বিশেষ আকারের যোগজীকরণ
Integration Of special form
barcode
এ অধ্যায়ের পাঠ্যসূচী
আদর্শ যোগজ সম্পর্কিত সূত্রসমূহ
Standard Integration formulas
যোগজীকরণের সূত্র
\(\int{f\{g(x)\}g^{\prime}(x)dx}=\int{f(t)dz}\)

যোগজীকরণের সূত্র
\(\int{\{f(x)\}^{n}f^{\prime}(x)dx}=\frac{\{f(x)\}^{n+1}}{n+1}+c\)

\(e^{f(x)}f^{\prime}(x)\) এবং \(\frac{f^{\prime}(x)}{\sqrt{f(x)}}\) এর যোগজীকরণ
Interpretation of \(e^{f(x)}f^{\prime}(x)\) and \(\frac{f^{\prime}(x)}{\sqrt{f(x)}}\)
যোগজীকরণের সূত্র
\(\int{e^{f(x)}f^{\prime}(x)dx}=e^{f(x)}+c\)

যোগজীকরণের সূত্র
\(\int{\frac{f^{\prime}(x)}{\sqrt{f(x)}}dx}=2\sqrt{f(x)}+c\)

\(\frac{f^{\prime}(x)}{f(x)}\) এবং \(\tan{x}\) এর যোগজীকরণ
Interpretation of \(\frac{f^{\prime}(x)}{f(x)}\) and \(\tan{x}\)
যোগজীকরণের সূত্র
\(\int{\frac{f^{\prime}(x)}{f(x)}dx}=\ln{|f(x)|}+c\)

যোগজীকরণের সূত্র
\(\int{\tan{x}dx}=\ln{|\sec{x}|}+c\)

\(\cot{x}\) এবং \(\sec{x}\) এর যোগজীকরণ
Interpretation of \(\cot{x}\) and \(\sec{x}\)
যোগজীকরণের সূত্র
\(\int{\cot{x}dx}=\ln{|\sin{x}|}+c\)

যোগজীকরণের সূত্র
\(\int{\sec{x}dx}=\ln{|\sec{x}+\tan{x}|}+c\)\(=\ln{|\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}|}+c\)

\(cosec \ {x}\) এবং \(\tan{(ax+b)}\) এর যোগজীকরণ
Interpretation of \(cosec \ {x}\) and \(\tan{(ax+b)}\)
যোগজীকরণের সূত্র
\(\int{cosec \ {x}dx}=\ln{|cosec \ {x}-\cot{x}|}+c\)\(=\ln{|\tan{\frac{x}{2}}|}+c\)

যোগজীকরণের সূত্র
\(\int{\tan{(ax+b)}dx}=\frac{1}{a}\ln{|\sec{(ax+b)}|}+c\)

\(\cot{(ax+b)}\) এবং \(\sec{(ax+b)}\) এর যোগজীকরণ
Interpretation of \(\cot{(ax+b)}\) and \(\sec{(ax+b)}\)
যোগজীকরণের সূত্র
\(\int{\cot{(ax+b)}dx}=\frac{1}{a}\ln{|\sin{(ax+b)}|}+c\)

যোগজীকরণের সূত্র
\(\int{\sec{(ax+b)}dx}\)\(=\frac{1}{a}\ln{|\sec{(ax+b)}+\tan{(ax+b)}|}+c\)\(=\frac{1}{a}\ln{|\tan{\left\{\frac{\pi}{4}+\frac{(ax+b)}{2}\right\}}|}+c\)

\(cosec \ {(ax+b)}\) এর যোগজীকরণ
Interpretation of \(cosec \ {(ax+b)}\)
যোগজীকরণের সূত্র
\(\int{cosec \ {(ax+b)}dx}\)\(=\frac{1}{a}\ln{|cosec \ {(ax+b)}-\cot{(ax+b)}|}+c\)\(=\frac{1}{a}\ln{|\tan{\frac{(ax+b)}{2}}|}+c\)

বিশেষ আকারের যোগজ
Special shaped Integration
\(\int{\sin^{m}{x}\cos^{n}{x}dx}\) আকারের যোগজের ক্ষেত্রে।
যদি, \(m\) অথবা \(n\) বিজোড় সংখ্যা হয় তবে,
\(m\) বিজোড় সংখ্যা হলে, \(\cos{x}=t\)
এবং
\(n\) বিজোড় সংখ্যা হলে, \(\sin{x}=t\)
ধরে সরলীকরণ করার পর যোগজ নির্ণয় করতে হয়।
যেমনঃ
\(\int{\sin^{5}{x}\cos^{4}{x}dx}\) এর যোজিত ফল নির্ণয় কর।

যদি, \(m\) এবং \(n\) উভয়ে বিজোড় সংখ্যা হয় তবে,
\(\sin{x}=t\) ধরে সরলীকরণ করার পর যোগজ নির্ণয় করতে হয়।
যেমনঃ
\(\int{\sin^{5}{x}\cos^{3}{x}dx}\) এর যোজিত ফল নির্ণয় কর।

যদি, \(m\) এবং \(n\) উভয়ে জোড় সংখ্যা হয় তবে,
এই ক্ষেত্রটি উচ্চমাধ্যমিক গণিতে আলোচনা করা হয়নি। পরবর্তি উচ্চতর শ্রেণীতে এর যথেষ্ট আলোচনা আছে।
\(\sin^{n}{x}\) এর যোগজীকরণ
Interpretation of \(\sin^{n}{x}\)
\(\int{\sin^{n}{x}dx}\) আকারের যোগজের ক্ষেত্রে।
যদি, \(n\) বিজোড় সংখ্যা হয় তবে,
\(\cos{x}=t\) ধরে সরলীকরণ করার পর যোগজ নির্ণয় করতে হয়।
যেমনঃ
\(\int{\sin^{7}{x}dx}\) এর যোজিত ফল নির্ণয় কর।

