এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
- সার সংক্ষেপ
- যৌগিক কোণের ত্রিকোণমিতিক অনুপাত
- \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
- \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
- \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
- \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
- \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
- \(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
- \(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
- \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
- \(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}=\cos^2{B}-\cos^2{A}\)
- \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}=\cos^2{B}-\sin^2{A}\)
- \(\tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\)
- \(\cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\)
- \(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\)
- \(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\)
- \(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\)
- \(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
- অধ্যায় \(7B\)-এর উদাহরণসমুহ
- অধ্যায় \(7B\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
- অধ্যায় \(7B\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(7B\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(7B\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ

সার সংক্ষেপ
যৌগিক কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\) \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\) \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\) \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\) \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\) \(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\) \(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\) \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\) \(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}=\cos^2{B}-\cos^2{A}\) \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}=\cos^2{B}-\sin^2{A}\) \(\tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\) \(\cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\) \(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\) \(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\) \(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\) \(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
যৌগিক কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of compound angles
যৌগিক কোণঃ দুই বা ততোধিক কোণের বীজগাণিতিক সমষ্টিকে যৌগিক কোণ বলে।
যেমনঃ \(A+B, \ A-B, \ A+B-C, \ A-B+C\) ইত্যাদি।
যেমনঃ \(A+B, \ A-B, \ A+B-C, \ A-B+C\) ইত্যাদি।
প্রয়োজনীয় ও স্বরণীয় সূত্রসমূহ
Necessary and memorable formulas
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\) \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\) \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\) \(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\) \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}=\cos^2{B}-\cos^2{A}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}=\cos^2{B}-\sin^2{A}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\) \(A, \ B\) ও \(C\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B+C)\lt90^{o}\)
\(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\) \(A, \ B\) ও \(C\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B+C)\lt90^{o}\)
\(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\) \(A, \ B\) ও \(C\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B+C)\lt90^{o}\)
\(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\) \(A, \ B\) ও \(C\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B+C)\lt90^{o}\)
\(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(A+B\lt90^{o}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\) \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\) প্রমাণঃ
মনে করি, কোনো ঘূর্ণায়মান রশ্মি আদি অবস্থান \(OX\) হতে \(O\) বিন্দুর সাপেক্ষে ঘড়ির কাঁটার ঘূর্ণনের বিপরীত দিকে ঘুরে \(\angle{XOY}=A, \ (A\lt90^{o})\) এবং একই দিকে আরো ঘুরে
\(\angle{YOZ}=B, \ (B\lt90^{o})\) কোণ উৎপন্ন করে।
\(\therefore \angle{XOZ}=\angle{XOY}+\angle{YOZ}\)
\(=A+B\)
ঘূর্ণায়মান রেখার শেষ অবস্থান \(OZ\) এর উপর \(P\) যে কোনো বিন্দু নিয়ে \(OX\) এবং \(OY\) রেখার উপর যথাক্রমে \(PQ\) এবং \(PR\) লম্ব অংকন করি। আবার \(R\) বিন্দু হতে \(OX\) এবং \(PQ\) রেখার উপর যথাক্রমে \(RS\) এবং \(RT\) লম্ব অংকন করি।
তাহলে \(QSRT\) একটি আয়তক্ষেত্র,
যার \(RT=QS\) ও \(RS=TQ\)
আবার, \(TR||OX\)
\(OR\) উহাদের ছেদক।
\(\therefore \angle{TRO}=\text{একান্তর }\angle{XOY}=A\)
এখন \(\triangle{PTR}\) ত্রিভুজে
\(\angle{TPR}=90^{o}-\angle{PRT} \) ➜ \(\because \angle{PRO}=90^{o}\)
\(=\angle{TRO} \)
\(=A\)
\(\therefore \angle{TPR}=A\)
\(\triangle{ROS} \)-এ
\(\sin{A}=\frac{RS}{OR}, \ \cos{A}=\frac{OS}{OR}\)
\(\triangle{POR} \)-এ
\(\sin{B}=\frac{PR}{OP}, \ \cos{B}=\frac{OR}{OP}\)
এবং \(\triangle{PTR}\)-এ
\(\sin{A}=\frac{TR}{PR}, \ \cos{A}=\frac{PT}{PR}\)
\(POQ \) সমকোণী ত্রিভুজ থেকে,
\(\angle{POQ}=A+B\)
\(\sin{(A+B)}=\frac{PQ}{OP}\)
\(=\frac{QT+TP}{OP}\)
\(=\frac{RS+TP}{OP}\) ➜ \(\because QT=RS\)
\(=\frac{RS}{OP}+\frac{TP}{OP}\)
\(=\frac{RS}{OR}\times\frac{OR}{OP}+\frac{TP}{PR}\times\frac{PR}{OP}\)
\(=\sin{A}\cos{B}+\cos{A}\sin{B}\) ➜ \(\because \sin{A}=\frac{RS}{OR}\)
\(\cos{B}=\frac{OR}{OP}\)
\(\cos{A}=\frac{PT}{PR}\)
এবং \(\sin{B}=\frac{PR}{OP}\)
\(\therefore \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
আবার, \(\cos{(A+B)}=\frac{OQ}{OP}\)
\(=\frac{OS-QS}{OP}\)
\(=\frac{OS-TR}{OP}\) ➜ \(\because QS=TR\)
\(=\frac{OS}{OP}-\frac{TR}{OP}\)
\(=\frac{OS}{OR}\times\frac{OR}{OP}-\frac{TR}{PR}\times\frac{PR}{OP}\)
\(=\cos{A}\cos{B}-\sin{A}\sin{B}\) ➜ \(\because \cos{A}=\frac{PT}{PR}\)
\(\cos{B}=\frac{OR}{OP}\)
\(\sin{A}=\frac{RS}{OR}\)
এবং \(\sin{B}=\frac{PR}{OP}\)
\(\therefore \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
যেখানে \(\angle{TOQ}=90^{o}\)
\(\angle{OQT}=A, \ \angle{OQP}=B\)
এবং \(QT=1\) একক।
\(PQ=SR\) ও \(PS=QR\)
তাহলে, \(\angle{POQ}=90^{o}-B\)
\(\angle{SOT}=90^{o}-\angle{POQ}\)
\(=90^{o}-(90^{o}-B)\)
\(=90^{o}-90^{o}+B\)
\(=B\)
\(\therefore \angle{SOT}=B\)
\(\angle{TQR}=90^{o}-(A+B)\)
\(\angle{QTR}=90^{o}-\angle{TQR}\)
\(=90^{o}-\{90^{o}-(A+B)\}\)
\(=90^{o}-90^{o}+(A+B)\)
\(\therefore \angle{QTR}=A+B\)
এখন \(\sin{A}=\frac{OT}{QT}\)
\(\Rightarrow \sin{A}=\frac{OT}{1}\) ➜ \(\because QT=1\)
\(\therefore OT=\sin{A}\)
আবার, \(\cos{A}=\frac{OQ}{QT}\)
\(\Rightarrow \cos{A}=\frac{OQ}{1}\) ➜ \(\because QT=1\)
\(\therefore OQ=\cos{A}\)
\(OPQ\) সমকোণী ত্রিভুজ হতে,
\(\sin{B}=\frac{OP}{OQ}\)
\(\Rightarrow OP=OQ\sin{B}\)
\(\therefore OP=\cos{A}\sin{B}\) ➜ \(\because OQ=\cos{A}\)
আবার, \(\cos{B}=\frac{PQ}{OQ}\)
\(\Rightarrow PQ=OQ\cos{B}\)
\(\therefore PQ=\cos{A}\cos{B}\) ➜ \(\because OQ=\cos{A}\)
অনুরূপভাবে, \(OST\) সমকোণী ত্রিভুজ হতে,
\(OS=\sin{A}\cos{B}\)
এবং \(ST=\sin{A}\sin{B}\)
এখন \(TQR\) সমকোণী ত্রিভুজ হতে,
\(\sin{(A+B)}=\sin{QTR}\)
\(=\frac{QR}{QT}\)
\(=\frac{PS}{1}\) ➜ \(\because QR=PS\)
এবং \(QT=1\)
\(=PS\)
\(=OS+OP\)
\(=\sin{A}\cos{B}+\cos{A}\sin{B}\) ➜ \(\because OS=\sin{A}\cos{B}\)
এবং \(OP=\cos{A}\sin{B}\)
\(\therefore \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
আবার, \(\cos{(A+B)}=\cos{QTR}\)
\(=\frac{TR}{QT}\)
\(=\frac{TR}{1}\) ➜ \(\because QT=1\)
\(=TR\)
\(=RS-ST\)
\(=PQ-ST\) ➜ \(\because RS=PQ\)
\(=\cos{A}\cos{B}-\sin{A}\sin{B}\) ➜ \(\because PQ=\cos{A}\cos{B}\)
এবং \(ST=\sin{A}\sin{B}\)
\(\therefore \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\angle{YOZ}=B, \ (B\lt90^{o})\) কোণ উৎপন্ন করে।
\(\therefore \angle{XOZ}=\angle{XOY}+\angle{YOZ}\)
\(=A+B\)
