সমতলে বিন্দুর স্থানাঙ্ক
barcode
এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
  • সমতলে বিন্দুর স্থানাঙ্ক।
  • সমতলে কার্তেসীয় এবং পোলার স্থানাঙ্কের ধারণা।
  • কার্তেসীয় ও পোলার স্থানাঙ্কের মধ্যে সম্পর্ক প্রতিষ্ঠা।
  • কার্তেসীয় এবং পোলার স্থানাঙ্কের বাস্তব প্রয়োগ।
  • কার্তেসীয় এবং পোলার স্থানাঙ্ক বিষয়ক সমস্যা ও তার সমাধান।
  • সমতলে কার্তেসীয় এবং পোলার সমীকরণ।
  • সৃজনশীল প্রশ্ন এবং সমাধান
জ্যামিতি (Geometry)
euclid যে শিক্ষায় সুশিক্ষা অর্জন করে ভূমির পরিমাপ সম্পর্কে খুঁটিনাটি যাবতীয় বিষয় নিখুঁত ভাবে জানা যায় তাকে জ্যামিতি বলে। ইতিহাস থেকে নেয়া, প্রাচীন সভ্যতা মেসোপটমিয়া, মিসর এবং সিন্ধু উপত্যকায় কৃষি জমির সীমানা ও পরিমাপ সংক্রান্ত জরিফ কাজের মধ্যদিয়ে সর্বপ্রথম জ্যামিতির সূচনা হয়। গ্রীক দার্শনিক ইউক্লিড straight3 ইউক্লিড (৩০০-২৫০ খ্রিষ্টপূর্ব) বিখ্যাত গ্রিক গণিতজ্ঞ। তার লেখা গ্রন্থগুলির মধ্যে মাত্র তিনটির সন্ধান পাওয়া গিয়েছে এগুলো, ডাটা, অপটিক্স ও এলিমেন্টস। এলিমেন্টস বইটি মোট ১৩ খণ্ডে প্রকাশিত হয়েছিল। খ্রিষ্টপূর্ব ৩০০ অব্দে এই ধারনাকে পুষ্ট করে একটি সুবিন্যস্ত বৈজ্ঞানিক কাঠামো দিয়ে সাস্ত্র রূপে রূপান্তরিত করেন। এ কারণে ইউক্লিডকে জ্যামিতির জনক বলা হয়।
বিন্দু (Point)
descates যার দৈর্ঘ, প্রস্থ এবং উচ্চতা কিছুই নেই কিন্তু অবস্থান আছে তাকে বিন্দু বলে। ‘পশ্চিমা গোষ্টির আধুনিক দার্শনিকদের পিতা’ খেতাব প্রাপ্ত ফরাসী দার্শনিক, বিজ্ঞানী এবং গণিতবিদ রেনে দেকার্তে straight3 প্রখ্যাত ফরাসি দার্শনিক, গণিতবিদ রেনে দেকার্তে আধুনিক ফাংশনের ধারণা দেন । (১৫৯৬-১৬৫০) সর্বপ্রথম জ্যামিতকে বীজগণিতের সাহায্যে প্রয়োগ, সমতলীয় জ্যামিতিতে স্থানাংকের সূচনা করে বিন্দুর অবস্থান অংকের মাধ্যমে প্রকাশ, সর্বপরি প্রকৌশলবিদ্যায় জ্যামিতির অবতারণা প্রতিষ্ঠিত করেন। নিম্নে বিন্দুর স্থানাংক বিষয়ে আলোচনা করা হল।
স্থানাংকঃ
বিন্দুর অবস্থান অঙ্কের সাহায্যে প্রকাশ করা হলে, ঐ অংকগুলিকে বিন্দুর স্থানাঙ্ক বলে। যেমনঃ \(A(3, -7)\), \(B(3, 2)\)...........\(P(x, y)\). এখানে \(x\) এবং \(y\) যে কোন বাস্তব সংখ্যা। carte
কার্তেসীয় স্থানাংক এবং পোলার স্থানাংকঃ
এখানে, দ্বিমাত্রিক জ্যামিতিতে বিন্দুর দুই প্রকারের স্থানাংক আলোচনা করা হয়েছে। যেমনঃ কার্তেসীয় স্থানাংক এবং পোলার স্থানাংক।
১। কার্তেসীয় স্থানাংকঃ পরস্পর সমকোণে ছেদকৃত একজোড়া সরলরেখার সাপেক্ষে কোন বিন্দুর স্থানাঙ্ককে আয়তাকার কার্তেসীয় স্থানাঙ্ক বলাহয়। সরলরেখাদ্বয়কে অক্ষরেখা যাদের একটি X-অক্ষ অপরটি Y-অক্ষ এবং তাদের ছেদবিন্দুকে মূল বিন্দু বলা হয়।
cartesian
carte
২। পোলার স্থানাংকঃ কার্তেসীয় স্থানাঙ্কের মূল বিন্দু হতে সরাসরি দূরত্ব এবং ঐ দূরত্ব রেখা X- অক্ষের ধনাত্মক দিকের সহিত যে কোণ উৎপন্ন করে এই দুইয়ের সমন্বয়ে কোন বিন্দুর অবস্থান প্রকাশ করার পদ্ধতিকে পোলার স্থানাঙ্ক বলে।
cartesian
polar
প্রয়োজনীয় এবং স্মরণীয় সূত্রসমুহ
poltocart
\(x=r\cos\theta\)
\(y=r\sin\theta\)
carttopol
\(r=\sqrt{x^{2}+y^{2}}\)
\(\theta=tan^{-1}\frac{y}{x}\)
অনুশীলনী \(3.A(i)\) উদাহরণসমুহ
উদাহরণ \(1.\) P বিন্দুর ভূজ 4. X-অক্ষ হতে P বিন্দুর দূরত্ব Y-অক্ষ হতে এর দূরত্বের দ্বিগুণ হলে, P বন্দুর স্থানাঙ্ক নির্ণয় কর।
উত্তরঃ \((4, 8)\) অথবা \((4, -8)\)