যদি, \(n\) জোড় সংখ্যা হয় তবে,
ইন্টিগ্র্যান্ডকে গুণিতক কোণে প্রকাশ করার পর যোগজীকরণ করতে হয়।
যেমনঃ
\(\int{\sin^{6}{x}dx}\) এর যোজিত ফল নির্ণয় কর।

\(\cos^{n}{x}\) এর যোগজীকরণ
Interpretation of \(\cos^{n}{x}\)
\(\int{\cos^{n}{x}dx}\) আকারের যোগজের ক্ষেত্রে।
যদি, \(n\) বিজোড় সংখ্যা হয় তবে,
\(\sin{x}=t\) ধরে সরলীকরণ করার পর যোগজ নির্ণয় করতে হয়।
যেমনঃ
\(\int{\cos^{5}{x}dx}\) এর যোজিত ফল নির্ণয় কর।

যদি, \(n\) জোড় সংখ্যা হয় তবে,
ইন্টিগ্র্যান্ডকে গুণিতক কোণে প্রকাশ করার পর যোগজীকরণ করতে হয়।
যেমনঃ
\(\int{\cos^{4}{x}dx}\) এর যোজিত ফল নির্ণয় কর।

×
প্রমাণ কর যে, \(\int{f\{g(x)\}g^{\prime}(x)dx}=\int{f(t)dz}\)
Proof:
ধরি,
\(g(x)=t\)
\(\Rightarrow \frac{d}{dx}(g(x))=\frac{d}{dx}(t)\)
\(\Rightarrow g^{\prime}(x)=\frac{dt}{dx}\)
\(\therefore g^{\prime}(x)dx=dt\)
\(L.H=\int{f\{g(x)\}g^{\prime}(x)dx}\)
\(=\int{f(t)dt}\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
×
প্রমাণ কর যে, \(\int{\{f(x)\}^{n}f^{\prime}(x)dx}=\frac{\{f(x)\}^{n+1}}{n+1}+c\)
Proof:
ধরি,
\(f(x)=t\)
\(\Rightarrow \frac{d}{dx}(f(x))=\frac{d}{dx}(t)\)
\(\Rightarrow f^{\prime}(x)=\frac{dt}{dx}\)
\(\therefore f^{\prime}(x)dx=dt\)
\(L.H=\int{\{f(x)\}^{n}f^{\prime}(x)dx}\)
\(=\int{t^{n}dt}\)
\(=\frac{t^{n+1}}{n+1}+c\) ➜ \(\because \int{x^ndx}=\frac{x^{n+1}}{n+1}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\frac{\{f(x)\}^{n+1}}{n+1}+c\) ➜ \(\because t=f(x)\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
×
প্রমাণ কর যে, \(\int{e^{f(x)}f^{\prime}(x)dx}=e^{f(x)}+c\)
Proof:
ধরি,
\(f(x)=t\)
\(\Rightarrow \frac{d}{dx}(f(x))=\frac{d}{dx}(t)\)
\(\Rightarrow f^{\prime}(x)=\frac{dt}{dx}\)
\(\therefore f^{\prime}(x)dx=dt\)
\(L.H=\int{e^{f(x)}f^{\prime}(x)dx}\)
\(=\int{e^{t}dt}\)
\(=e^{t}+c\) ➜ \(\because \int{e^xdx}=e^x\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=e^{f(x)}+c\) ➜ \(\because t=f(x)\)
\(=R.H\) \(L.H=R.H\) (Proved)
×
প্রমাণ কর যে, \(\int{\frac{f^{\prime}(x)}{\sqrt{f(x)}}dx}=2\sqrt{f(x)}+c\)
Proof:
ধরি,
\(f(x)=t\)
\(\Rightarrow \frac{d}{dx}(f(x))=\frac{d}{dx}(t)\)
\(\Rightarrow f^{\prime}(x)=\frac{dt}{dx}\)
\(\therefore f^{\prime}(x)dx=dt\)
\(L.H=\int{\frac{f^{\prime}(x)}{\sqrt{f(x)}}dx}\)
\(=\int{\frac{1}{\sqrt{f(x)}}f^{\prime}(x)dx}\)
\(=\int{\frac{1}{\sqrt{t}}dt}\)
\(=\int{\frac{1}{t^{\frac{1}{2}}}dt}\)
\(=\int{t^{-\frac{1}{2}}dt}\)
\(=\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+c\) ➜ \(\because \int{x^ndx}=\frac{x^{n+1}}{n+1}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\frac{t^{\frac{-1+2}{2}}}{\frac{-1+2}{2}}+c\)
\(=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+c\)
\(=2t^{\frac{1}{2}}+c\)
\(=2\sqrt{t}+c\)
\(=2\sqrt{f(x)}+c\) ➜ \(\because t=f(x)\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
×
প্রমাণ কর যে, \(\int{\frac{f^{\prime}(x)}{f(x)}dx}=\ln{|f(x)|}+c\)
Proof:
ধরি,
\(f(x)=t\)
\(\Rightarrow \frac{d}{dx}(f(x))=\frac{d}{dx}(t)\)
\(\Rightarrow f^{\prime}(x)=\frac{dt}{dx}\)
\(\therefore f^{\prime}(x)dx=dt\)
\(L.H=\int{\frac{f^{\prime}(x)}{f(x)}dx}\)
\(=\int{\frac{1}{f(x)}f^{\prime}(x)dx}\)
\(=\int{\frac{1}{t}dt}\)
\(=\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\ln{|f(x)|}+c\) ➜ \(\because t=f(x)\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
×
প্রমাণ কর যে, \(\int{\tan{x}dx}=\ln{|\sec{x}|}+c\)
Proof:
ধরি,
\(\cos{x}=t\)
\(\Rightarrow \frac{d}{dx}(\cos{x})=\frac{d}{dx}(t)\)
\(\Rightarrow -\sin{x}=\frac{dt}{dx}\)
\(\Rightarrow -\sin{x}dx=dt\)
\(\therefore \sin{x}dx=-dt\)
\(L.H=\int{\tan{x}dx}\)
\(=\int{\frac{\sin{x}}{\cos{x}}dx}\)
\(=\int{\frac{1}{\cos{x}}\sin{x}dx}\)
\(=\int{\frac{1}{t}(-dt)}\)