ঘূর্ণায়মান রেখার শেষ অবস্থান \(OZ\) এর উপর \(P\) যে কোনো বিন্দু নিয়ে \(OX\) এবং \(OY\) রেখার উপর যথাক্রমে \(PQ\) এবং \(PR\) লম্ব অংকন করি। আবার \(R\) বিন্দু হতে \(OX\) এবং \(PQ\) রেখার উপর যথাক্রমে \(RS\) এবং \(RT\) লম্ব অংকন করি।
তাহলে \(QSRT\) একটি আয়তক্ষেত্র,

যার \(RT=QS\) ও \(RS=TQ\)
আবার, \(TR||OX\)
\(OR\) উহাদের ছেদক।
\(\therefore \angle{TRO}=\text{একান্তর }\angle{XOY}=A\)
এখন \(\triangle{PTR}\) ত্রিভুজে
\(\angle{TPR}=90^{o}-\angle{PRT} \) ➜ \(\because \angle{PRO}=90^{o}\)
\(=\angle{TRO} \)
\(=A\)
\(\therefore \angle{TPR}=A\)
\(\triangle{ROS} \)-এ
\(\sin{A}=\frac{RS}{OR}, \ \cos{A}=\frac{OS}{OR}\)
\(\triangle{POR} \)-এ
\(\sin{B}=\frac{PR}{OP}, \ \cos{B}=\frac{OR}{OP}\)
এবং \(\triangle{PTR}\)-এ
\(\sin{A}=\frac{TR}{PR}, \ \cos{A}=\frac{PT}{PR}\)
\(POQ \) সমকোণী ত্রিভুজ থেকে,
\(\angle{POQ}=A+B\)
\(\sin{(A+B)}=\frac{PQ}{OP}\)
\(=\frac{QT+TP}{OP}\)
\(=\frac{RS+TP}{OP}\) ➜ \(\because QT=RS\)
\(=\frac{RS}{OP}+\frac{TP}{OP}\)
\(=\frac{RS}{OR}\times\frac{OR}{OP}+\frac{TP}{PR}\times\frac{PR}{OP}\)
\(=\sin{A}\cos{B}+\cos{A}\sin{B}\) ➜ \(\because \sin{A}=\frac{RS}{OR}\)
\(\cos{B}=\frac{OR}{OP}\)
\(\cos{A}=\frac{PT}{PR}\)
এবং \(\sin{B}=\frac{PR}{OP}\)
\(\therefore \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
আবার, \(\cos{(A+B)}=\frac{OQ}{OP}\)
\(=\frac{OS-QS}{OP}\)
\(=\frac{OS-TR}{OP}\) ➜ \(\because QS=TR\)
\(=\frac{OS}{OP}-\frac{TR}{OP}\)
\(=\frac{OS}{OR}\times\frac{OR}{OP}-\frac{TR}{PR}\times\frac{PR}{OP}\)
\(=\cos{A}\cos{B}-\sin{A}\sin{B}\) ➜ \(\because \cos{A}=\frac{PT}{PR}\)
\(\cos{B}=\frac{OR}{OP}\)
\(\sin{A}=\frac{RS}{OR}\)
এবং \(\sin{B}=\frac{PR}{OP}\)
\(\therefore \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
বিকল্প পদ্ধতিঃ
মনে করি, \(PQRS\) আয়তক্ষেত্রে \(TOQ\) সমকোণী ত্রিভুজ অবস্থিত, যেখানে \(\angle{TOQ}=90^{o}\)

\(\angle{OQT}=A, \ \angle{OQP}=B\)
এবং \(QT=1\) একক।
\(PQ=SR\) ও \(PS=QR\)
তাহলে, \(\angle{POQ}=90^{o}-B\)
\(\angle{SOT}=90^{o}-\angle{POQ}\)
\(=90^{o}-(90^{o}-B)\)
\(=90^{o}-90^{o}+B\)
\(=B\)
\(\therefore \angle{SOT}=B\)
\(\angle{TQR}=90^{o}-(A+B)\)
\(\angle{QTR}=90^{o}-\angle{TQR}\)
\(=90^{o}-\{90^{o}-(A+B)\}\)
\(=90^{o}-90^{o}+(A+B)\)
\(\therefore \angle{QTR}=A+B\)
এখন \(\sin{A}=\frac{OT}{QT}\)
\(\Rightarrow \sin{A}=\frac{OT}{1}\) ➜ \(\because QT=1\)
\(\therefore OT=\sin{A}\)
আবার, \(\cos{A}=\frac{OQ}{QT}\)
\(\Rightarrow \cos{A}=\frac{OQ}{1}\) ➜ \(\because QT=1\)
\(\therefore OQ=\cos{A}\)
\(OPQ\) সমকোণী ত্রিভুজ হতে,
\(\sin{B}=\frac{OP}{OQ}\)
\(\Rightarrow OP=OQ\sin{B}\)
\(\therefore OP=\cos{A}\sin{B}\) ➜ \(\because OQ=\cos{A}\)
আবার, \(\cos{B}=\frac{PQ}{OQ}\)
\(\Rightarrow PQ=OQ\cos{B}\)
\(\therefore PQ=\cos{A}\cos{B}\) ➜ \(\because OQ=\cos{A}\)
অনুরূপভাবে, \(OST\) সমকোণী ত্রিভুজ হতে,
\(OS=\sin{A}\cos{B}\)
এবং \(ST=\sin{A}\sin{B}\)
এখন \(TQR\) সমকোণী ত্রিভুজ হতে,
\(\sin{(A+B)}=\sin{QTR}\)
\(=\frac{QR}{QT}\)
\(=\frac{PS}{1}\) ➜ \(\because QR=PS\)
এবং \(QT=1\)
\(=PS\)
\(=OS+OP\)
\(=\sin{A}\cos{B}+\cos{A}\sin{B}\) ➜ \(\because OS=\sin{A}\cos{B}\)
এবং \(OP=\cos{A}\sin{B}\)
\(\therefore \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
আবার, \(\cos{(A+B)}=\cos{QTR}\)
\(=\frac{TR}{QT}\)
\(=\frac{TR}{1}\) ➜ \(\because QT=1\)
\(=TR\)
\(=RS-ST\)
\(=PQ-ST\) ➜ \(\because RS=PQ\)
\(=\cos{A}\cos{B}-\sin{A}\sin{B}\) ➜ \(\because PQ=\cos{A}\cos{B}\)
এবং \(ST=\sin{A}\sin{B}\)
\(\therefore \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(A+B\lt90^{o}\) ও \(A\gt B\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\) \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\) প্রমাণঃ
মনে করি, কোনো ঘূর্ণায়মান রশ্মি আদি অবস্থান \(OX\) হতে \(O\) বিন্দুর সাপেক্ষে ঘড়ির কাঁটার ঘূর্ণনের বিপরীত দিকে ঘুরে \(\angle{XOY}=A, \ (A\lt90^{o})\) এবং \(OY\) অবস্থান থেকে ঘড়ির কাঁটার ঘূর্ণনের দিকে ঘুরে \(\angle{YOZ}=B, \ (B\lt90^{o})\) কোণ উৎপন্ন করে।
\(\therefore \angle{XOZ}=\angle{XOY}-\angle{YOZ}\)
\(=A-B\)
ঘূর্ণায়মান রেখার শেষ অবস্থান \(OZ\) এর উপর \(P\) যে কোনো বিন্দু নিয়ে \(OX\) এবং \(OY\) রেখার উপর যথাক্রমে \(PQ\) এবং \(PR\) লম্ব অংকন করি। আবার \(R\) বিন্দু হতে \(OX\) এবং \(PQ\) রেখার বর্ধিতাংশের উপর যথাক্রমে \(RS\) এবং \(RT\) লম্ব অংকন করি।
তাহলে \(QSRT\) একটি আয়তক্ষেত্র,
যার \(RT=QS\) ও \(RS=TQ\)
আবার, \(TR||OX\)
\(OY\) উহাদের ছেদক।
\(\therefore \angle{YRT}=\text{অনুরূপ }\angle{XOY}=A\)
এখন \(\triangle{PTR}\) ত্রিভুজে
\(\angle{TPR}=90^{o}-\angle{PRT} \) ➜ \(\because \angle{PRY}=90^{o}\)
\(=\angle{YRT} \)
\(=A\)
\(\therefore \angle{TPR}=A\)
\(\triangle{ROS} \)-এ
\(\sin{A}=\frac{RS}{OR}, \ \cos{A}=\frac{OS}{OR}\)
\(\triangle{POR} \)-এ
\(\sin{B}=\frac{PR}{OP}, \ \cos{B}=\frac{OR}{OP}\)
এবং \(\triangle{PTR}\)-এ
\(\sin{A}=\frac{TR}{PR}, \ \cos{A}=\frac{PT}{PR}\)
\(POQ \) সমকোণী ত্রিভুজ থেকে,
\(\angle{POQ}=A-B\)
\(\sin{(A-B)}=\frac{PQ}{OP}\)
\(=\frac{TQ-PT}{OP}\)
\(=\frac{RS-PT}{OP}\) ➜ \(\because TQ=RS\)
\(=\frac{RS}{OP}-\frac{PT}{OP}\)
\(=\frac{RS}{OR}\times\frac{OR}{OP}-\frac{PT}{PR}\times\frac{PR}{OP}\)
\(=\sin{A}\cos{B}-\cos{A}\sin{B}\) ➜ \(\because \sin{A}=\frac{RS}{OR}\)
\(\cos{B}=\frac{OR}{OP}\)
\(\cos{A}=\frac{PT}{PR}\)
এবং \(\sin{B}=\frac{PR}{OP}\)
\(\therefore \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
আবার, \(\cos{(A-B)}=\frac{OQ}{OP}\)
\(=\frac{OS+QS}{OP}\)
\(=\frac{OS+TR}{OP}\) ➜ \(\because QS=TR\)
\(=\frac{OS}{OP}+\frac{TR}{OP}\)
\(=\frac{OS}{OR}\times\frac{OR}{OP}+\frac{TR}{PR}\times\frac{PR}{OP}\)
\(=\cos{A}\cos{B}+\sin{A}\sin{B}\) ➜ \(\because \cos{A}=\frac{PT}{PR}\)
\(\cos{B}=\frac{OR}{OP}\)
\(\sin{A}=\frac{RS}{OR}\)
এবং \(\sin{B}=\frac{PR}{OP}\)
\(\therefore \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
যেখানে \(\angle{NOQ}=90^{o}\)
\(\angle{OQN}=B, \ \angle{OQR}=A\)
\(\angle{POQ}=\text{একান্তর }\angle{OQR}=A\)
\(\therefore \angle{POQ}=A\)
\(\angle{ONS}=90^{o}-(90^{o}-A)\)
\(=90^{o}-90^{o}+A\)
\(\therefore \angle{ONS}=A\)
এবং \(QN=1\) একক।
\(PQ=SR\) ও \(PS=QR\)
\(\therefore \angle{NQR}=A-B\)
এখন \(\sin{B}=\frac{ON}{QN}\)
\(\Rightarrow \sin{A}=\frac{ON}{1}\) ➜ \(\because QN=1\)
\(\therefore ON=\sin{B}\)
আবার, \(\cos{B}=\frac{OQ}{QN}\)
\(\Rightarrow \cos{B}=\frac{OQ}{1}\) ➜ \(\because QN=1\)
\(\therefore OQ=\cos{B}\)
\(OPQ\) সমকোণী ত্রিভুজ হতে,
\(\cos{A}=\frac{OP}{OQ}\)
\(\Rightarrow OP=OQ\cos{A}\)
\(\therefore OP=\cos{A}\cos{B}\) ➜ \(\because OQ=\cos{B}\)
আবার, \(\sin{A}=\frac{PQ}{OQ}\)
\(\Rightarrow PQ=OQ\sin{A}\)
\(\therefore PQ=\sin{A}\cos{B}\) ➜ \(\because OQ=\cos{B}\)
\(\therefore SR=PQ=\sin{A}\cos{B}\)
অনুরূপভাবে, \(OSN\) সমকোণী ত্রিভুজ হতে,
\(OS=\sin{A}\sin{B}\)
এবং \(SN=\cos{A}\sin{B}\)
এখন \(NQR\) সমকোণী ত্রিভুজ হতে,
\(\sin{(A-B)}=\sin{NQR}\)
\(=\frac{NR}{NQ}\)
\(=\frac{NR}{1}\) ➜ \(\because NQ=1\)
\(=NR\)
\(=SR-SN\)
\(=\sin{A}\cos{B}-\cos{A}\sin{B}\) ➜ \(\because SR=\sin{A}\cos{B}\)
এবং \(SN=\cos{A}\sin{B}\)
\(\therefore \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
আবার, \(\cos{(A-B)}=\cos{NQR}\)
\(=\frac{QR}{QN}\)
\(=\frac{PS}{1}\) ➜ \(\because QN=1\)
\(QR=PS\)
\(=PS\)
\(=OP+OS\)
\(=\cos{A}\cos{B}+\sin{A}\sin{B}\) ➜ \(\because OP=\cos{A}\cos{B}\)
এবং \(OS=\sin{A}\sin{B}\)
\(\therefore \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\therefore \angle{XOZ}=\angle{XOY}-\angle{YOZ}\)
\(=A-B\)
ঘূর্ণায়মান রেখার শেষ অবস্থান \(OZ\) এর উপর \(P\) যে কোনো বিন্দু নিয়ে \(OX\) এবং \(OY\) রেখার উপর যথাক্রমে \(PQ\) এবং \(PR\) লম্ব অংকন করি। আবার \(R\) বিন্দু হতে \(OX\) এবং \(PQ\) রেখার বর্ধিতাংশের উপর যথাক্রমে \(RS\) এবং \(RT\) লম্ব অংকন করি।
তাহলে \(QSRT\) একটি আয়তক্ষেত্র,

যার \(RT=QS\) ও \(RS=TQ\)
আবার, \(TR||OX\)
\(OY\) উহাদের ছেদক।
\(\therefore \angle{YRT}=\text{অনুরূপ }\angle{XOY}=A\)
এখন \(\triangle{PTR}\) ত্রিভুজে
\(\angle{TPR}=90^{o}-\angle{PRT} \) ➜ \(\because \angle{PRY}=90^{o}\)
\(=\angle{YRT} \)
\(=A\)
\(\therefore \angle{TPR}=A\)