উদাহরণ \(2.\) \((-1, -\sqrt{3})\) কার্তেসীয় স্থানাঙ্ককে পোলার স্থানাঙ্কে এবং \((4, \frac{\pi}{4})\) পোলার স্থানাঙ্ককে কার্তেসীয় স্থানাঙ্কে প্রকাশ কর।
উত্তরঃ \((2\sqrt{2}, 2\sqrt{2})\)


উদাহরণ \(3.\) \(r(1+\cos\theta) = 2\) পোলার সমীকরণকে কার্তেসীয় সমীকরণে প্রকাশ কর।
উত্তরঃ \(y^{2}=4-4x\).


উদাহরণ \(4.\) কোন বিন্দুর কার্তেসীয় স্থানাঙ্ক \((-1, \sqrt{3})\) হলে , বিন্দুটির পোলার স্থানাঙ্ক নির্ণয় কর।
উত্তরঃ \((2, \frac{2\pi}{3}\pm2n\pi)\) অথবা \(\{-2, \frac{2\pi}{3}\pm(2n+1\}\pi)\), \(n\in Z\)
উদাহরণ \(5.\) কোন বিন্দুর পোলার স্থানাঙ্ক \((3, 90^{o})\) হলে , বিন্দুটির কার্তেসীয় স্থানাঙ্ক নির্ণয় কর।
উত্তরঃ \((0, 3)\)

উদাহরণ \(6.\) \(x^{2}+y^{2}-2ax=0\) কার্তেসীয় সমীকরণকে পোলার সমীকরণে প্রকাশ কর।
উত্তরঃ \(r=2a\cos\theta\).