\(=-\int{\frac{1}{t}dt}\)
\(=-\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=-\ln{|\cos{x}|}+c\) ➜ \(\because t=\cos{x}\)
\(=\ln{|(\cos{x})^{-1}|}+c\) ➜ \(\because n\ln{|x|}=\ln{x^n}\)
\(=\ln{|\frac{1}{\cos{x}}|}+c\)
\(=\ln{|\sec{x}|}+c\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
×
প্রমাণ কর যে, \(\int{\cot{x}dx}=\ln{|\sin{x}|}+c\)
Proof:
ধরি,
\(\sin{x}=t\)
\(\Rightarrow \frac{d}{dx}(\sin{x})=\frac{d}{dx}(t)\)
\(\Rightarrow \cos{x}=\frac{dt}{dx}\)
\(\Rightarrow \cos{x}dx=dt\)
\(\therefore \cos{x}dx=dt\)
\(L.H=\int{\cot{x}dx}\)
\(=\int{\frac{\cos{x}}{\sin{x}}dx}\)
\(=\int{\frac{1}{\sin{x}}\cos{x}dx}\)
\(=\int{\frac{1}{t}dt}\)
\(=\int{\frac{1}{t}dt}\)
\(=\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\ln{|\sin{x}|}+c\) ➜ \(\because t=\sin{x}\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
×
প্রমাণ কর যে, \(\int{\sec{x}dx}=\ln{|\sec{x}+\tan{x}|}+c=\ln{|\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}|}+c\)
Proof:
ধরি,
\(\sec{x}+\tan{x}=t\)
\(\Rightarrow \frac{d}{dx}(\sec{x}+\tan{x})=\frac{d}{dx}(t)\)
\(\Rightarrow \sec{x}\tan{x}+\sec^2{x}=\frac{dt}{dx}\)
\(\Rightarrow \sec{x}(\tan{x}+\sec{x})=\frac{dt}{dx}\)
\(\Rightarrow \sec{x}(\sec{x}+\tan{x})=\frac{dt}{dx}\)
\(\therefore \sec{x}(\sec{x}+\tan{x})dx=dt\)
\(L.H=\int{\sec{x}dx}\)
\(=\int{\frac{\sec{x}(\sec{x}+\tan{x})}{(\sec{x}+\tan{x})}dx}\)
\(=\int{\frac{1}{(\sec{x}+\tan{x})}\sec{x}(\sec{x}+\tan{x})dx}\)
\(=\int{\frac{1}{t}dt}\)
\(=\int{\frac{1}{t}dt}\)
\(=\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\ln{|\sec{x}+\tan{x}|}+c\) ➜ \(\because t=\sec{x}+\tan{x}\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
আবার,
\(\ln{|\sec{x}+\tan{x}|}+c\)
\(=\ln{\left|\frac{1}{\cos{x}}+\frac{\sin{x}}{\cos{x}}\right|}+c\)
\(=\ln{\left|\frac{1+\sin{x}}{\cos{x}}\right|}+c\)
\(=\ln{\left|\frac{\sin^2{\frac{x}{2}}+\cos^2{\frac{x}{2}}+2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}{\cos^2{\frac{x}{2}}-\sin^2{\frac{x}{2}}}\right|}+c\) ➜ \(\because \sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}=1, 2\sin{\frac{x}{2}}\cos{\frac{x}{2}}=\sin{A}\), \(\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}=\cos{A}\)
\(=\ln{\left|\frac{(\sin{\frac{x}{2}}+\cos{\frac{x}{2}})^2}{(\cos{\frac{x}{2}}+\sin{\frac{x}{2}})(\cos{\frac{x}{2}}-\sin{\frac{x}{2}})}\right|}+c\) ➜ \(\because a^2+b^2+2ab=(a+b)^2, (a+b)(a-b)=a^2-b^2\)
\(=\ln{\left|\frac{\sin{\frac{x}{2}}+\cos{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}\right|}+c\)
\(=\ln{\left|\frac{\cos{\frac{x}{2}}+\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}\right|}+c\)
\(=\ln{\left|\frac{\cos{\frac{x}{2}}\left(1+\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}\right)}{\cos{\frac{x}{2}}\left(1-\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}\right)}\right|}+c\)
\(=\ln{\left|\frac{1+\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}}{1-\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}}\right|}+c\)
\(=\ln{\left|\frac{1+\tan{\frac{x}{2}}}{1-\tan{\frac{x}{2}}}\right|}+c\)
\(=\ln{\left|\frac{\tan{\frac{\pi}{4}}+\tan{\frac{x}{2}}}{1-\tan{\frac{\pi}{4}}\tan{\frac{x}{2}}}\right|}+c\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=\ln{\left|\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\right|}+c\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(\therefore \int{\sec{x}dx}=\ln{|\sec{x}+\tan{x}|}+c=\ln{\left|\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\right|}+c\)
(proved)
×
প্রমাণ কর যে, \(\int{cosec \ {x}dx}=\ln{|cosec \ {x}-\cot{x}|}+c=\ln{|\tan{\frac{x}{2}}|}+c\)