\(\triangle{ROS} \)-এ
\(\sin{A}=\frac{RS}{OR}, \ \cos{A}=\frac{OS}{OR}\)
\(\triangle{POR} \)-এ
\(\sin{B}=\frac{PR}{OP}, \ \cos{B}=\frac{OR}{OP}\)
এবং \(\triangle{PTR}\)-এ
\(\sin{A}=\frac{TR}{PR}, \ \cos{A}=\frac{PT}{PR}\)
\(POQ \) সমকোণী ত্রিভুজ থেকে,
\(\angle{POQ}=A-B\)
\(\sin{(A-B)}=\frac{PQ}{OP}\)
\(=\frac{TQ-PT}{OP}\)
\(=\frac{RS-PT}{OP}\) ➜ \(\because TQ=RS\)
\(=\frac{RS}{OP}-\frac{PT}{OP}\)
\(=\frac{RS}{OR}\times\frac{OR}{OP}-\frac{PT}{PR}\times\frac{PR}{OP}\)
\(=\sin{A}\cos{B}-\cos{A}\sin{B}\) ➜ \(\because \sin{A}=\frac{RS}{OR}\)
\(\cos{B}=\frac{OR}{OP}\)
\(\cos{A}=\frac{PT}{PR}\)
এবং \(\sin{B}=\frac{PR}{OP}\)
\(\therefore \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
আবার, \(\cos{(A-B)}=\frac{OQ}{OP}\)
\(=\frac{OS+QS}{OP}\)
\(=\frac{OS+TR}{OP}\) ➜ \(\because QS=TR\)
\(=\frac{OS}{OP}+\frac{TR}{OP}\)
\(=\frac{OS}{OR}\times\frac{OR}{OP}+\frac{TR}{PR}\times\frac{PR}{OP}\)
\(=\cos{A}\cos{B}+\sin{A}\sin{B}\) ➜ \(\because \cos{A}=\frac{PT}{PR}\)
\(\cos{B}=\frac{OR}{OP}\)
\(\sin{A}=\frac{RS}{OR}\)
এবং \(\sin{B}=\frac{PR}{OP}\)
\(\therefore \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
বিকল্প পদ্ধতিঃ
মনে করি, \(PQRS\) আয়তক্ষেত্রে \(NOQ\) সমকোণী ত্রিভুজ অবস্থিত, যেখানে \(\angle{NOQ}=90^{o}\)

\(\angle{OQN}=B, \ \angle{OQR}=A\)
\(\angle{POQ}=\text{একান্তর }\angle{OQR}=A\)
\(\therefore \angle{POQ}=A\)
\(\angle{ONS}=90^{o}-(90^{o}-A)\)
\(=90^{o}-90^{o}+A\)
\(\therefore \angle{ONS}=A\)
এবং \(QN=1\) একক।
\(PQ=SR\) ও \(PS=QR\)
\(\therefore \angle{NQR}=A-B\)
এখন \(\sin{B}=\frac{ON}{QN}\)
\(\Rightarrow \sin{A}=\frac{ON}{1}\) ➜ \(\because QN=1\)
\(\therefore ON=\sin{B}\)
আবার, \(\cos{B}=\frac{OQ}{QN}\)
\(\Rightarrow \cos{B}=\frac{OQ}{1}\) ➜ \(\because QN=1\)
\(\therefore OQ=\cos{B}\)
\(OPQ\) সমকোণী ত্রিভুজ হতে,
\(\cos{A}=\frac{OP}{OQ}\)
\(\Rightarrow OP=OQ\cos{A}\)
\(\therefore OP=\cos{A}\cos{B}\) ➜ \(\because OQ=\cos{B}\)
আবার, \(\sin{A}=\frac{PQ}{OQ}\)
\(\Rightarrow PQ=OQ\sin{A}\)
\(\therefore PQ=\sin{A}\cos{B}\) ➜ \(\because OQ=\cos{B}\)
\(\therefore SR=PQ=\sin{A}\cos{B}\)
অনুরূপভাবে, \(OSN\) সমকোণী ত্রিভুজ হতে,
\(OS=\sin{A}\sin{B}\)
এবং \(SN=\cos{A}\sin{B}\)
এখন \(NQR\) সমকোণী ত্রিভুজ হতে,
\(\sin{(A-B)}=\sin{NQR}\)
\(=\frac{NR}{NQ}\)
\(=\frac{NR}{1}\) ➜ \(\because NQ=1\)
\(=NR\)
\(=SR-SN\)
\(=\sin{A}\cos{B}-\cos{A}\sin{B}\) ➜ \(\because SR=\sin{A}\cos{B}\)
এবং \(SN=\cos{A}\sin{B}\)
\(\therefore \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
আবার, \(\cos{(A-B)}=\cos{NQR}\)
\(=\frac{QR}{QN}\)
\(=\frac{PS}{1}\) ➜ \(\because QN=1\)
\(QR=PS\)
\(=PS\)
\(=OP+OS\)
\(=\cos{A}\cos{B}+\sin{A}\sin{B}\) ➜ \(\because OP=\cos{A}\cos{B}\)
এবং \(OS=\sin{A}\sin{B}\)
\(\therefore \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(A+B\lt90^{o}\) ও \(A\gt B\)
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\) \(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এখন, \(\tan{(A+B)}=\frac{\sin{(A+B)}}{\cos{(A+B)}}\)
\(=\frac{\sin{A}\cos{B}+\cos{A}\sin{B}}{\cos{A}\cos{B}-\sin{A}\sin{B}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{\frac{\sin{A}\cos{B}}{\cos{A}\cos{B}}+\frac{\cos{A}\sin{B}}{\cos{A}\cos{B}}}{\frac{\cos{A}\cos{B}}{\cos{A}\cos{B}}-\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}}\) ➜ লব ও হরের সহিত \(\cos{A}\cos{B}\) ভাগ করে।
\(=\frac{\frac{\sin{A}}{\cos{A}}+\frac{\sin{B}}{\cos{B}}}{1-\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}}\)
\(=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\frac{\sin{B}}{\cos{B}}=\tan{B}\)
\(\therefore \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
আবার,
আমরা জানি,
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এখন, \(\tan{(A-B)}=\frac{\sin{(A-B)}}{\cos{(A-B)}}\)
\(=\frac{\sin{A}\cos{B}-\cos{A}\sin{B}}{\cos{A}\cos{B}+\sin{A}\sin{B}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
এবং \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(=\frac{\frac{\sin{A}\cos{B}}{\cos{A}\cos{B}}-\frac{\cos{A}\sin{B}}{\cos{A}\cos{B}}}{\frac{\cos{A}\cos{B}}{\cos{A}\cos{B}}+\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}}\) ➜ লব ও হরের সহিত \(\cos{A}\cos{B}\) ভাগ করে।
\(=\frac{\frac{\sin{A}}{\cos{A}}-\frac{\sin{B}}{\cos{B}}}{1+\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}}\)
\(=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\frac{\sin{B}}{\cos{B}}=\tan{B}\)
\(\therefore \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এখন, \(\tan{(A+B)}=\frac{\sin{(A+B)}}{\cos{(A+B)}}\)
\(=\frac{\sin{A}\cos{B}+\cos{A}\sin{B}}{\cos{A}\cos{B}-\sin{A}\sin{B}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{\frac{\sin{A}\cos{B}}{\cos{A}\cos{B}}+\frac{\cos{A}\sin{B}}{\cos{A}\cos{B}}}{\frac{\cos{A}\cos{B}}{\cos{A}\cos{B}}-\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}}\) ➜ লব ও হরের সহিত \(\cos{A}\cos{B}\) ভাগ করে।
\(=\frac{\frac{\sin{A}}{\cos{A}}+\frac{\sin{B}}{\cos{B}}}{1-\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}}\)
\(=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\frac{\sin{B}}{\cos{B}}=\tan{B}\)
\(\therefore \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
আবার,
আমরা জানি,
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এখন, \(\tan{(A-B)}=\frac{\sin{(A-B)}}{\cos{(A-B)}}\)
\(=\frac{\sin{A}\cos{B}-\cos{A}\sin{B}}{\cos{A}\cos{B}+\sin{A}\sin{B}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
এবং \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(=\frac{\frac{\sin{A}\cos{B}}{\cos{A}\cos{B}}-\frac{\cos{A}\sin{B}}{\cos{A}\cos{B}}}{\frac{\cos{A}\cos{B}}{\cos{A}\cos{B}}+\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}}\) ➜ লব ও হরের সহিত \(\cos{A}\cos{B}\) ভাগ করে।
\(=\frac{\frac{\sin{A}}{\cos{A}}-\frac{\sin{B}}{\cos{B}}}{1+\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}}\)
\(=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\frac{\sin{B}}{\cos{B}}=\tan{B}\)
\(\therefore \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(A+B\lt90^{o}\) ও \(A\gt B\)
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\) \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এখন, \(\cot{(A+B)}=\frac{\cos{(A+B)}}{\sin{(A+B)}}\)
\(=\frac{\cos{A}\cos{B}-\sin{A}\sin{B}}{\sin{A}\cos{B}+\cos{A}\sin{B}}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\frac{\frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}-\frac{\sin{A}\sin{B}}{\sin{A}\sin{B}}}{\frac{\sin{A}\cos{B}}{\sin{A}\sin{B}}+\frac{\cos{A}\sin{B}}{\sin{A}\sin{B}}}\) ➜ লব ও হরের সহিত \(\sin{A}\sin{B}\) ভাগ করে।
\(=\frac{\frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}-1}{\frac{\cos{B}}{\sin{B}}+\frac{\cos{A}}{\sin{A}}}\)
\(=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\) ➜ \(\because \frac{\cos{B}}{\sin{B}}=\cot{B}\)
এবং \(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\therefore \cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
আবার,
আমরা জানি,
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এখন, \(\cot{(A-B)}=\frac{\cos{(A-B)}}{\sin{(A-B)}}\)
\(=\frac{\cos{A}\cos{B}+\sin{A}\sin{B}}{\sin{A}\cos{B}-\cos{A}\sin{B}}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{\frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}+\frac{\sin{A}\sin{B}}{\sin{A}\sin{B}}}{\frac{\sin{A}\cos{B}}{\sin{A}\sin{B}}-\frac{\cos{A}\sin{B}}{\sin{A}\sin{B}}}\) ➜ লব ও হরের সহিত \(\sin{A}\sin{B}\) ভাগ করে।
\(=\frac{\frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}+1}{\frac{\cos{B}}{\sin{B}}-\frac{\cos{A}}{\sin{A}}}\)
\(=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\) ➜ \(\because \frac{\cos{B}}{\sin{B}}=\cot{B}\)
এবং \(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\therefore \cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এখন, \(\cot{(A+B)}=\frac{\cos{(A+B)}}{\sin{(A+B)}}\)
