রেখা বিভক্তকারী বিন্দুর স্থানাঙ্ক (Co-ordinates of the line Division point)

( ENGLISH VERSION )

এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।

  • কোন রেখাংশকে নির্দিষ্ট অনুপাতে বিভক্তকারী বিন্দুর স্থানাঙ্ক নির্ণয়।
  • ত্রিভুজের ভরকেন্দ্র নির্ণয়।
  • শর্ত সাপেক্ষে বিন্দুর স্থানাঙ্ক নির্ণয়।
  • বিভক্তকারী বিন্দু বিষয়ক সমস্যা ও তার সমাধান।
  • সৃজনশীল প্রশ্ন এবং সমাধান

প্রয়োজনীয় এবং স্মরণীয় সূত্রসমুহ

বিভক্তিকরণ সূত্র (Section Formulae)

অন্তর্বিভক্তিকরণ সূত্রঃ

\(1.\) কোন সমতলে \(P(x_{1}, y_{1})\) এবং \(Q(x_{2}, y_{2})\) দুইটি নির্দিষ্ট বিন্দু \(R(x, y)\) বিন্দু \(PQ\) কে \(m:n\) অনুপাতে অন্তর্বিভক্ত করে। তবে, এর স্থানাঙ্ক হবে,

\(R(\frac{mx_{2}+nx_{1}}{m+n}, \frac{my_{2}+ny_{1}}{m+n})\).
Proof

বহির্বিভক্তিকরণ সূত্রঃ

\(2.\) কোন সমতলে \(P(x_{1}, y_{1})\) এবং \(Q(x_{2}, y_{2})\) দুইটি নির্দিষ্ট বিন্দু \(R(x, y)\) বিন্দু \(PQ\) কে \(m:n\) অনুপাতে বহির্বিভক্ত করে। তবে, এর স্থানাঙ্ক হবে,

\(R(\frac{mx_{2}-nx_{1}}{m-n}, \frac{my_{2}-ny_{1}}{m-n})\).
Proof

মধ্যবিন্দুর সূত্রঃ

\(3.\) কোন সমতলে \(P(x_{1}, y_{1})\) এবং \(Q(x_{2}, y_{2})\) দুইটি নির্দিষ্ট বিন্দু \(R(x, y)\) বিন্দু \(PQ\) এর মধ্যবিন্দু হলে, এর স্থানাঙ্ক হবে,

\(R(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2})\).
Proof

ত্রিভুজের ভরকেন্দ্রঃ

\(4.\) কোন সমতলে \(A(x_{1}, y_{1})\), \(B(x_{2}, y_{2})\) এবং \(C(x_{3}, y_{3})\) কোন ত্রিভুজের তিনটি শীর্ষবিন্দু হলে, \(\triangle ABC\) এর ভরকেন্দ্রের স্থনাংক হবে,

\(G(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3})\).
Proof

Continue Reading →

দুইটি বিন্দুর মধ্যবর্তী দূরত্ব (Distance between two points)

( ENGLISH VERSION )

এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।

  • দুইটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়ের সূত্র প্রতিষ্ঠা এবং বাস্তব প্রয়োগ।
  • শীর্ষবিন্দুর স্থানাঙ্কের মাধ্যমে বিভিন্ন প্রকার ত্রীভুজ ও চতুর্ভুজের বাস্তব প্রমাণ।
  • দুইয়ের অধিক বিন্দু একই সরলরেখায় অবস্থানের শর্ত।
  • বিভিন্ন শর্তাধীনে বিন্দুর স্থানাঙ্ক নির্ণয়।
  • দূরত্ব বিষয়ক সমস্যা ও তার সমাধান
  • সৃজনশীল প্রশ্ন এবং সমাধান

প্রয়োজনীয় এবং স্মরণীয় সূত্রসমুহ

কার্তেসীয় স্থানাঙ্কে দূরত্বঃ

\(1.\) কোন সমতলের উপর \(P(x_{1}, y_{1})\) ও \(P(x_{2}, y_{2})\) যে কোন দুইটি বিন্দু এদের মধ্যবর্তী দূরত্ব হবে।

\(PQ=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}\)
Proof
Video

পোলার স্থানাঙ্কে দূরত্বঃ

\(2.\) কোন সমতলের উপর \(P(r_{1}, \theta_{1})\) ও \(Q(r_{2}, \theta_{2})\) যে কোন দুইটি বিন্দু এদের মধ্যবর্তী দূরত্ব হবে।

\(PQ=\sqrt{r_{1}^{2}+r_{2}^{2}-2r_{1}r_{2}\cos(\theta_{1}-\theta_{2})}\)
Proof
Video

Continue Reading →

কার্তেসীয় ও পোলার স্থানাঙ্ক (Cartesian and Polar Co-ordinates)

( ENGLISH VERSION )

এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।

  • সমতলে বিন্দুর স্থানাঙ্ক।
  • সমতলে কার্তেসীয় এবং পোলার স্থানাঙ্কের ধারণা।
  • কার্তেসীয় ও পোলার স্থানাঙ্কের মধ্যে সম্পর্ক প্রতিষ্ঠা।
  • কার্তেসীয় এবং পোলার স্থানাঙ্কের বাস্তব প্রয়োগ।
  • কার্তেসীয় এবং পোলার স্থানাঙ্ক বিষয়ক সমস্যা ও তার সমাধান।
  • সমতলে কার্তেসীয় এবং পোলার সমীকরণ।
  • সৃজনশীল প্রশ্ন এবং সমাধান

জ্যামিতি (Geometry)

euclid
যে শিক্ষায় সুশিক্ষা অর্জন করে ভূমির পরিমাপ সম্পর্কে খুঁটিনাটি যাবতীয় বিষয় নিখুঁত ভাবে জানা যায় তাকে জ্যামিতি বলে। ইতিহাস থেকে নেয়া, প্রাচীন সভ্যতা মেসোপটমিয়া, মিসর এবং সিন্ধু উপত্যকায় কৃষি জমির সীমানা ও পরিমাপ সংক্রান্ত জরিফ কাজের মধ্যদিয়ে সর্বপ্রথম জ্যামিতির সূচনা হয়।গ্রীক দার্শনিক ইউক্লিড খ্রিষ্টপূর্ব ৩০০ অব্দে এই ধারনাকে পুষ্ট করে একটি সুবিন্যস্ত বৈজ্ঞানিক কাঠামো দিয়ে সাস্ত্র রূপে রূপান্তরিত করেন। এ কারণে ইউক্লিডকে জ্যামিতির জনক বলা হয়।

Continue Reading →