Proof:
ধরি,
\(cosec \ {x}-\cot{x}=t\)
\(\Rightarrow \frac{d}{dx}(cosec \ {x}-\cot{x})=\frac{d}{dx}(t)\)
\(\Rightarrow -cosec \ {x}\cot{x}+cosec^2{x}=\frac{dt}{dx}\)
\(\Rightarrow cosec^2{x}-cosec \ {x}\cot{x}=\frac{dt}{dx}\)
\(\Rightarrow cosec \ {x}(cosec \ {x}-\cot{x})=\frac{dt}{dx}\)
\(\therefore cosec \ {x}(cosec \ {x}-\cot{x})dx=dt\)
\(L.H=\int{cosec \ {x}dx}\)
\(=\int{\frac{cosec \ {x}(cosec \ {x}-\cot{x})}{(cosec \ {x}-\cot{x})}dx}\)
\(=\int{\frac{1}{(cosec \ {x}-\cot{x})}cosec \ {x}(cosec \ {x}-\cot{x})dx}\)
\(=\int{\frac{1}{t}dt}\)
\(=\int{\frac{1}{t}dt}\)
\(=\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\ln{|cosec \ {x}-\cot{x}|}+c\) ➜ \(\because t=cosec \ {x}-\cot{x}\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
আবার,
\(\ln{|cosec \ {x}-\cot{x}|}+c\)
\(=\ln{\left|\frac{1}{\sin{x}}-\frac{\cos{x}}{\sin{x}}\right|}+c\)
\(=\ln{\left|\frac{1-\cos{x}}{\sin{x}}\right|}+c\)
\(=\ln{\left|\frac{2\sin^2{\frac{x}{2}}}{2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}\right|}+c\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}, \sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\ln{\left|\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}\right|}+c\)
\(=\ln{\left|\tan{\frac{x}{2}}\right|}+c\)
\(\therefore \int{cosec \ {x}dx}=\ln{|cosec \ {x}-\cot{x}|}+c=\ln{\left|\tan{\frac{x}{2}}\right|}+c\)
(proved)
×
প্রমাণ কর যে, \(\int{\tan{(ax+b)}dx}=\frac{1}{a}\ln{|\sec{(ax+b)}|}+c\)
Proof:
ধরি,
\(\cos{(ax+b)}=t\)
\(\Rightarrow \frac{d}{dx}\{\cos{(ax+b)}\}=\frac{d}{dx}(t)\)
\(\Rightarrow -\sin{(ax+b)}.\frac{d}{dx}(ax+b)=\frac{dt}{dx}\)
\(\Rightarrow -\sin{(ax+b)}.(a+0)=\frac{dt}{dx}\)
\(\Rightarrow -a\sin{(ax+b)}=\frac{dt}{dx}\)
\(\Rightarrow -a\sin{(ax+b)}dx=dt\)
\(\therefore \sin{(ax+b)}dx=-\frac{1}{a}dt\)
\(L.H=\int{\tan{(ax+b)}dx}\)
\(=\int{\frac{\sin{(ax+b)}}{\cos{(ax+b)}}dx}\)
\(=\int{\frac{1}{\cos{(ax+b)}}\sin{(ax+b)}dx}\)
\(=\int{\frac{1}{t}\times{-\frac{1}{a}dt}}\)
\(=-\frac{1}{a}\int{\frac{1}{t}dt}\)
\(=-\frac{1}{a}\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=-\frac{1}{a}\ln{|\cos{(ax+b)}|}+c\) ➜ \(\because t=\cos{(ax+b)}\)
\(=\frac{1}{a}\ln{|(\cos{(ax+b)})^{-1}|}+c\) ➜ \(\because n\ln{|x|}=\ln{x^n}\)
\(=\frac{1}{a}\ln{|\frac{1}{\cos{(ax+b)}}|}+c\)
\(=\frac{1}{a}\ln{|\sec{(ax+b)}|}+c\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
×
প্রমাণ কর যে, \(\int{\cot{(ax+b)}dx}=\frac{1}{a}\ln{|\sin{(ax+b)}|}+c\)
Proof:
ধরি,
\(\sin{(ax+b)}=t\)
\(\Rightarrow \frac{d}{dx}\{\sin{(ax+b)}\}=\frac{d}{dx}(t)\)
\(\Rightarrow \cos{(ax+b)}.\frac{d}{dx}(ax+b)=\frac{dt}{dx}\)
\(\Rightarrow \cos{(ax+b)}.(a+0)=\frac{dt}{dx}\)
\(\Rightarrow a\cos{(ax+b)}dx=dt\)
\(\therefore \cos{(ax+b)}dx=\frac{1}{a}dt\)
\(L.H=\int{\cot{(ax+b)}dx}\)
\(=\int{\frac{\cos{(ax+b)}}{\sin{(ax+b)}}dx}\)
\(=\int{\frac{1}{\sin{(ax+b)}}\cos{(ax+b)}dx}\)
\(=\int{\frac{1}{t}.\frac{1}{a}dt}\)
\(=\frac{1}{a}\int{\frac{1}{t}dt}\)
\(=\frac{1}{a}\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\frac{1}{a}\ln{|\sin{(ax+b)}|}+c\) ➜ \(\because t=\sin{(ax+b)}\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
×
প্রমাণ কর যে, \(\int{\sec{(ax+b)}dx}=\frac{1}{a}\ln{|\sec{(ax+b)}+\tan{(ax+b)}|}+c=\frac{1}{a}\ln{|\tan{\left\{\frac{\pi}{4}+\frac{(ax+b)}{2}\right\}}|}+c\)
Proof:
ধরি,
\(\sec{(ax+b)}+\tan{(ax+b)}=t\)
\(\Rightarrow \frac{d}{dx}\{\sec{(ax+b)}+\tan{(ax+b)}\}=\frac{d}{dx}(t)\)
\(\Rightarrow \sec{(ax+b)}\tan{(ax+b)}.a+\sec^2{(ax+b)}.a=\frac{dt}{dx}\)
\(\Rightarrow a\sec{(ax+b)}\{\tan{(ax+b)}+\sec{(ax+b)}\}=\frac{dt}{dx}\)