\(=\frac{\cos{A}\cos{B}-\sin{A}\sin{B}}{\sin{A}\cos{B}+\cos{A}\sin{B}}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\frac{\frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}-\frac{\sin{A}\sin{B}}{\sin{A}\sin{B}}}{\frac{\sin{A}\cos{B}}{\sin{A}\sin{B}}+\frac{\cos{A}\sin{B}}{\sin{A}\sin{B}}}\) ➜ লব ও হরের সহিত \(\sin{A}\sin{B}\) ভাগ করে।
\(=\frac{\frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}-1}{\frac{\cos{B}}{\sin{B}}+\frac{\cos{A}}{\sin{A}}}\)
\(=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\) ➜ \(\because \frac{\cos{B}}{\sin{B}}=\cot{B}\)
এবং \(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\therefore \cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
আবার,
আমরা জানি,
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এখন, \(\cot{(A-B)}=\frac{\cos{(A-B)}}{\sin{(A-B)}}\)
\(=\frac{\cos{A}\cos{B}+\sin{A}\sin{B}}{\sin{A}\cos{B}-\cos{A}\sin{B}}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{\frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}+\frac{\sin{A}\sin{B}}{\sin{A}\sin{B}}}{\frac{\sin{A}\cos{B}}{\sin{A}\sin{B}}-\frac{\cos{A}\sin{B}}{\sin{A}\sin{B}}}\) ➜ লব ও হরের সহিত \(\sin{A}\sin{B}\) ভাগ করে।
\(=\frac{\frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}+1}{\frac{\cos{B}}{\sin{B}}-\frac{\cos{A}}{\sin{A}}}\)
\(=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\) ➜ \(\because \frac{\cos{B}}{\sin{B}}=\cot{B}\)
এবং \(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\therefore \cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(A+B\lt90^{o}\) ও \(A\gt B\)
\(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}=\cos^2{B}-\cos^2{A}\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
এখন, \(\sin{(A+B)}\sin{(A-B)}=(\sin{A}\cos{B}+\cos{A}\sin{B})(\sin{A}\cos{B}-\cos{A}\sin{B})\)
\(=\sin^2{A}\cos^2{B}-\cos^2{A}\sin^2{B}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\sin^2{A}(1-\sin^2{B})-(1-\sin^2{A})\sin^2{B}\) ➜ \(\because \cos^2{B}=1-\sin^2{B}\)
এবং \(\cos^2{A}=1-\sin^2{A}\)
\(=\sin^2{A}-\sin^2{A}\sin^2{B}-\sin^2{B}+\sin^2{A}\sin^2{B}\)
\(=\sin^2{A}-\sin^2{B}\)
\(\therefore \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=1-\cos^2{A}-1+\cos^2{B}\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
এবং \(\sin^2{B}=1-\cos^2{B}\)
\(=-\cos^2{A}+\cos^2{B}\)
\(=\cos^2{B}-\cos^2{A}\)
\(\therefore \sin{(A+B)}\sin{(A-B)}=\cos^2{B}-\cos^2{A}\)
\(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}=\cos^2{B}-\cos^2{A}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
এখন, \(\sin{(A+B)}\sin{(A-B)}=(\sin{A}\cos{B}+\cos{A}\sin{B})(\sin{A}\cos{B}-\cos{A}\sin{B})\)
\(=\sin^2{A}\cos^2{B}-\cos^2{A}\sin^2{B}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\sin^2{A}(1-\sin^2{B})-(1-\sin^2{A})\sin^2{B}\) ➜ \(\because \cos^2{B}=1-\sin^2{B}\)
এবং \(\cos^2{A}=1-\sin^2{A}\)
\(=\sin^2{A}-\sin^2{A}\sin^2{B}-\sin^2{B}+\sin^2{A}\sin^2{B}\)
\(=\sin^2{A}-\sin^2{B}\)
\(\therefore \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=1-\cos^2{A}-1+\cos^2{B}\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
এবং \(\sin^2{B}=1-\cos^2{B}\)
\(=-\cos^2{A}+\cos^2{B}\)
\(=\cos^2{B}-\cos^2{A}\)
\(\therefore \sin{(A+B)}\sin{(A-B)}=\cos^2{B}-\cos^2{A}\)
\(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}=\cos^2{B}-\cos^2{A}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(A+B\lt90^{o}\) ও \(A\gt B\)
\(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}=\cos^2{B}-\sin^2{A}\) প্রমাণঃ
আমরা জানি,
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এখন, \(\cos{(A+B)}\cos{(A-B)}=(\cos{A}\cos{B}-\sin{A}\sin{B})(\cos{A}\cos{B}+\sin{A}\sin{B})\)
\(=\cos^2{A}\cos^2{B}-\sin^2{A}\sin^2{B}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(=\cos^2{A}\cos^2{B}-(1-\cos^2{A})(1-\cos^2{B})\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
এবং \(\sin^2{B}=1-\cos^2{B}\)
\(=\cos^2{A}\cos^2{B}-(1-\cos^2{A}-\cos^2{B}+\cos^2{A}\cos^2{B})\)
\(=\cos^2{A}\cos^2{B}-1+\cos^2{A}+\cos^2{B}-\cos^2{A}\cos^2{B}\)
\(=-1+\cos^2{A}+\cos^2{B}\)
\(=\cos^2{A}-(1-\cos^2{B})\)
\(=\cos^2{A}-\sin^2{B}\) ➜ \(\because 1-\cos^2{B}=\sin^2{B}\)
\(\therefore \cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=1-\sin^2{A}-(1-\cos^2{B})\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
এবং \(\cos^2{B}=1-\sin^2{B}\)
\(=1-\sin^2{A}-1+\cos^2{B}\)
\(=-\sin^2{A}+\cos^2{B}\)
\(=\cos^2{B}-\sin^2{A}\)
\(\therefore \cos{(A+B)}\cos{(A-B)}=\cos^2{B}-\sin^2{A}\)
\(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}=\cos^2{B}-\sin^2{A}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এখন, \(\cos{(A+B)}\cos{(A-B)}=(\cos{A}\cos{B}-\sin{A}\sin{B})(\cos{A}\cos{B}+\sin{A}\sin{B})\)
\(=\cos^2{A}\cos^2{B}-\sin^2{A}\sin^2{B}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(=\cos^2{A}\cos^2{B}-(1-\cos^2{A})(1-\cos^2{B})\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
এবং \(\sin^2{B}=1-\cos^2{B}\)
\(=\cos^2{A}\cos^2{B}-(1-\cos^2{A}-\cos^2{B}+\cos^2{A}\cos^2{B})\)
\(=\cos^2{A}\cos^2{B}-1+\cos^2{A}+\cos^2{B}-\cos^2{A}\cos^2{B}\)
\(=-1+\cos^2{A}+\cos^2{B}\)
\(=\cos^2{A}-(1-\cos^2{B})\)
\(=\cos^2{A}-\sin^2{B}\) ➜ \(\because 1-\cos^2{B}=\sin^2{B}\)
\(\therefore \cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=1-\sin^2{A}-(1-\cos^2{B})\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
এবং \(\cos^2{B}=1-\sin^2{B}\)
\(=1-\sin^2{A}-1+\cos^2{B}\)
\(=-\sin^2{A}+\cos^2{B}\)
\(=\cos^2{B}-\sin^2{A}\)
\(\therefore \cos{(A+B)}\cos{(A-B)}=\cos^2{B}-\sin^2{A}\)
\(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}=\cos^2{B}-\sin^2{A}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(A+B\lt90^{o}\) ও \(A\gt B\)
\(\tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\) প্রমাণঃ
আমরা জানি,
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
এখন, \(\tan{(A+B)}\tan{(A-B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\times\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{(\tan{A}+\tan{B})(\tan{A}-\tan{B})}{(1-\tan{A}\tan{B})(1+\tan{A}\tan{B})}\)
\(=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(\therefore \tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\)
\(\tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\)
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
এখন, \(\tan{(A+B)}\tan{(A-B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\times\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{(\tan{A}+\tan{B})(\tan{A}-\tan{B})}{(1-\tan{A}\tan{B})(1+\tan{A}\tan{B})}\)
\(=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(\therefore \tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\)
\(\tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(A+B\lt90^{o}\) ও \(A\gt B\)
\(\cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\) প্রমাণঃ
আমরা জানি,
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
এখন, \(\cot{(A+B)}\cot{(A-B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\times\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(=\frac{(\cot{A}\cot{B}-1)(\cot{A}\cot{B}+1)}{(\cot{B}+\cot{A})(\cot{B}-\cot{A})}\)
\(=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(\therefore \cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\)
\(\cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\)
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
এখন, \(\cot{(A+B)}\cot{(A-B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\times\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(=\frac{(\cot{A}\cot{B}-1)(\cot{A}\cot{B}+1)}{(\cot{B}+\cot{A})(\cot{B}-\cot{A})}\)
\(=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(\therefore \cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\)