উদাহরণ \(7.\) \(r=2a\cos\theta\) পোলার সমীকরণকে কার্তেসীয় সমীকরণে প্রকাশ কর।
উত্তরঃ \(x^{2}+y^{2}-2ax=0\).
অনুশীলনী \(3.A(i)\) / \(Q.1\)-এর প্রশ্নসমূহ
কার্তেসীয় স্থানাঙ্ক থেকে পোলার স্থানাঙ্কে রূপান্তরিত কর।
\(Q.1.(i)\) \((0, 1)\)
উত্তরঃ \((1, \frac{\pi}{2}\pm2n\pi)\) অথবা \(\{-1, \frac{\pi}{2}\pm(2n+1)\pi\}\), \(n\in Z\)

\(Q.1.(iii)\) \((1, 1)\)
উত্তরঃ \((\sqrt{2}, \frac{\pi}{4}\pm2n\pi)\) অথবা \(\{-\sqrt{2} \frac{\pi}{4}\pm(2n+1)\pi\}\), \(n\in Z\)

\(Q.1.(v)\) \((-3, \sqrt{3})\)
উত্তরঃ \((2\sqrt{3}, \frac{5\pi}{6}\pm2n\pi)\) অথবা \(\{-2\sqrt{3}\frac{5\pi}{6}\pm(2n+1)\pi\}\), \(n\in Z\)

\(Q.1.(ii)\) \((-1, -\sqrt{3})\)
উত্তরঃ \((2, \frac{4\pi}{3}\pm2n\pi)\) অথবা \(\{-2, \frac{4\pi}{3}\pm(2n+1)\pi\}\), \(n\in Z\)

\(Q.1.(iv)\) \((\sqrt{3}, 1)\)
উত্তরঃ \((2, \frac{\pi}{6}\pm2n\pi)\) অথবা \(\{-2, \frac{\pi}{6}\pm(2n+1)\pi\}\), \(n\in Z\)
অনুশীলনী \(3.A(i)\) / \(Q.2\)-এর প্রশ্নসমূহ
পোলার স্থানাঙ্ক থেকে কার্তেসীয় স্থানাঙ্কে রূপান্তরিত কর।
\(Q.2.(i)\) \((\sqrt{2}, \frac{5\pi}{4})\)
উত্তরঃ \((-1, -1)\)

\(Q.2.(iii)\) \((\sqrt{2}, -\frac{\pi}{4})\)
উত্তরঃ \((1, -1)\)

\(Q.2.(v)\) \((4, \frac{\pi}{4})\)
উত্তরঃ \((2\sqrt{2}, 2\sqrt{2})\)

\(Q.2.(vii)\) \((1, 225^{o})\)
উত্তরঃ \((-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\)

\(Q.2.(ix)\) \((4, \frac{\pi}{3})\)
উত্তরঃ \((2, 2\sqrt{3})\)
\(Q.2.(ii)\) \((-2, 120^{o})\)
উত্তরঃ \((1, -\sqrt{3})\)

\(Q.2.(iv)\) \((2, \frac{\pi}{3})\)
উত্তরঃ \((1, \sqrt{3})\)

\(Q.2.(vi)\) \((3, 150^{o})\)
উত্তরঃ \((-\frac{3\sqrt{3}}{2}, \frac{3}{2})\)

\(Q.2.(viii)\) \((2, 270^{o})\)
উত্তরঃ \((0, -1)\)

Please leave your question below

2 Question(s)
imonhaider
October 29, 2019, 12:15 am
\[\frac{d}{dx}(e^{x^2})=?\]
Reply
Tanmoy
October 28, 2019, 11:53 pm
\[\int{\frac{dx}{1+x^2}}=? \]
Reply

Post List

MATH. LIST
Geometry 11 and 12 standard
Algebra 11 and 12 standard
    No post available in this Category !
Trigonometry 11 and 12 standard
    No post available in this Category !
Statistics 11 and 12 standard
    No post available in this Category !
Calculus 11 and 12 standard