\(\Rightarrow a\sec{(ax+b)}\{\sec{(ax+b)}+\tan{(ax+b)}\}=\frac{dt}{dx}\)
\(\therefore \sec{(ax+b)}\{\sec{(ax+b)}+\tan{(ax+b)}\}dx=\frac{1}{a}dt\)
\(L.H=\int{\sec{(ax+b)}dx}\)
\(=\int{\frac{\sec{(ax+b)}\{\sec{(ax+b)}+\tan{(ax+b)}\}}{\sec{(ax+b)}+\tan{(ax+b)}}dx}\)
\(=\int{\frac{1}{\sec{(ax+b)}+\tan{(ax+b)}}\sec{(ax+b)}\{\sec{(ax+b)}+\tan{(ax+b)}\}dx}\)
\(=\int{\frac{1}{t}.\frac{1}{a}dt}\)
\(=\frac{1}{a}\int{\frac{1}{t}dt}\)
\(=\frac{1}{a}\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\frac{1}{a}\ln{|\sec{(ax+b)}+\tan{(ax+b)}|}+c\) ➜ \(\because t=\sec{(ax+b)}+\tan{(ax+b)}\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
আবার,
\(\frac{1}{a}\ln{|\sec{(ax+b)}+\tan{(ax+b)}|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{1}{\cos{(ax+b)}}+\frac{\sin{(ax+b)}}{\cos{(ax+b)}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{1+\sin{(ax+b)}}{\cos{(ax+b)}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{\sin^2{\frac{(ax+b)}{2}}+\cos^2{\frac{(ax+b)}{2}}+2\sin{\frac{(ax+b)}{2}}\cos{\frac{(ax+b)}{2}}}{\cos^2{\frac{(ax+b)}{2}}-\sin^2{\frac{(ax+b)}{2}}}\right|}+c\) ➜ \(\because \sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}=1, 2\sin{\frac{x}{2}}\cos{\frac{x}{2}}=\sin{A}\), \(\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}=\cos{A}\)
\(=\frac{1}{a}\ln{\left|\frac{(\sin{\frac{(ax+b)}{2}}+\cos{\frac{(ax+b)}{2}})^2}{(\cos{\frac{(ax+b)}{2}}+\sin{\frac{(ax+b)}{2}})(\cos{\frac{(ax+b)}{2}}-\sin{\frac{(ax+b)}{2}})}\right|}+c\) ➜ \(\because a^2+b^2+2ab=(a+b)^2, (a+b)(a-b)=a^2-b^2\)
\(=\frac{1}{a}\ln{\left|\frac{\sin{\frac{(ax+b)}{2}}+\cos{\frac{(ax+b)}{2}}}{\cos{\frac{(ax+b)}{2}}-\sin{\frac{(ax+b)}{2}}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{\cos{\frac{(ax+b)}{2}}+\sin{\frac{(ax+b)}{2}}}{\cos{\frac{(ax+b)}{2}}-\sin{\frac{(ax+b)}{2}}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{\cos{\frac{(ax+b)}{2}}\left(1+\frac{\sin{\frac{(ax+b)}{2}}}{\cos{\frac{(ax+b)}{2}}}\right)}{\cos{\frac{(ax+b)}{2}}\left(1-\frac{\sin{\frac{(ax+b)}{2}}}{\cos{\frac{(ax+b)}{2}}}\right)}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{1+\frac{\sin{\frac{(ax+b)}{2}}}{\cos{\frac{(ax+b)}{2}}}}{1-\frac{\sin{\frac{(ax+b)}{2}}}{\cos{\frac{(ax+b)}{2}}}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{1+\tan{\frac{(ax+b)}{2}}}{1-\tan{\frac{(ax+b)}{2}}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{\tan{\frac{\pi}{4}}+\tan{\frac{(ax+b)}{2}}}{1-\tan{\frac{\pi}{4}}\tan{\frac{(ax+b)}{2}}}\right|}+c\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=\frac{1}{a}\ln{\left|\tan{\left\{\frac{\pi}{4}+\frac{(ax+b)}{2}\right\}}\right|}+c\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(\therefore \int{\sec{(ax+b)}dx}=\frac{1}{a}\ln{|\sec{(ax+b)}+\tan{(ax+b)}|}+c=\frac{1}{a}\ln{\left|\tan{\left\{\frac{\pi}{4}+\frac{(ax+b)}{2}\right\}}\right|}+c\)
(proved)
×
প্রমাণ কর যে, \(\int{cosec \ {(ax+b)}dx}=\frac{1}{a}\ln{|cosec \ {(ax+b)}-\cot{(ax+b)}|}+c=\frac{1}{a}\ln{|\tan{\frac{(ax+b)}{2}}|}+c\)
Proof:
ধরি,
\(cosec \ {(ax+b)}-\cot{(ax+b)}=t\)
\(\Rightarrow \frac{d}{dx}\{cosec \ {(ax+b)}-\cot{(ax+b)}\}=\frac{d}{dx}(t)\)
\(\Rightarrow -cosec \ {(ax+b)}\cot{(ax+b)}.a+cosec^2{(ax+b)}.a=\frac{dt}{dx}\)
\(\Rightarrow a \ cosec^2{(ax+b)}-a \ cosec \ {(ax+b)}\cot{(ax+b)}=\frac{dt}{dx}\)
\(\Rightarrow a \ cosec \ {(ax+b)}\{cosec \ {(ax+b)}-\cot{(ax+b)}\}=\frac{dt}{dx}\)
\(\therefore cosec \ {(ax+b)}\{cosec \ {(ax+b)}-\cot{(ax+b)}\}dx=\frac{1}{a}dt\)
\(L.H=\int{cosec \ {(ax+b)}dx}\)
\(=\int{\frac{cosec \ {(ax+b)}\{cosec \ {(ax+b)}-\cot{(ax+b)}\}}{cosec \ {(ax+b)}-\cot{(ax+b)}}dx}\)