\(\cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\)
\(A, \ B\) ও \(C\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B+C)\lt90^{o}\)
\(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এখন, \(\sin{(A+B+C)}=\sin{\{(A+B)+C\}}\)
\(=\sin{(A+B)}\cos{C}+\cos{(A+B)}\sin{C}\)
\(=(\sin{A}\cos{B}+\cos{A}\sin{B})\cos{C}+(\cos{A}\cos{B}-\sin{A}\sin{B})\sin{C}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\sin{A}\cos{B}\cos{C}+\cos{A}\sin{B}\cos{C}+\cos{A}\cos{B}\sin{C}-\sin{A}\sin{B}\sin{C}\)
\(=\cos{A}\cos{B}\cos{C}\left(\frac{\sin{A}}{\cos{A}}+\frac{\sin{B}}{\cos{B}}+\frac{\sin{C}}{\cos{C}}-\frac{\sin{A}\sin{B}\sin{C}}{\cos{A}\cos{B}\cos{C}}\right)\)
\(=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\) ➜ \(\because \frac{\sin{\theta}}{\cos{\theta}}=\tan{\theta}\)
\(\therefore \sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এখন, \(\sin{(A+B+C)}=\sin{\{(A+B)+C\}}\)
\(=\sin{(A+B)}\cos{C}+\cos{(A+B)}\sin{C}\)
\(=(\sin{A}\cos{B}+\cos{A}\sin{B})\cos{C}+(\cos{A}\cos{B}-\sin{A}\sin{B})\sin{C}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\sin{A}\cos{B}\cos{C}+\cos{A}\sin{B}\cos{C}+\cos{A}\cos{B}\sin{C}-\sin{A}\sin{B}\sin{C}\)
\(=\cos{A}\cos{B}\cos{C}\left(\frac{\sin{A}}{\cos{A}}+\frac{\sin{B}}{\cos{B}}+\frac{\sin{C}}{\cos{C}}-\frac{\sin{A}\sin{B}\sin{C}}{\cos{A}\cos{B}\cos{C}}\right)\)
\(=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\) ➜ \(\because \frac{\sin{\theta}}{\cos{\theta}}=\tan{\theta}\)
\(\therefore \sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(A, \ B\) ও \(C\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B+C)\lt90^{o}\)
\(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\) প্রমাণঃ
আমরা জানি,
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এখন, \(\cos{(A+B+C)}=\cos{\{(A+B)+C\}}\)
\(=\cos{(A+B)}\cos{C}-\sin{(A+B)}\sin{C}\)
\(=(\cos{A}\cos{B}-\sin{A}\sin{B})\cos{C}+(\sin{A}\cos{B}+\cos{A}\sin{B})\sin{C}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\cos{A}\cos{B}\cos{C}-\sin{A}\sin{B}\cos{C}+\sin{A}\cos{B}\sin{C}+\cos{A}\sin{B}\sin{C}\)
\(=\cos{A}\cos{B}\cos{C}\left(1-\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}-\frac{\sin{B}\sin{C}}{\cos{B}\cos{C}}-\frac{\sin{C}\sin{A}}{\cos{C}\cos{A}}\right)\)
\(=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\) ➜ \(\because \frac{\sin{\theta}}{\cos{\theta}}=\tan{\theta}\)
\(\therefore \cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\)
\(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এখন, \(\cos{(A+B+C)}=\cos{\{(A+B)+C\}}\)
\(=\cos{(A+B)}\cos{C}-\sin{(A+B)}\sin{C}\)
\(=(\cos{A}\cos{B}-\sin{A}\sin{B})\cos{C}+(\sin{A}\cos{B}+\cos{A}\sin{B})\sin{C}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\cos{A}\cos{B}\cos{C}-\sin{A}\sin{B}\cos{C}+\sin{A}\cos{B}\sin{C}+\cos{A}\sin{B}\sin{C}\)
\(=\cos{A}\cos{B}\cos{C}\left(1-\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}-\frac{\sin{B}\sin{C}}{\cos{B}\cos{C}}-\frac{\sin{C}\sin{A}}{\cos{C}\cos{A}}\right)\)
\(=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\) ➜ \(\because \frac{\sin{\theta}}{\cos{\theta}}=\tan{\theta}\)
\(\therefore \cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\)
\(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\)
\(A, \ B\) ও \(C\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B+C)\lt90^{o}\)
\(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\)
এখন, \(\tan{(A+B+C)}=\frac{\sin{(A+B+C)}}{\cos{(A+B+C)}}\)
\(=\frac{\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})}{\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})}\)
\(=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\)
\(\therefore \tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\)
\(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\)
\(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\)
এখন, \(\tan{(A+B+C)}=\frac{\sin{(A+B+C)}}{\cos{(A+B+C)}}\)
\(=\frac{\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})}{\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})}\)
\(=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\)
\(\therefore \tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\)
\(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\)
\(A, \ B\) ও \(C\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B+C)\lt90^{o}\)
\(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\) প্রমাণঃ
লেখা যায়,
\(\cot{(A+B+C)}=\cot{\{(A+B)+C\}}\)
\(=\frac{\cot{(A+B)}\cot{C}-1}{\cot{C}+\cot{(A+B)}}\) ➜ \(\because \cot{(P+Q)}=\frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}\)
\(=\frac{\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\cot{C}-1}{\cot{C}+\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}}\) ➜ \(\because \cot{(P+Q)}=\frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}\)
\(=\frac{\frac{\cot{A}\cot{B}\cot{C}-\cot{C}}{\cot{B}+\cot{A}}-1}{\cot{C}+\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}}\)
\(=\frac{\cot{A}\cot{B}\cot{C}-\cot{C}-\cot{B}-\cot{A}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\) ➜ লব ও হরকে \((\cot{B}+\cot{A})\) দ্বারা গুণ করে।
\(\therefore \cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
\(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
\(\cot{(A+B+C)}=\cot{\{(A+B)+C\}}\)
\(=\frac{\cot{(A+B)}\cot{C}-1}{\cot{C}+\cot{(A+B)}}\) ➜ \(\because \cot{(P+Q)}=\frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}\)
\(=\frac{\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\cot{C}-1}{\cot{C}+\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}}\) ➜ \(\because \cot{(P+Q)}=\frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}\)
\(=\frac{\frac{\cot{A}\cot{B}\cot{C}-\cot{C}}{\cot{B}+\cot{A}}-1}{\cot{C}+\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}}\)
\(=\frac{\cot{A}\cot{B}\cot{C}-\cot{C}-\cot{B}-\cot{A}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\) ➜ লব ও হরকে \((\cot{B}+\cot{A})\) দ্বারা গুণ করে।
\(\therefore \cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
\(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
অধ্যায় \(7B\)-এর উদাহরণসমুহ
উদাহরণ \(1.\) মান নির্ণয় করঃ
\(\sin{28^{o}32^{\prime}}\sin{88^{o}32^{\prime}}+\sin{61^{o}28^{\prime}}\sin{1^{o}28^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
উদাহরণ \(2.\) দেখাও যে,
\(\tan{36^{o}}+\tan{9^{o}}+\tan{36^{o}}\tan{9^{o}}=1\)
উদাহরণ \(3.\) মান নির্ণয় করঃ
\(\sin{15^{o}}\)
উত্তরঃ \(\frac{\sqrt{3}-1}{2\sqrt{2}}\)
উদাহরণ \(4.\) যদি \(A+B+C=\pi\) এবং \(\cos{A}=\cos{B}\cos{C}\) হয়, তবে প্রমাণ কর যে,
\((a)\) \(\tan{A}=\tan{B}+\tan{C};\) কুঃ২০১৭, ২০১৩; রাঃ২০১৪; বঃ২০১৩; দিঃ২০১৩ ।
\((b)\) \(\tan{B}\tan{C}=2;\) যঃ২০০৯, ২০০৩; বঃ২০০৫ ।
\(\sin{28^{o}32^{\prime}}\sin{88^{o}32^{\prime}}+\sin{61^{o}28^{\prime}}\sin{1^{o}28^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
উদাহরণ \(2.\) দেখাও যে,
\(\tan{36^{o}}+\tan{9^{o}}+\tan{36^{o}}\tan{9^{o}}=1\)
কুয়েটঃ২০০৪-২০০৫; বঃ২০০৪ ।
উদাহরণ \(3.\) মান নির্ণয় করঃ
\(\sin{15^{o}}\)
উত্তরঃ \(\frac{\sqrt{3}-1}{2\sqrt{2}}\)
কুঃ২০০৫ ।
উদাহরণ \(4.\) যদি \(A+B+C=\pi\) এবং \(\cos{A}=\cos{B}\cos{C}\) হয়, তবে প্রমাণ কর যে,
\((a)\) \(\tan{A}=\tan{B}+\tan{C};\) কুঃ২০১৭, ২০১৩; রাঃ২০১৪; বঃ২০১৩; দিঃ২০১৩ ।
\((b)\) \(\tan{B}\tan{C}=2;\) যঃ২০০৯, ২০০৩; বঃ২০০৫ ।
উদাহরণ \(5.\) মান নির্ণয় করঃ
\(\sin{75^{o}}\)
উত্তরঃ \(\frac{1}{4}(\sqrt{6}+\sqrt{2})\)
উদাহরণ \(6.\) \(A=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) এবং \(B=\tan{54^{o}}\)
\((a)\) প্রমাণ কর যে, \(cosec \ {(x-y)}=\frac{\sec{x}\sec{y}}{\tan{x}-\tan{y}}.\) বিআইটিঃ১৯৯৫-১৯৯৬ ।
\((b)\) প্রমাণ কর যে, \(B=\tan{36^{o}}+2\tan{18^{o}}.\) চুয়েটঃ২০০৪-২০০৫ ।
