarrow x^2+y^2-2bey+b^2e^2=(ey-b)^2\)
\(\Rightarrow x^2+y^2-2bey+b^2e^2=e^2y^2-2bey+b^2\)
\(\Rightarrow x^2+y^2-e^2y^2=2bey-b^2e^2-2bey+b^2\)
\(\Rightarrow x^2-y^2(e^2-1)=b^2-b^2e^2\)
\(\Rightarrow x^2-\frac{y^2}{b^2}.b^2(e^2-1)=-b^2(e^2-1)\)
\(\Rightarrow x^2-\frac{y^2}{b^2}.a^2=-a^2\) | \((1)\)-এর সাহায্যে \(\because a^2=b^2(e^2-1) \)
\(\Rightarrow \frac{x^2}{-a^2}-\frac{y^2}{b^2}.\frac{a^2}{-a^2}=\frac{-a^2}{-a^2}\) | উভয় পার্শে \(-a^2\) ভাগ করে।
\(\Rightarrow -\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
\(\Rightarrow \frac{y^2}{b^2}-\frac{x^2}{a^2}=1\)
ইহাই নির্ণেয় অধিবৃত্তের সমীকরণ।

hyperbola

অধিবৃত্তের সমীকরণ \(\frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1\) নির্ণয়।

ধরি,
উপবৃত্তের কেন্দ্র \(C(\alpha, \beta)\)
আড় অক্ষ \(A\acute A\), যা \(X\) অক্ষের সমান্তরাল এবং \(A\acute A=2a\)।
কনুবন্ধী অক্ষ \(B\acute B\), যা \(Y\) অক্ষের সমান্তরাল এবং \(B\acute B=2b\)।
অধিবৃত্তের উপর যে কোনো বিন্দু \(P(x, y)\) । \(X\)-অক্ষের উপর \(PM\) লম্ব অঙ্কন করি যা বৃহদাক্ষকে \(Q\) বিন্দুতে ছেদ করে। \(C\)-কে মূলবিন্দু ধরে \(C\)-এর প্রেক্ষিতে \(P\) বিন্দুর স্থানাঙ্ক \((X, Y)\)
যখন, \(X=CQ=EM=OM-OE=x-\alpha\)
এবং \(Y=PQ=PM-QM=PM-CE=y-\beta\)
\(P(X, Y)\) বিন্দুটি অধিবৃত্তের আদর্শ সমীকরণ \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)-এর উপর অবস্থিত,
সুতরাং \(\frac{X^2}{a^2}-\frac{Y^2}{b^2}=1 …..(1)\)
\((1)\) নং সমীকরণে \(X\) ও \(Y\)-এর মান বসিয়ে,
\(\frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1\)
ইহাই নির্ণেয় অধিবৃত্তের সমীকরণ।

hyperbola

অধিবৃত্তের সমীকরণ \(\frac{(y-\beta)^2}{b^2}-\frac{(x-\alpha)^2}{a^2}=1\) নির্ণয়।

ধরি,
অধিবৃত্তের কেন্দ্র \(C(\alpha, \beta)\)
আড় অক্ষ \(B\acute B\), যা \(Y\) অক্ষের সমান্তরাল এবং \(B\acute B=2b\)।
কনুবন্ধী অক্ষ \(A\acute A\), যা \(X\) অক্ষের সমান্তরাল এবং \(A\acute A=2a\)।
অধিবৃত্তের উপর যে কোনো বিন্দু \(P(x, y)\) । \(Y\)-অক্ষের উপর \(PM\) লম্ব অঙ্কন করি যা বৃহদাক্ষকে \(Q\) বিন্দুতে ছেদ করে। \(C\)-কে মূলবিন্দু ধরে \(C\)-এর প্রেক্ষিতে \(P\) বিন্দুর স্থানাঙ্ক \((X, Y)\)
যখন, \(Y=CQ=EM=OM-OE=y-\beta\)
এবং \(X=PQ=PM-QM=PM-CE=x-\alpha\)
\(P(X, Y)\) বিন্দুটি অধিবৃত্তের আদর্শ সমীকরণ \(\frac{y^2}{b^2}-\frac{x^2}{a^2}=1\)-এর উপর অবস্থিত,
সুতরাং \(\frac{Y^2}{b^2}-\frac{X^2}{a^2}=1 …..(1)\)
\((1)\) নং সমীকরণে \(X\) ও \(Y\)-এর মান বসিয়ে,
\(\frac{(y-\beta)^2}{b^2}-\frac{(x-\alpha)^2}{a^2}=1\)
ইহাই নির্ণেয় অধিবৃত্তের সমীকরণ।