\(=\int{\frac{1}{cosec \ {(ax+b)}-\cot{(ax+b)}}cosec \ {(ax+b)}\{cosec \ {(ax+b)}-\cot{(ax+b)}\}dx}\)
\(=\int{\frac{1}{t}.\frac{1}{a}dt}\)
\(=\frac{1}{a}\int{\frac{1}{t}dt}\)
\(=\frac{1}{a}\ln{|t|}+c\) ➜ \(\because \int{\frac{1}{x}dx}=\ln{|x|}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\frac{1}{a}\ln{|cosec \ {(ax+b)}-\cot{(ax+b)}|}+c\) ➜ \(\because t=cosec \ {(ax+b)}-\cot{(ax+b)}\)
\(=R.H\)
\(L.H=R.H\)
(Proved)
আবার,
\(\frac{1}{a}\ln{|cosec \ {(ax+b)}-\cot{(ax+b)}|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{1}{\sin{(ax+b)}}-\frac{\cos{(ax+b)}}{\sin{(ax+b)}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{1-\cos{(ax+b)}}{\sin{(ax+b)}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\frac{2\sin^2{\frac{(ax+b)}{2}}}{2\sin{\frac{(ax+b)}{2}}\cos{\frac{(ax+b)}{2}}}\right|}+c\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}, \sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{1}{a}\ln{\left|\frac{\sin{\frac{(ax+b)}{2}}}{\cos{\frac{(ax+b)}{2}}}\right|}+c\)
\(=\frac{1}{a}\ln{\left|\tan{\frac{(ax+b)}{2}}\right|}+c\)
\(\therefore \int{cosec \ {(ax+b)}dx}=\frac{1}{a}\ln{|cosec \ {(ax+b)}-\cot{(ax+b)}|}+c=\frac{1}{a}\ln{\left|\tan{\frac{(ax+b)}{2}}\right|}+c\)
(proved)
×
\(\int{\sin^{5}{x}\cos^{4}{x}dx}\) এর যোজিত ফল নির্ণয় কর।
সমাধান
ধরি,
\(\cos{x}=t\)
\(\Rightarrow \frac{d}{dx}(\cos{x})=\frac{d}{dx}(t)\)
\(\Rightarrow -\sin{x}=\frac{dt}{dx}\)
\(\Rightarrow -\sin{x}dx=dt\)
\(\therefore \sin{x}dx=-dt\)
\(\int{\sin^{5}{x}\cos^{4}{x}dx}\)
\(=\int{\sin^{4}{x}\cos^{4}{x}\sin{x}dx}\)
\(=\int{(\sin^{2}{x})^2\cos^{4}{x}\sin{x}dx}\)
\(=\int{(1-\cos^{2}{x})^2\cos^{4}{x}\sin{x}dx}\)
\(=\int{(1-t^2)^2t^4(-dt)}\)
\(=-\int{(1-2t^2+t^4)t^4dt}\)
\(=-\int{(t^4-2t^6+t^8)dt}\)
\(=-\int{t^4dt}+2\int{t^6dt}-\int{t^8dt}\)
\(=-\frac{t^{4+1}}{4+1}+2\frac{t^{6+1}}{6+1}-\frac{t^{8+1}}{8+1}+c\) ➜ \(\because \int{x^ndx}=\frac{x^{n+1}}{n+1}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=-\frac{t^{5}}{5}+2\frac{t^{7}}{7}-\frac{t^{9}}{9}+c\)
\(=-\frac{1}{5}t^{5}+2.\frac{1}{7}t^{7}-\frac{1}{9}t^{9}+c\)
\(=-\frac{1}{5}\cos^{5}{x}+\frac{2}{7}\cos^{7}{x}-\frac{1}{9}\cos^{9}{x}+c\) ➜ \(\because t=\cos{x}\)
×
\(\int{\sin^{5}{x}\cos^{3}{x}dx}\) এর যোজিত ফল নির্ণয় কর।
সমাধান
ধরি,
\(\sin{x}=t\)
\(\Rightarrow \frac{d}{dx}(\sin{x})=\frac{d}{dx}(t)\)
\(\Rightarrow \cos{x}=\frac{dt}{dx}\)
\(\therefore \cos{x}dx=dt\)
\(\int{\sin^{5}{x}\cos^{3}{x}dx}\)
\(=\int{\sin^{5}{x}\cos^{2}{x}\cos{x}dx}\)
\(=\int{\sin^{5}{x}(1-\sin^{2}{x})\cos{x}dx}\)
\(=\int{t^{5}(1-t^{2})dt}\)
\(=\int{(t^{5}-t^{7})dt}\)
\(=\int{t^{5}dt}-\int{t^{7}dt}\)
\(=\frac{t^{5+1}}{5+1}-\frac{t^{7+1}}{7+1}+c\) ➜ \(\because \int{x^ndx}=\frac{x^{n+1}}{n+1}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\frac{t^{6}}{6}-\frac{t^{8}}{8}+c\)
\(=\frac{1}{6}t^{6}-\frac{1}{8}t^{8}+c\)
\(=\frac{1}{6}\sin^{6}{x}-\frac{1}{8}\sin^{8}{x}+c\) ➜ \(\because t=\sin{x}\)
×
\(\int{\sin^{7}{x}dx}\) এর যোজিত ফল নির্ণয় কর।
সমাধান
ধরি,
\(\cos{x}=t\)
\(\Rightarrow \frac{d}{dx}(\cos{x})=\frac{d}{dx}(t)\)
\(\Rightarrow -\sin{x}=\frac{dt}{dx}\)
\(\Rightarrow -\sin{x}dx=dt\)
\(\therefore \sin{x}dx=-dt\)
\(\int{\sin^{7}{x}dx}\)
\(=\int{\sin^{6}{x}\sin{x}dx}\)
\(=\int{(\sin^{2}{x})^3\sin{x}dx}\)
\(=\int{(1-\cos^{2}{x})^3\sin{x}dx}\)
\(=\int{(1-t^{2})^3(-dt)}\)
\(=-\int{(1-3t^{2}+3t^4-t^6)dt}\) ➜ \(\because (a-b)^3=a^3-3a^2b+3ab^2-b^3\)
\(=-\int{dt}+3\int{t^{2}dt}-3\int{t^4dt}+\int{t^6dt}\)
\(=-t+3\frac{t^{3+1}}{3+1}-3\frac{t^{4+1}}{4+1}+\frac{t^{6+1}}{6+1}+c\) ➜ \(\because \int{dx}=x, \int{x^ndx}=\frac{x^{n+1}}{n+1}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=-t+3\frac{t^{4}}{4}-3\frac{t^{5}}{5}+\frac{t^{7}}{7}+c\)