\((c)\) \(\cot{\theta}=A\) হলে দেখাও যে, \(\frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}.\) ঢাঃ২০০৫ ।
উদাহরণ \(7.\) প্রমাণ কর যে,
\(\cos{A}\sin{(B-C)}+\cos{B}\sin{(C-A)}+\cos{C}\sin{(A-B)}=0\)
উদাহরণ \(8.\) দেখাও যে, \(\cot{\theta}-\cot{2\theta}=cosec \ {2\theta}\)
\(\sin{75^{o}}\)
উত্তরঃ \(\frac{1}{4}(\sqrt{6}+\sqrt{2})\)
উদাহরণ \(6.\) \(A=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) এবং \(B=\tan{54^{o}}\)
\((a)\) প্রমাণ কর যে, \(cosec \ {(x-y)}=\frac{\sec{x}\sec{y}}{\tan{x}-\tan{y}}.\) বিআইটিঃ১৯৯৫-১৯৯৬ ।
\((b)\) প্রমাণ কর যে, \(B=\tan{36^{o}}+2\tan{18^{o}}.\) চুয়েটঃ২০০৪-২০০৫ ।
\((c)\) \(\cot{\theta}=A\) হলে দেখাও যে, \(\frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}.\) ঢাঃ২০০৫ ।
উদাহরণ \(7.\) প্রমাণ কর যে,
\(\cos{A}\sin{(B-C)}+\cos{B}\sin{(C-A)}+\cos{C}\sin{(A-B)}=0\)
উদাহরণ \(8.\) দেখাও যে, \(\cot{\theta}-\cot{2\theta}=cosec \ {2\theta}\)
উদাহরণ \(1.\) মান নির্ণয় করঃ
\(\sin{28^{o}32^{\prime}}\sin{88^{o}32^{\prime}}+\sin{61^{o}28^{\prime}}\sin{1^{o}28^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(\sin{28^{o}32^{\prime}}\sin{88^{o}32^{\prime}}+\sin{61^{o}28^{\prime}}\sin{1^{o}28^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
সমাধানঃ
\((a)\)
প্রদত্ত রাশি \(=\sin{28^{o}32^{\prime}}\sin{88^{o}32^{\prime}}+\sin{61^{o}28^{\prime}}\sin{1^{o}28^{\prime}}\)
\(=\sin{28^{o}32^{\prime}}\sin{(90^{o}\times1-1^{o}28^{\prime})}+\sin{(90^{o}\times1-28^{o}32^{\prime})}\sin{1^{o}28^{\prime}}\)
\(=\sin{28^{o}32^{\prime}}\cos{1^{o}28^{\prime}}+\cos{28^{o}32^{\prime}}\sin{1^{o}28^{\prime}}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\sin{(28^{o}32^{\prime}+1^{o}28^{\prime})}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(=\sin{30^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
প্রদত্ত রাশি \(=\sin{28^{o}32^{\prime}}\sin{88^{o}32^{\prime}}+\sin{61^{o}28^{\prime}}\sin{1^{o}28^{\prime}}\)
\(=\sin{28^{o}32^{\prime}}\sin{(90^{o}\times1-1^{o}28^{\prime})}+\sin{(90^{o}\times1-28^{o}32^{\prime})}\sin{1^{o}28^{\prime}}\)
\(=\sin{28^{o}32^{\prime}}\cos{1^{o}28^{\prime}}+\cos{28^{o}32^{\prime}}\sin{1^{o}28^{\prime}}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\sin{(28^{o}32^{\prime}+1^{o}28^{\prime})}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(=\sin{30^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
উদাহরণ \(2.\) দেখাও যে,
\(\tan{36^{o}}+\tan{9^{o}}+\tan{36^{o}}\tan{9^{o}}=1\)
\(\tan{36^{o}}+\tan{9^{o}}+\tan{36^{o}}\tan{9^{o}}=1\)
কুয়েটঃ২০০৪-২০০৫; বঃ২০০৪ ।
সমাধানঃ
আমরা জানি,
\(\tan{45^{o}}=1\)
\(\Rightarrow \tan{(36^{o}+9^{o})}=1\) ➜ \(\because 45^{o}=36^{o}+9^{o}\)
\(\Rightarrow \frac{\tan{36^{o}}+\tan{9^{o}}}{1-\tan{36^{o}}\tan{9^{o}}}=1\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{36^{o}}+\tan{9^{o}}=1-\tan{36^{o}}\tan{9^{o}}\)
\(\therefore \tan{36^{o}}+\tan{9^{o}}+\tan{36^{o}}\tan{9^{o}}=1\)
(দেখানো হলো)
\(\tan{45^{o}}=1\)
\(\Rightarrow \tan{(36^{o}+9^{o})}=1\) ➜ \(\because 45^{o}=36^{o}+9^{o}\)
\(\Rightarrow \frac{\tan{36^{o}}+\tan{9^{o}}}{1-\tan{36^{o}}\tan{9^{o}}}=1\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{36^{o}}+\tan{9^{o}}=1-\tan{36^{o}}\tan{9^{o}}\)
\(\therefore \tan{36^{o}}+\tan{9^{o}}+\tan{36^{o}}\tan{9^{o}}=1\)
(দেখানো হলো)
উদাহরণ \(3.\) মান নির্ণয় করঃ
\(\sin{15^{o}}\)
উত্তরঃ \(\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\sin{15^{o}}\)
উত্তরঃ \(\frac{\sqrt{3}-1}{2\sqrt{2}}\)
কুঃ২০০৫ ।
সমাধানঃ
প্রদত্ত রাশি \(=\sin{15^{o}}\)
\(=\sin{(45^{o}-30^{o})}\) ➜ \(\because 15^{o}=45^{o}-30^{o}\)
\(=\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\(=\sin{(45^{o}-30^{o})}\) ➜ \(\because 15^{o}=45^{o}-30^{o}\)
\(=\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
ইহাই নির্ণেয় মান।
উদাহরণ \(4.\) যদি \(A+B+C=\pi\) এবং \(\cos{A}=\cos{B}\cos{C}\) হয়, তবে প্রমাণ কর যে,
\((a)\) \(\tan{A}=\tan{B}+\tan{C};\) কুঃ২০১৭, ২০১৩; রাঃ২০১৪; বঃ২০১৩; দিঃ২০১৩ ।
\((b)\) \(\tan{B}\tan{C}=2;\) যঃ২০০৯, ২০০৩; বঃ২০০৫ ।
\((a)\) \(\tan{A}=\tan{B}+\tan{C};\) কুঃ২০১৭, ২০১৩; রাঃ২০১৪; বঃ২০১৩; দিঃ২০১৩ ।
\((b)\) \(\tan{B}\tan{C}=2;\) যঃ২০০৯, ২০০৩; বঃ২০০৫ ।
সমাধানঃ
\((a)\)
দেওয়া আছে,
\(A+B+C=\pi\) এবং \(\cos{A}=\cos{B}\cos{C}\)
\(\Rightarrow A=\pi-(B+C)\)
\(\Rightarrow B+C=\pi-A\)
\(L.S=\tan{A}\)
\(=\tan{\{\pi-(B+C)\}}\)
\(=\tan{\left\{\frac{\pi}{2}\times2-(B+C)\right\}}\)
\(=-\tan{(B+C)}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=-\frac{\tan{B}+\tan{C}}{1-\tan{B}\tan{C}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=-\frac{\tan{B}+\tan{C}}{1-\tan{B}\tan{C}}\)
\(=-(\tan{B}+\tan{C})\frac{1}{1-\frac{\sin{B}\sin{C}}{\cos{B}\cos{C}}}\) ➜ \(\because \tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
\(=-(\tan{B}+\tan{C})\frac{\cos{B}\cos{C}}{\cos{B}\cos{C}-\sin{B}\sin{C}}\) ➜ লব ও হরের সহিত \(\cos{B}\cos{C}\) গুণ করে।
\(=-(\tan{B}+\tan{C})\frac{\cos{A}}{\cos{(B+C)}}\) ➜ \(\because \cos{A}=\cos{B}\cos{C}\)
এবং \(\cos{B}\cos{C}-\sin{B}\sin{C}=\cos{(B+C)}\)
\(=-(\tan{B}+\tan{C})\frac{\cos{A}}{\cos{(\pi-A)}}\)
\(=-(\tan{B}+\tan{C})\frac{\cos{A}}{-\cos{A}}\)
\(=\tan{B}+\tan{C}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\((b)\)
দেওয়া আছে,
\(A+B+C=\pi\) এবং \(\cos{A}=\cos{B}\cos{C}\)
\(\Rightarrow A=\pi-(B+C)\)
\(\Rightarrow \cos{A}=\cos{\{\pi-(B+C)\}}\)
\(\Rightarrow \cos{A}=\cos{\left\{\frac{\pi}{2}\times2-(B+C)\right\}}\)
\(\Rightarrow \cos{A}=-\cos{(B+C)}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(\Rightarrow \cos{B}\cos{C}=-(\cos{B}\cos{C}-\sin{B}\sin{C})\) ➜ \(\because \cos{A}=\cos{B}\cos{C}\)
এবং \(\cos{(B+C)}=\cos{B}\cos{C}-\sin{B}\sin{C}\)
\(\Rightarrow \cos{B}\cos{C}=-\cos{B}\cos{C}+\sin{B}\sin{C}\)
\(\Rightarrow \cos{B}\cos{C}+\cos{B}\cos{C}=\sin{B}\sin{C}\)
\(\Rightarrow 2\cos{B}\cos{C}=\sin{B}\sin{C}\)
\(\Rightarrow \sin{B}\sin{C}=2\cos{B}\cos{C}\)
\(\Rightarrow \frac{\sin{B}\sin{C}}{\cos{B}\cos{C}}=2\)
\(\therefore \tan{B}\tan{C}=2\) ➜ \(\because \frac{\sin{\theta}}{\cos{\theta}}=\tan{\theta}\)
(প্রমাণিত)
দেওয়া আছে,
\(A+B+C=\pi\) এবং \(\cos{A}=\cos{B}\cos{C}\)
\(\Rightarrow A=\pi-(B+C)\)
\(\Rightarrow B+C=\pi-A\)
\(L.S=\tan{A}\)
\(=\tan{\{\pi-(B+C)\}}\)
\(=\tan{\left\{\frac{\pi}{2}\times2-(B+C)\right\}}\)
\(=-\tan{(B+C)}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=-\frac{\tan{B}+\tan{C}}{1-\tan{B}\tan{C}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=-\frac{\tan{B}+\tan{C}}{1-\tan{B}\tan{C}}\)
\(=-(\tan{B}+\tan{C})\frac{1}{1-\frac{\sin{B}\sin{C}}{\cos{B}\cos{C}}}\) ➜ \(\because \tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
\(=-(\tan{B}+\tan{C})\frac{\cos{B}\cos{C}}{\cos{B}\cos{C}-\sin{B}\sin{C}}\) ➜ লব ও হরের সহিত \(\cos{B}\cos{C}\) গুণ করে।
\(=-(\tan{B}+\tan{C})\frac{\cos{A}}{\cos{(B+C)}}\) ➜ \(\because \cos{A}=\cos{B}\cos{C}\)
এবং \(\cos{B}\cos{C}-\sin{B}\sin{C}=\cos{(B+C)}\)
\(=-(\tan{B}+\tan{C})\frac{\cos{A}}{\cos{(\pi-A)}}\)
\(=-(\tan{B}+\tan{C})\frac{\cos{A}}{-\cos{A}}\)
\(=\tan{B}+\tan{C}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\((b)\)
দেওয়া আছে,
\(A+B+C=\pi\) এবং \(\cos{A}=\cos{B}\cos{C}\)
\(\Rightarrow A=\pi-(B+C)\)
\(\Rightarrow \cos{A}=\cos{\{\pi-(B+C)\}}\)
\(\Rightarrow \cos{A}=\cos{\left\{\frac{\pi}{2}\times2-(B+C)\right\}}\)
\(\Rightarrow \cos{A}=-\cos{(B+C)}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(\Rightarrow \cos{B}\cos{C}=-(\cos{B}\cos{C}-\sin{B}\sin{C})\) ➜ \(\because \cos{A}=\cos{B}\cos{C}\)
এবং \(\cos{(B+C)}=\cos{B}\cos{C}-\sin{B}\sin{C}\)
\(\Rightarrow \cos{B}\cos{C}=-\cos{B}\cos{C}+\sin{B}\sin{C}\)
\(\Rightarrow \cos{B}\cos{C}+\cos{B}\cos{C}=\sin{B}\sin{C}\)
\(\Rightarrow 2\cos{B}\cos{C}=\sin{B}\sin{C}\)
\(\Rightarrow \sin{B}\sin{C}=2\cos{B}\cos{C}\)
