পরাবৃত্ত (Parabola)

( ENGLISH VERSION )

এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।

  • কনিকের উৎস।
  • কনিক কি এবং এর ব্যাখ্যা।
  • অক্ষ, উপকেন্দ্র(ফোকাস), উৎকেন্দ্রিকতা ও নিয়ামকরেখা এর ধারণা।
  • বৃত্ত, পরাবৃত্ত, উপবৃত্ত এবং অধিবৃত্ত চিহ্নিত করণের উপায়।
  • চিত্রের সাহায্যে কনিক উপস্থাপন।
  • কোনকের ও তলের ছেদ হিসাবে কনিকের ব্যাখ্যা।
  • মূলবিন্দুগামী পরাবৃত্তের সনাক্তকরণ।
  • পরাবৃত্তের লেখচিত্র অঙ্কন এবং শীর্ষবিন্দু, উপকেন্দ্র ও নিয়ামকরেখা চিহ্নিতকরণ।
  • পরাবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য এবং উপকেন্দ্রের স্থানাঙ্ক নির্ণয়।
  • পরাবৃত্তের শীর্ষবিন্দু, উপকেন্দ্র ও নিয়ামকরেখার সমীকরণ নির্ণয়।
  • বিভিন্ন শর্তসাপেক্ষে পরাবৃত্তের সমীকরণ নির্ণয়।
  • পরাবৃত্ত বিষয়ক সমস্যা ও তার সমাধান।
  • সৃজনশীল প্রশ্ন এবং সমাধান

কনিক

Conics

straight3

Manaechmus
[380-320BC]

কোণক দ্বারা সমতলে বক্ররেখার ছেদাংশের বিভিন্ন অংশকে পরাবৃত্ত, উপবৃত্ত ও অধিবৃত্ত নামকরণ করেন।

একটি স্থির বিন্দু ও একটি সরলরেখা হতে যে সব বিন্দুর দূরত্বের অনুপাত একটি স্থির রাশি, তাদের সেটকে কনিক বলা হয়। স্থির বিন্দুটিকে উপকেন্দ্র বা ফোকাস, নির্দিষ্ট সরলরেখাকে নিয়ামক বা দিকাক্ষ এবং স্থির রাশিকে উৎকেন্দ্রিকতা (Eccentricity) বলা হয়। স্থির রাশিটিকে \(e\) দ্বারা সূচিত করা হয়। এই স্থির রাশির মানের উপর কনিকের আকৃতি নির্ভশীল।
কনিক পরস্পরছেদী এমন একটি বক্রতা, যা একটি সমতলের কৌণিকতা সৃষ্টি করে এবং যার আকৃতি মোচাকৃতি। সৃষ্টি জগতের অতি কৌতূহলী, আকর্ষণীয় ও দুর্বোধ্য ক্ষেত্র থেকেই মানুষ কনিকের ধারণা লাভ করে আসছে। বাস্তব ও জটিল সংখ্যার স্থানাঙ্ক এবং ম্যাট্রিক্স নির্ণয়ে কনিক ব্যবহৃত হয়। প্রাচীন জ্যামিতিক পদ্ধতিতে এর তিনটি গঠন প্রয়োগ করা হত। যেমনঃ পরাবৃত্ত, উপবৃত্ত এবং অধিবৃত্ত ।
প্রাচীন গণিতবিদ ম্যানাকমাস ও এক্সোডাস (Manaechmus & Exodus) \(4^{th}\) century-তে প্লেটোর স্কুলে কনিকের এ ত্রিগঠন সংযোজন করেন। Elements গ্রন্থে ইউক্লিড (300-250 BC) কনিক সম্পর্কে বিস্তারিত আলোচনা করেন।এবং পরবর্তীতে “Quadrature of Parabola” গ্রন্থে আর্কিমিডিস (287-212 BC) এবং অ্যাপোলোনিয়াস কনিকের প্রথম সিরিজ আকারে আটটি গ্রন্থে কনিক সম্পর্কে মৌলিক ও মূল্যবান তত্ত্ব ও তথ্যাবলির উপস্থাপন করেন। গ্রিক বিজ্ঞানীদের উদ্ভাবিত এসব তথ্য ও উপাত্তকে সপ্তদশ শতাব্দীতে জোহান ক্যাপলার (Johann Kepler) এবং রেনে দেকার্ত (Rene Descartes) বৈজ্ঞানিকরূপে প্রতিষ্ঠিত করেন। আধুনিক বিজ্ঞানে কনিকের বিস্তার ও প্রয়োগ ব্যপকভাবে বৃদ্ধি পায়। গ্রহ, উপগ্রহ, ধূমকেতু, নৌকা চালনায়, শিল্পকারখানায় যন্ত্রপাতি ( গিয়ার), অ্যান্টেনা, আলোকবিজ্ঞান, দূরবিক্ষণ যন্ত্র ইত্যাদিতে কনিকের ব্যবহার পরিলক্ষিত হয়।

Continue Reading →