সরলরেখা-১ (Straightline-1)

( ENGLISH VERSION )

# এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।

  • সরলরেখার সঙ্গা ও বিস্তারিত বিবরণ।
  • সরলরেখার সমীকরণ চিনবার উপায়।
  • সরলরেখার ঢাল।
  • সরলরেখার বিভিন্ন আকার।
  • সৃজনশীল প্রশ্ন এবং সমাধান

সরলরেখা (Straight line):

একটি বিন্দু-সেট দ্বারা সৃষ্ট সঞ্চারপথ দিক পরিবর্তন না করলে সেই সঞ্চারপথকে সরলরেখা বলে। সঞ্চারপথের সমীকরণকে সরলরেখার সমীকরণ বলে।

সরলরেখার ঢাল (Slope or Gradient):

কোনো সরলরেখা \(X\) অক্ষের ধনাত্মক দিকের সহিত যে কোণ উৎপন্ন করে তার ত্রিকোণমিতিক ট্যানজেন্টকে রেখাটির ঢাল বলে। ঢালকে সাধারণত \(m\) দ্বারা সূচিত করা হয়। \(AB\) সরলরেখা \(X\) অক্ষের ধনাত্মক দিকের সহিত \(\theta \) কোণ উৎপন্ন করলে, তার ঢাল \(m=\tan\theta\).

সরলরেখার সমীকরণ চিহ্নিত করণের উপায়ঃ

\(x\) এবং \(y\) এর একঘাত সমীকরণ সর্বদা সরলরেখা প্রকাশ করে। যেমনঃ \(ax+by+c=0\) ইহাকে সরলরেখার সাধারণ সমীকরণও বলা হয়ে থাকে।

পরামিতিক সমীকরন (Parametric Equation):

যখন একটি সঞ্চারপথের উপর অবস্থিত কোনো বিন্দু \((x, y)\) এর স্থানাঙ্ক শুধুমাত্র একটি চলরাশি (Variable) এর মাধ্যমে প্রকাশিত হয়, তখন ঐ চলরাশিকে পরামিতি বা প্যারামিটার ( Parameter ) এবং উক্ত বিন্দুর স্থানাঙ্ককে পরামিতিক স্থানাঙ্ক বা প্যারামিটার যুক্ত স্থানাঙ্ক বলা হয়। \(x\) ও \(y\) এর মান জ্ঞাপক সমীকরণদ্বয়কে একত্রে ঐ সঞ্চারপথের পরামিতিক বা প্যারামিটারযুক্ত সমীকরণ বলে। পরামিতিকে অপসারণ করে যে সমীকরণ পাওয়া যাবে, তা কার্তেসীয় সমীকরণ হবে। সরলরেখার পরামিতিক সমীকরণকে লিখা হয়ঃ \(x=a+bt\), \(y=c+dt\) যখন \(a, b, c, d\) ধ্রুবক এবং \(t\) পরিবর্তনশীল রাশি। এখানে \(t\) কে পরামিতি বলা হয় ।

প্রয়োজনীয় এবং স্মরণীয় সূত্রসমূহ।

দুইটি বিন্দুর সংযোগ সরলরেখার ঢাল

\(1.\) দুইটি নির্দিষ্ট বিন্দু \(A(x_{1}, y_{1})\), \(B(x_{2}, y_{2})\) দিয়ে গমনকারী সরলরেখা \(X\) অক্ষের ধনাত্মক দিকের সহিত \(\theta \) কোণ উৎপন্ন করলে, তার ঢাল

\(m=\tan\theta=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\).

Proof

Continue Reading →