\(\Rightarrow \frac{\sin{B}\sin{C}}{\cos{B}\cos{C}}=2\)
\(\therefore \tan{B}\tan{C}=2\) ➜ \(\because \frac{\sin{\theta}}{\cos{\theta}}=\tan{\theta}\)
(প্রমাণিত)
উদাহরণ \(5.\) মান নির্ণয় করঃ
\(\sin{75^{o}}\)
উত্তরঃ \(\frac{1}{4}(\sqrt{6}+\sqrt{2})\)
\(\sin{75^{o}}\)
উত্তরঃ \(\frac{1}{4}(\sqrt{6}+\sqrt{2})\)
সমাধানঃ
প্রদত্ত রাশি \(=\sin{75^{o}}\)
\(=\sin{(45^{o}+30^{o})}\) ➜ \(\because 75^{o}=45^{o}+30^{o}\)
\(=\sin{45^{o}}\cos{30^{o}}+\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}\times\sqrt{2}+\sqrt{2}}{2\sqrt{2}\times\sqrt{2}}\) ➜ লব ও হরকে \(\sqrt{2}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{6}+\sqrt{2}}{2\times2}\)
\(=\frac{\sqrt{6}+\sqrt{2}}{4}\)
\(=\frac{1}{4}(\sqrt{6}+\sqrt{2})\)
ইহাই নির্ণেয় মান।
\(=\sin{(45^{o}+30^{o})}\) ➜ \(\because 75^{o}=45^{o}+30^{o}\)
\(=\sin{45^{o}}\cos{30^{o}}+\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}\times\sqrt{2}+\sqrt{2}}{2\sqrt{2}\times\sqrt{2}}\) ➜ লব ও হরকে \(\sqrt{2}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{6}+\sqrt{2}}{2\times2}\)
\(=\frac{\sqrt{6}+\sqrt{2}}{4}\)
\(=\frac{1}{4}(\sqrt{6}+\sqrt{2})\)
ইহাই নির্ণেয় মান।
উদাহরণ \(6.\) \(A=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) এবং \(B=\tan{54^{o}}\)
\((a)\) প্রমাণ কর যে, \(cosec \ {(x-y)}=\frac{\sec{x}\sec{y}}{\tan{x}-\tan{y}}.\) বিআইটিঃ১৯৯৫-১৯৯৬ ।
\((b)\) প্রমাণ কর যে, \(B=\tan{36^{o}}+2\tan{18^{o}}.\) চুয়েটঃ২০০৪-২০০৫ ।
\((c)\) \(\cot{\theta}=A\) হলে দেখাও যে, \(\frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}.\) ঢাঃ২০০৫ ।
\((a)\) প্রমাণ কর যে, \(cosec \ {(x-y)}=\frac{\sec{x}\sec{y}}{\tan{x}-\tan{y}}.\) বিআইটিঃ১৯৯৫-১৯৯৬ ।
\((b)\) প্রমাণ কর যে, \(B=\tan{36^{o}}+2\tan{18^{o}}.\) চুয়েটঃ২০০৪-২০০৫ ।
\((c)\) \(\cot{\theta}=A\) হলে দেখাও যে, \(\frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}.\) ঢাঃ২০০৫ ।
সমাধানঃ
\((a)\)
\(L.S=cosec \ {(x-y)}\)
\(=\frac{1}{\sin{(x-y)}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\sin{x}\cos{y}-\cos{x}\sin{y}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{\frac{1}{\cos{x}\cos{y}}}{\frac{\sin{x}\cos{y}}{\cos{x}\cos{y}}-\frac{\cos{x}\sin{y}}{\cos{x}\cos{y}}}\) ➜ লব ও হরকে \((\cos{x}\cos{y})\) দ্বারা ভাগ করে।
\(=\frac{\sec{x}\sec{y}}{\frac{\sin{x}}{\cos{x}}-\frac{\sin{y}}{\cos{y}}}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=\frac{\sec{x}\sec{y}}{\tan{x}-\tan{y}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\((b)\)
দেওয়া আছে,
\(B=\tan{54^{o}}\)
এখন, \(\tan{54^{o}}=\tan{(36^{o}+18^{o})}\) ➜ \(\because 54^{o}=36^{o}+18^{o}\)
\(\Rightarrow \tan{54^{o}}=\frac{\tan{36^{o}}+\tan{18^{o}}}{1-\tan{36^{o}}\tan{18^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{54^{o}}-\tan{54^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{54^{o}}-\tan{(90^{o}\times1-36^{o})}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because 54^{o}=(90^{o}\times1-36^{o}\)
\(\Rightarrow \tan{54^{o}}-\cot{36^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{54^{o}}-\frac{1}{\tan{36^{o}}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{54^{o}}-\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\)
\(\Rightarrow \tan{54^{o}}=\tan{36^{o}}+\tan{18^{o}}+\tan{18^{o}}\)
\(\therefore B=\tan{36^{o}}+2\tan{18^{o}}\)
(প্রমাণিত)
\((c)\)
দেওয়া আছে,
\(A=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) এবং \(\cot{\theta}=A\)
\(\therefore \cot{\theta}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(\Rightarrow a\sin{x}\cos{\theta}+b\cos{\theta}\sin{y}=a\sin{\theta}\cos{x}-b\sin{\theta}\cos{y}\) ➜ আড় গুণ করে।
\(\Rightarrow -a(\sin{\theta}\cos{x}-\sin{x}\cos{\theta})=-b(\sin{\theta}\cos{y}+\cos{\theta}\sin{y})\)
\(\Rightarrow a\sin{(\theta-x)}=b\sin{(\theta+y)}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\therefore \frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}\)
(প্রমাণিত)
\(L.S=cosec \ {(x-y)}\)
\(=\frac{1}{\sin{(x-y)}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\sin{x}\cos{y}-\cos{x}\sin{y}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{\frac{1}{\cos{x}\cos{y}}}{\frac{\sin{x}\cos{y}}{\cos{x}\cos{y}}-\frac{\cos{x}\sin{y}}{\cos{x}\cos{y}}}\) ➜ লব ও হরকে \((\cos{x}\cos{y})\) দ্বারা ভাগ করে।
\(=\frac{\sec{x}\sec{y}}{\frac{\sin{x}}{\cos{x}}-\frac{\sin{y}}{\cos{y}}}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=\frac{\sec{x}\sec{y}}{\tan{x}-\tan{y}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\((b)\)
দেওয়া আছে,
\(B=\tan{54^{o}}\)
এখন, \(\tan{54^{o}}=\tan{(36^{o}+18^{o})}\) ➜ \(\because 54^{o}=36^{o}+18^{o}\)
\(\Rightarrow \tan{54^{o}}=\frac{\tan{36^{o}}+\tan{18^{o}}}{1-\tan{36^{o}}\tan{18^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{54^{o}}-\tan{54^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{54^{o}}-\tan{(90^{o}\times1-36^{o})}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because 54^{o}=(90^{o}\times1-36^{o}\)
\(\Rightarrow \tan{54^{o}}-\cot{36^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{54^{o}}-\frac{1}{\tan{36^{o}}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{54^{o}}-\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\)
\(\Rightarrow \tan{54^{o}}=\tan{36^{o}}+\tan{18^{o}}+\tan{18^{o}}\)
\(\therefore B=\tan{36^{o}}+2\tan{18^{o}}\)
(প্রমাণিত)
\((c)\)
দেওয়া আছে,
\(A=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) এবং \(\cot{\theta}=A\)
\(\therefore \cot{\theta}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(\Rightarrow a\sin{x}\cos{\theta}+b\cos{\theta}\sin{y}=a\sin{\theta}\cos{x}-b\sin{\theta}\cos{y}\) ➜ আড় গুণ করে।
\(\Rightarrow -a(\sin{\theta}\cos{x}-\sin{x}\cos{\theta})=-b(\sin{\theta}\cos{y}+\cos{\theta}\sin{y})\)
\(\Rightarrow a\sin{(\theta-x)}=b\sin{(\theta+y)}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\therefore \frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}\)
(প্রমাণিত)
উদাহরণ \(7.\) প্রমাণ কর যে,
\(\cos{A}\sin{(B-C)}+\cos{B}\sin{(C-A)}+\cos{C}\sin{(A-B)}=0\)
\(\cos{A}\sin{(B-C)}+\cos{B}\sin{(C-A)}+\cos{C}\sin{(A-B)}=0\)
সমাধানঃ
\(L.S=\cos{A}\sin{(B-C)}+\cos{B}\sin{(C-A)}+\cos{C}\sin{(A-B)}\)
\(=\cos{A}(\sin{B}\cos{C}-\cos{B}\sin{C})+\cos{B}(\sin{C}\cos{A}-\cos{C}\sin{A})+\cos{C}(\sin{A}\cos{B}-\cos{A}\sin{B})\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=\cos{A}\sin{B}\cos{C}-\cos{A}\cos{B}\sin{C}+\cos{A}\cos{B}\sin{C}-\sin{A}\cos{B}\cos{C}+\sin{A}\cos{B}\cos{C}-\cos{A}\sin{B}\cos{C}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{A}(\sin{B}\cos{C}-\cos{B}\sin{C})+\cos{B}(\sin{C}\cos{A}-\cos{C}\sin{A})+\cos{C}(\sin{A}\cos{B}-\cos{A}\sin{B})\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=\cos{A}\sin{B}\cos{C}-\cos{A}\cos{B}\sin{C}+\cos{A}\cos{B}\sin{C}-\sin{A}\cos{B}\cos{C}+\sin{A}\cos{B}\cos{C}-\cos{A}\sin{B}\cos{C}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(8.\) দেখাও যে, \(\cot{\theta}-\cot{2\theta}=cosec \ {2\theta}\)
সমাধানঃ
\(L.S=\cot{\theta}-\cot{2\theta}\)
\(=\frac{\cos{\theta}}{\sin{\theta}}-\frac{\cos{2\theta}}{\sin{2\theta}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{\sin{2\theta}\cos{\theta}-\cos{2\theta}\sin{\theta}}{\sin{\theta}\sin{2\theta}}\)
\(=\frac{\sin{(2\theta-\theta)}}{\sin{\theta}\sin{2\theta}}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\frac{\sin{\theta}}{\sin{\theta}\sin{2\theta}}\)
\(=\frac{1}{\sin{2\theta}}\)
\(=cosec \ {2\theta}\) ➜ \(\because \frac{1}{\sin{A}}=cosec \ {A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{\theta}}{\sin{\theta}}-\frac{\cos{2\theta}}{\sin{2\theta}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{\sin{2\theta}\cos{\theta}-\cos{2\theta}\sin{\theta}}{\sin{\theta}\sin{2\theta}}\)