\(=-t+\frac{3}{4}t^{4}-\frac{3}{5}t^{5}+\frac{1}{7}t^{7}+c\)
\(=-\cos{x}+\frac{3}{4}\cos^{4}{x}-\frac{3}{5}\cos^{5}{x}+\frac{1}{7}cos^{7}{x}+c\) ➜ \(\because t=\cos{x}\)
×
\(\int{\sin^{6}{x}dx}\) এর যোজিত ফল নির্ণয় কর।
সমাধান
\(\int{\sin^{6}{x}dx}\)
\(=\int{(\sin^{2}{x})^3dx}\)
\(=\frac{1}{8}\int{(2\sin^{2}{x})^3dx}\)
\(=\frac{1}{8}\int{(1-\cos{2x})^3dx}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\frac{1}{8}\int{(1-3\cos{2x}+3\cos^2{2x}-\cos^3{2x})dx}\) ➜ \(\because (a-b)^3=a^3-3a^2b+3ab^2-b^3\)
\(=\frac{1}{8}\int{dx}-\frac{3}{8}\int{\cos{2x}dx}+\frac{3}{8}\int{\cos^2{2x}dx}-\frac{1}{8}\int{\cos^3{2x}dx}\)
\(=\frac{1}{8}\int{dx}-\frac{3}{8}\int{\cos{2x}dx}+\frac{3}{16}\int{2\cos^2{2x}dx}-\frac{1}{32}\int{4\cos^3{2x}dx}\)
\(=\frac{1}{8}\int{dx}-\frac{3}{8}\int{\cos{2x}dx}+\frac{3}{16}\int{(1+\cos{4x})dx}\)\(-\frac{1}{32}\int{(\cos{6x}+3\cos{2x})dx}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}, 4\cos^3{A}=\cos{3A}+3\cos{A}\)
\(=\frac{1}{8}\int{dx}-\frac{3}{8}\int{\cos{2x}dx}+\frac{3}{16}\int{dx}+\frac{3}{16}\int{\cos{4x}dx}\)\(-\frac{1}{32}\int{\cos{6x}dx}-\frac{3}{32}\int{\cos{2x}dx}\)
\(=\frac{1}{8}x-\frac{3}{8}.\frac{1}{2}\sin{2x}+\frac{3}{16}x+\frac{3}{16}.\frac{1}{4}\sin{4x}\)\(-\frac{1}{32}.\frac{1}{6}\sin{6x}-\frac{3}{32}.\frac{1}{2}\sin{2x}+c\) ➜ \(\because \int{dx}=x, \int{\cos{ax}dx}=\frac{1}{a}\sin{ax}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\frac{1}{8}x-\frac{3}{16}\sin{2x}+\frac{3}{16}x+\frac{3}{64}\sin{4x}\)\(-\frac{1}{192}\sin{6x}-\frac{3}{64}\sin{2x}+c\)
\(=\frac{1}{8}x+\frac{3}{16}x-\frac{3}{16}\sin{2x}-\frac{3}{64}\sin{2x}\)\(+\frac{3}{64}\sin{4x}-\frac{1}{192}\sin{6x}+c\)
\(=\frac{2+3}{16}x+\frac{-12-3}{64}\sin{2x}+\frac{3}{64}\sin{4x}-\frac{1}{192}\sin{6x}+c\)
\(=\frac{5}{16}x+\frac{-15}{64}\sin{2x}+\frac{3}{64}\sin{4x}-\frac{1}{192}\sin{6x}+c\)
\(=\frac{5}{16}x-\frac{15}{64}\sin{2x}+\frac{3}{64}\sin{4x}-\frac{1}{192}\sin{6x}+c\)
\(=\frac{1}{192}(60x-45\sin{2x}+9\sin{4x}-\sin{6x})+c\)
×
এর যোজিত ফল নির্ণয় কর।
সমাধান
ধরি,
\(\sin{x}=t\)
\(\Rightarrow \frac{d}{dx}(\sin{x})=\frac{d}{dx}(t)\)
\(\Rightarrow \cos{x}=\frac{dt}{dx}\)
\(\therefore \cos{x}dx=dt\)
\(\int{\cos^{5}{x}dx}\)
\(=\int{\cos^{4}{x}\cos{x}dx}\)
\(=\int{(\cos^{2}{x})^2\cos{x}dx}\)
\(=\int{(1-\sin^{2}{x})^2\cos{x}dx}\)
\(=\int{(1-t^{2})^2dt}\)
\(=\int{(1-2t^{2}+t^4)dt}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(=\int{dt}-2\int{t^{2}dt}+\int{t^4dt}\)
\(=t-2\frac{t^{2+1}}{2+1}+\frac{t^{4+1}}{4+1}+c\) ➜ \(\because \int{dx}=x, \int{x^ndx}=\frac{x^{n+1}}{n+1}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=t-2\frac{t^{3}}{3}+\frac{t^{5}}{5}+c\)
\(=t-\frac{2}{3}t^{3}+\frac{1}{5}t^{5}+c\)
\(=\sin{x}-\frac{2}{3}\sin^{3}{x}+\frac{1}{5}\sin^{5}{x}+c\) ➜ \(\because t=\sin{x}\)
×
\(\int{\cos^{4}{x}dx}\) এর যোজিত ফল নির্ণয় কর।
সমাধান
\(\int{\cos^{4}{x}dx}\)
\(=\int{(\cos^{2}{x})^2dx}\)
\(=\frac{1}{4}\int{(2\cos^{2}{x})^2dx}\)
\(=\frac{1}{4}\int{(1+\cos{2x})^2dx}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{4}\int{(1+2\cos{2x}+\cos^2{2x})dx}\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
\(=\frac{1}{4}\int{dx}+\frac{1}{2}\int{\cos{2x}dx}+\frac{1}{4}\int{\cos^2{2x}dx}\)
\(=\frac{1}{4}\int{dx}+\frac{1}{2}\int{\cos{2x}dx}+\frac{1}{8}\int{2\cos^2{2x}dx}\)
\(=\frac{1}{4}\int{dx}+\frac{1}{2}\int{\cos{2x}dx}+\frac{1}{8}\int{(1+\cos{4x})dx}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{4}\int{dx}+\frac{1}{2}\int{\cos{2x}dx}+\frac{1}{8}\int{dx}+\frac{1}{8}\int{\cos{4x}dx}\)