hyperbola

কোনো সরলরেখা অধিবৃত্তের স্পর্শক হওয়ার শর্ত, স্পর্শকের সমীকরণ এবং স্পর্শবিন্দুর স্থানাঙ্ক নির্ণয়।

মনে করি,
সরলরেখা ও অধিবৃত্তটির সমীকরণ যথাক্রমে
\(y=mx+c ………(1) \)
\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 …..(2) \)
\((1) \) ও \((2) \) নং হতে,
\(\frac{x^2}{a^2}-\frac{(mx+c)^2}{b^2}=1\)
\(\Rightarrow \frac{x^2}{a^2}-\frac{m^2x^2+2mcx+c^2}{b^2}=1\)
\(\Rightarrow b^2x^2-a^2(m^2x^2+2mcx+c^2)=a^2b^2\) | উভয় পার্শে \(a^2b^2\) গুণ করে।
\(\Rightarrow b^2x^2-a^2m^2x^2-2a^2mcx-a^2c^2-a^2b^2=0\)
\(\Rightarrow (b^2-a^2m^2)x^2-2a^2mcx-a^2(b^2+c^2)=0 …(3)\)
\((3)\) নং \(x\)-এর একটি দ্বিঘাত সমীকরণ। সুতরাং এর মূল দুইটি বাস্তব ও অসমান, বাস্তব ও সমান, অথবা কাল্পনিক হতে পারে। মূলদ্বয় \(x_1\) ও \(x_2\) হলে, \((1)\) নং সমীকরণ হতে \(y_1\) ও \(y_2\) পাওয়া যাবে। \(x_1\) ও \(x_2\)-এর মানের উপর ভিত্তি করে তিনটি ঘটনা ঘটতে পারে, যেমনঃ
\((i)\) \(x_1\) ও \(x_2\) বাস্তব ও অসমান হলে, \((1)\) নং রেখা উপবৃত্তটিকে দুইটি ভিন্ন বিন্দুতে ছেদ করবে।
\((ii)\) \(x_1\) ও \(x_2\) বাস্তব ও সমান হলে, \((1)\) নং রেখা উপবৃত্তটিকে স্পর্শ করবে।
\((iii)\) \(x_1\) ও \(x_2\) কাল্পনিক হলে, \((1)\) নং রেখা উপবৃত্তটিকে আদৌ স্পর্শ করবে না।
এখন,
\((ii)\) ঘটনা সত্য হলে, \((3)\) নং হতে \((-2a^2mc)^2=4.(b^2-a^2m^2)\times -a^2(b^2+c^2)\) | \(ax^2+bx+c=0\) সমীকরণের মূলদ্বয় সমাণ হওয়ার শর্ত, \(b^2=4ac\)
\(\Rightarrow 4a^4m^2c^2=4(b^2-a^2m^2)\times -a^2(b^2+c^2)\)
\(\Rightarrow a^4m^2c^2=(b^2-a^2m^2)(-a^2b^2-a^2c^2)\)
\(\Rightarrow a^4m^2c^2=(-a^2b^2-a^2c^2)(b^2-a^2m^2)\)
\(\Rightarrow a^4m^2c^2=-a^2b^2(b^2-a^2m^2)-a^2c^2(b^2-a^2m^2)\)
\(\Rightarrow a^4m^2c^2=-a^2b^2(b^2-a^2m^2)-a^2c^2b^2+a^4c^2m^2\)
\(\Rightarrow a^4m^2c^2+a^2c^2b^2-a^4c^2m^2=-a^2b^2(b^2-a^2m^2)\)
\(\Rightarrow a^2c^2b^2=-a^2b^2(b^2-a^2m^2)\)
\(\Rightarrow c^2=-(b^2-a^2m^2)\) | উভয় পার্শে \(a^2b^2\) ভাগ করে।
\(\Rightarrow c^2=a^2m^2-b^2\)
\(\therefore c=\pm \sqrt{(a^2m^2-b^2)}\) ইহাই নির্ণেয় শর্ত।
আবার,
\(c=\pm \sqrt{(a^2m^2-b^2)}\), \((1)\) নং সমীকরণে বসিয়ে
\(y=mx \pm \sqrt{(a^2m^2-b^2)}\) ইহাই নির্ণেয় স্পর্শকের সমীকরণ।
আবার,
\((3)\) নং সমীকরণ হতে সমান মূলদ্বয়ের মান \(x=\frac{2a^2mc}{2(a^2m^2-b^2)}\) | \(ax^2+bx+c=0\) সমীকরণের সমাণ মূলদ্বয়ের মাণ \(\frac{-b}{2a}\)
\(\Rightarrow x=\frac{a^2mc}{a^2m^2-b^2}\)
\(\Rightarrow x=\frac{a^2m\times \pm \sqrt{(a^2m^2-b^2)}}{a^2m^2-b^2}\) | \(\because c=\pm \sqrt{(a^2m^2-b^2)}\)
\(\Rightarrow x=\frac{\pm a^2m\sqrt{(a^2m^2-b^2)}}{\sqrt{(a^2m^2-b^2)}\times \sqrt{(a^2m^2-b^2)}}\)
\(\therefore x=\frac{\pm a^2m}{\sqrt{(a^2m^2-b^2)}}\)
আবার,
\(x=\frac{a^2m}{\sqrt{(a^2m^2-b^2)}}\) এবং \(c=-\sqrt{(a^2m^2-b^2)}\), \((1)\) নং সমীকরণে বসিয়ে
\(y=m\frac{a^2m}{\sqrt{(a^2m^2-b^2)}}-\sqrt{(a^2m^2-b^2)}\)
\(\Rightarrow y=\frac{a^2m^2}{\sqrt{(a^2m^2-b^2)}}-\sqrt{(a^2m^2-b^2)}\)
\(\Rightarrow y=\frac{a^2m^2-a^2m^2+b^2}{\sqrt{(a^2m^2-b^2)}}\)
\(\therefore y=\frac{b^2}{\sqrt{(a^2m^2-b^2)}}\)
আবার,
\(x=\frac{-a^2m}{\sqrt{(a^2m^2-b^2)}}\) এবং \(c=\sqrt{(a^2m^2-b^2)}\), \((1)\) নং সমীকরণে বসিয়ে
\(y=m\frac{-a^2m}{\sqrt{(a^2m^2-b^2)}}+\sqrt{(a^2m^2-b^2)}\)
\(\Rightarrow y=\frac{-a^2m^2}{\sqrt{(a^2m^2-b^2)}}+\sqrt{(a^2m^2-b^2)}\)
\(\Rightarrow y=\frac{-a^2m^2+a^2m^2-b^2}{\sqrt{(a^2m^2-b^2)}}\)
\(\therefore y=\frac{-b^2}{\sqrt{(a^2m^2-b^2)}}\)
\(\therefore y\)-এর এই দুই মাণ সমন্বয় করে পাই,
\(y=\frac{\pm b^2}{\sqrt{(a^2m^2-b^2)}}\)
অতএব, স্পর্শবিন্দুর স্থানাঙ্ক \(\left(\frac{\pm a^2m}{\sqrt{(a^2m^2-b^2)}}, \frac{\pm b^2}{\sqrt{(a^2m^2-b^2)}}\right)\)

1 2 3 4 5