\(=\frac{1}{4}x+\frac{1}{2}.\frac{1}{2}\sin{2x}+\frac{1}{8}x+\frac{1}{8}.\frac{1}{4}\sin{4x}+c\) ➜ \(\because \int{dx}=x, \int{\cos{ax}dx}=\frac{1}{a}\sin{ax}\) এবং \(c\) যোগজীকরণ ধ্রুবক।
\(=\frac{1}{4}x+\frac{1}{8}x+\frac{1}{4}\sin{2x}+\frac{1}{32}\sin{4x}+c\)
\(=\frac{2+1}{8}x+\frac{1}{4}\sin{2x}+\frac{1}{32}\sin{4x}+c\)
\(=\frac{3}{8}x+\frac{1}{4}\sin{2x}+\frac{1}{32}\sin{4x}+c\)
\(=\frac{1}{32}(12x+8\sin{2x}+\sin{4x})+c\)
উদাহরণসমুহ
\(Ex.(1)\) \(\int{x^2(3-2x^3)^4dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(-\frac{1}{30}(3-2x^3)^{5}+c\)
\(Ex.(2)\) \(\int{cosec^2 \ {x}e^{\cot{x}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(-e^{\cot{x}}+c\)
\(Ex.(3)\) \(\int{\sec{x}\tan{x}e^{\sec{x}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(e^{\sec{x}}+c\)
\(Ex.(4)\) \(\int{cosec \ {x}\cot{x}e^{cosec \ {x}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(-e^{cosec \ {x}}+c\)
\(Ex.(5)\) \(\int{\frac{\sec{x}}{\ln{|\sec{x}+\tan{x}|}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\ln{(\ln{|\sec{x}+\tan{x}|})}+c\)
\(Ex.(6)\) \(\int{\frac{cosec \ {x}}{\ln{|cosec \ {x}-\cot{x}|}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\ln{(\ln{|cosec \ {x}-\cot{x}|})}+c\)
\(Ex.(7)\) \(\int{\frac{xdx}{\sqrt{1-x}}}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{2}{3}(1-x)^{\frac{3}{2}}-2\sqrt{1-x}+c\)
\(Ex.(8)\) \(\int{\tan^3{x}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{1}{2}\tan^2{x}-\ln{|\sec{x}|}+c\)
\(Ex.(9)\) \(\int{\frac{\sin{2x}}{a+b\sin^2{x}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{1}{b}\ln{|a+b\sin^2{x}|}+c\)
\(Ex.(10)\) \(\int{\frac{\sin{(\tan^{-1}{x})}}{1+x^2}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(-\frac{1}{\sqrt{1+x^2}}+c\)
\(Ex.(11)\) \(\int{\frac{\cos{(\tan^{-1}{x})}}{1+x^2}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{x}{\sqrt{1+x^2}}+c\)
\(Ex.(12)\) \(\int{\frac{\sec{(\cot^{-1}{x})}}{1+x^2}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(-\ln{\left|\frac{x^2+2}{x}\right|}+c\)
\(Ex.(13)\) \(\int{\frac{2x\tan^{-1}{x^2}}{1+x^4}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{1}{2}\left(\tan^{-1}{x^2}\right)^2+c\)
\(Ex.(14)\) \(\int{\frac{\tan^{-1}{\sqrt{x}}}{\sqrt{x}(1+x)}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \((\tan^{-1}{\sqrt{x}})^2+c\)
\(Ex.(15)\) \(\int{\frac{\tan^{-1}{\sqrt[3]{x}}}{\sqrt[3]{x^2}(1+\sqrt[3]{x^2})}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\frac{3}{2}(\tan^{-1}{\sqrt[3]{x}})^2+c\)
\(Ex.(16)\) \(\int{\frac{\sec^{-1}{(\sqrt{x})}}{x\sqrt{x-1}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(\{\sec^{-1}{(\sqrt{x})}\}^2+c\)
\(Ex.(17)\) \(\int{\frac{cosec^{-1}{(\sqrt{x})}}{x\sqrt{x-1}}dx}\) এর যোজিত ফল নির্ণয় কর।
উত্তরঃ \(-\{cosec^{-1}{(\sqrt{x})}\}^2+c\)
Read Example
Q.2-এর বর্ণনামূলক প্রশ্নসমূহ
Q.3-এর বর্ণনামূলক প্রশ্নসমূহ
Q.4-এর বর্ণনামূলক প্রশ্নসমূহ
Q.5-এর সৃজনশীল প্রশ্নসমূহ
ভর্তি পরীক্ষায় আসা প্রশ্নসমূহ

Read More

বিকাস/নগদ, 01715651163 নম্বরে টাকা সেন্ট করে টোকেন সংগ্রহ করুনঃ


100 টাকা150 counter
200 টাকা400 counter
300 টাকা600 counter
500 টাকা1000 counter
1000 টাকা2000 counter

Please enter your 9-digit token:



Post List

Mathematics

Geometry 11 and 12 standard
Algebra 11 and 12 standard
Trigonometry 11 and 12 standard
Diff. Calculus 11 and 12 standard
Int. Calculus 11 and 12 standard
Geometry Honours course standard
Vector 11 and 12 standard
Vector Honours course standard
Statics 11 and 12 standard
Dynamics 11 and 12 standard

Chemistry