\(=\frac{\sin{(2\theta-\theta)}}{\sin{\theta}\sin{2\theta}}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\frac{\sin{\theta}}{\sin{\theta}\sin{2\theta}}\)
\(=\frac{1}{\sin{2\theta}}\)
\(=cosec \ {2\theta}\) ➜ \(\because \frac{1}{\sin{A}}=cosec \ {A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7B\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
\(Q.1.(i)\) মান নির্ণয় করঃ
\((a)\) \(\cos{15^{o}}\)
\((b)\) \(\sin{105^{o}}\)
\((c)\) \(cosec \ {375^{o}}\)
\((d)\) \(\cos{75^{o}};\) রাঃ ২০১৯ ।
\((e)\) \(\tan{15^{o}}\)
\((f)\) \(\sec{165^{o}}\)
\((g)\) \(\tan{105^{o}}\)
\((h)\) \(cosec \ {165^{o}}\)
\((i)\) \(\cot{165^{o}}\)
উত্তরঃ \((a) \ \frac{\sqrt{3}+1}{2\sqrt{2}};\) \((b) \ \frac{\sqrt{6}+\sqrt{2}}{4};\) \((c) \ \sqrt{6}+\sqrt{2};\) \((d) \ \frac{\sqrt{3}-1}{2\sqrt{2}};\) \((e) \ 2-\sqrt{3};\) \((f) \ -\frac{4}{\sqrt{6}+\sqrt{2}};\) \((g) \ -(2+\sqrt{3});\) \((h) \ \sqrt{6}+\sqrt{3};\) \((i) \ -(2+\sqrt{3}).\)
উত্তরঃ \(\frac{\sqrt{3}}{2}\)
\(Q.1.(iii)\) \(\sin{78^{o}19^{\prime}}\cos{18^{o}19^{\prime}}-\sin{11^{o}41^{\prime}}\sin{18^{o}19^{\prime}}\)
উত্তরঃ \(\sqrt{\frac{3}{2}}\)
\(Q.1.(iv)\) \(\cos{30^{o}32^{\prime}}\cos{29^{o}28^{\prime}}-\sin{149^{o}28^{\prime}}\sin{29^{o}28^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(v)\) \(\cos{74^{o}33^{\prime}}\cos{14^{o}33^{\prime}}+\cos{75^{o}27^{\prime}}\cos{15^{o}27^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(vi)\) \(\cos{38^{o}15^{\prime}}\sin{68^{o}15^{\prime}}-\cos{51^{o}45^{\prime}}\sin{21^{o}45^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(vii)\) \(\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\cos{80^{o}38^{\prime}}\cos{20^{o}38^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(viii)\) \(\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\cos{73^{o}20^{\prime}}\sin{13^{o}20^{\prime}}\)
উত্তরঃ \(\frac{\sqrt{3}}{2}\)
\(Q.1.(ix)\) \(\cos{36^{o}25^{\prime}}\sin{66^{o}25^{\prime}}-\cos{53^{o}35^{\prime}}\sin{23^{o}35^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(x)\) \(\frac{\tan{65^{o}35^{\prime}}-\cot{69^{o}25^{\prime}}}{1+\tan{65^{o}35^{\prime}}\cot{69^{o}25^{\prime}}}\)
উত্তরঃ \(1\)
\(Q.1.(xi)\) \(\frac{\tan{68^{o}35^{\prime}}-\cot{66^{o}25^{\prime}}}{1+\tan{68^{o}35^{\prime}}\cot{66^{o}25^{\prime}}}\)
উত্তরঃ \(1\)
\((a)\) \(\cos{15^{o}}\)
\((b)\) \(\sin{105^{o}}\)
\((c)\) \(cosec \ {375^{o}}\)
\((d)\) \(\cos{75^{o}};\) রাঃ ২০১৯ ।
\((e)\) \(\tan{15^{o}}\)
\((f)\) \(\sec{165^{o}}\)
\((g)\) \(\tan{105^{o}}\)
\((h)\) \(cosec \ {165^{o}}\)
\((i)\) \(\cot{165^{o}}\)
উত্তরঃ \((a) \ \frac{\sqrt{3}+1}{2\sqrt{2}};\) \((b) \ \frac{\sqrt{6}+\sqrt{2}}{4};\) \((c) \ \sqrt{6}+\sqrt{2};\) \((d) \ \frac{\sqrt{3}-1}{2\sqrt{2}};\) \((e) \ 2-\sqrt{3};\) \((f) \ -\frac{4}{\sqrt{6}+\sqrt{2}};\) \((g) \ -(2+\sqrt{3});\) \((h) \ \sqrt{6}+\sqrt{3};\) \((i) \ -(2+\sqrt{3}).\)
মান নির্ণয় করঃ
\(Q.1.(ii)\) \(\cos{17^{o}40^{\prime}}\sin{77^{o}40^{\prime}}+\cos{107^{o}40^{\prime}}\sin{12^{o}20^{\prime}}\)উত্তরঃ \(\frac{\sqrt{3}}{2}\)
\(Q.1.(iii)\) \(\sin{78^{o}19^{\prime}}\cos{18^{o}19^{\prime}}-\sin{11^{o}41^{\prime}}\sin{18^{o}19^{\prime}}\)
উত্তরঃ \(\sqrt{\frac{3}{2}}\)
চঃ ২০১৯ ।
\(Q.1.(iv)\) \(\cos{30^{o}32^{\prime}}\cos{29^{o}28^{\prime}}-\sin{149^{o}28^{\prime}}\sin{29^{o}28^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
যঃ ২০১৯ ।
\(Q.1.(v)\) \(\cos{74^{o}33^{\prime}}\cos{14^{o}33^{\prime}}+\cos{75^{o}27^{\prime}}\cos{15^{o}27^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(vi)\) \(\cos{38^{o}15^{\prime}}\sin{68^{o}15^{\prime}}-\cos{51^{o}45^{\prime}}\sin{21^{o}45^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(vii)\) \(\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\cos{80^{o}38^{\prime}}\cos{20^{o}38^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(viii)\) \(\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\cos{73^{o}20^{\prime}}\sin{13^{o}20^{\prime}}\)
উত্তরঃ \(\frac{\sqrt{3}}{2}\)
\(Q.1.(ix)\) \(\cos{36^{o}25^{\prime}}\sin{66^{o}25^{\prime}}-\cos{53^{o}35^{\prime}}\sin{23^{o}35^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
\(Q.1.(x)\) \(\frac{\tan{65^{o}35^{\prime}}-\cot{69^{o}25^{\prime}}}{1+\tan{65^{o}35^{\prime}}\cot{69^{o}25^{\prime}}}\)
উত্তরঃ \(1\)
\(Q.1.(xi)\) \(\frac{\tan{68^{o}35^{\prime}}-\cot{66^{o}25^{\prime}}}{1+\tan{68^{o}35^{\prime}}\cot{66^{o}25^{\prime}}}\)
উত্তরঃ \(1\)
মান নির্ণয় করঃ
\(Q.1.(xii)\) \(\frac{\tan{73^{o}23^{\prime}}-\cot{76^{o}37^{\prime}}}{1+\tan{73^{o}23^{\prime}}\cot{76^{o}37^{\prime}}}\)উত্তরঃ \(\sqrt{3}\)
প্রমাণ করঃ
\(Q.1.(xiii)\) \(\tan{75^{o}}=2+\sqrt{3}\) \(Q.1.(xiv)\) \(\cos{68^{o}20^{\prime}}\cos{8^{o}20^{\prime}}+\cos{81^{o}40^{\prime}}\cos{21^{o}40^{\prime}}=\frac{1}{2}\)
\(Q.1.(xv)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\cos{A}=\frac{4}{5},\sin{B}=\frac{5}{13}\) হলে, \(\sin{(A-B)}\) ও \(\cos{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{16}{65}, \frac{33}{65}\)
\(Q.1.(xvi)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\tan{A}=\frac{2}{11},\tan{B}=\frac{7}{24}\) হলে, \(\cot{(A-B)}\) ও \(\tan{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(-\frac{278}{29}, \frac{1}{2}\)
\(Q.1.(xvii)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\sin{A}=\frac{3}{5},\cos{B}=\frac{12}{13}\) হলে, \(\sin{(A-B)}\) ও \(\cos{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{16}{65}, \frac{33}{65}\)
\(Q.1.(xviii)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\cot{A}=\frac{11}{2},\tan{B}=\frac{7}{24}\) হলে, \(\cot{(A-B)}\) ও \(\tan{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(-\frac{278}{29}, \frac{1}{2}\)
\(Q.1.(xix)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\sec{A}=\frac{17}{8},\ cosec \ {B}=\frac{5}{4}\) হলে, \(\sec{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(-\frac{85}{36}\)
\(Q.1.(xx)\) \(\tan{A}\tan{B}=1\) হলে, \((A+B)\) এর মান কত?
উত্তরঃ \(\frac{\pi}{2}\)
\(Q.1.(xxi)\) \(\triangle{ABC}\)-এ \(A+B=105^{o}\) হলে, \(\sin{C}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(Q.1.(xxii)\) \(\sin{(A-B-C)}\) এবং \(\cos{(A-B+C)}\) কে বিস্তৃত কর।
উত্তরঃ \(\cos{A}\cos{B}\cos{C}(\tan{A}-\tan{B}-\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(\cos{A}\cos{B}\cos{C}(1+\tan{A}\tan{B}+\tan{B}\tan{C}-\tan{C}\tan{A})\)
\(Q.1.(xxiii)\) \(\cot{(A+B+C)}\) কে \(\cot{A}, \ \cot{B}, \ \cot{C}\) পদে প্রকাশ কর।
উত্তরঃ \(\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
\(Q.1.(i)\) মান নির্ণয় করঃ
\((a)\) \(\cos{15^{o}}\)
\((b)\) \(\sin{105^{o}}\)
\((c)\) \(cosec \ {375^{o}}\)
\((d)\) \(\cos{75^{o}};\) রাঃ ২০১৯ ।
\((e)\) \(\tan{15^{o}}\)
\((f)\) \(\sec{165^{o}}\)
\((g)\) \(\tan{105^{o}}\)
\((h)\) \(cosec \ {165^{o}}\)
\((i)\) \(\cot{165^{o}}\)
উত্তরঃ \((a) \ \frac{\sqrt{3}+1}{2\sqrt{2}};\) \((b) \ \frac{\sqrt{6}+\sqrt{2}}{4};\) \((c) \ \sqrt{6}+\sqrt{2};\) \((d) \ \frac{\sqrt{3}-1}{2\sqrt{2}};\) \((e) \ 2-\sqrt{3};\) \((f) \ -\frac{4}{\sqrt{6}+\sqrt{2}};\) \((g) \ -(2+\sqrt{3});\) \((h) \ \sqrt{6}+\sqrt{3};\) \((i) \ -(2+\sqrt{3}).\)
\((a)\) \(\cos{15^{o}}\)
\((b)\) \(\sin{105^{o}}\)
\((c)\) \(cosec \ {375^{o}}\)
\((d)\) \(\cos{75^{o}};\) রাঃ ২০১৯ ।
\((e)\) \(\tan{15^{o}}\)
\((f)\) \(\sec{165^{o}}\)
\((g)\) \(\tan{105^{o}}\)
\((h)\) \(cosec \ {165^{o}}\)
\((i)\) \(\cot{165^{o}}\)
উত্তরঃ \((a) \ \frac{\sqrt{3}+1}{2\sqrt{2}};\) \((b) \ \frac{\sqrt{6}+\sqrt{2}}{4};\) \((c) \ \sqrt{6}+\sqrt{2};\) \((d) \ \frac{\sqrt{3}-1}{2\sqrt{2}};\) \((e) \ 2-\sqrt{3};\) \((f) \ -\frac{4}{\sqrt{6}+\sqrt{2}};\) \((g) \ -(2+\sqrt{3});\) \((h) \ \sqrt{6}+\sqrt{3};\) \((i) \ -(2+\sqrt{3}).\)
সমাধানঃ
\((a)\)
প্রদত্ত রাশি \(=\cos{15^{o}}\)
\(=\cos{(45^{o}-30^{o})}\) ➜ \(\because 15^{o}=45^{o}-30^{o}\)
\(=\cos{45^{o}}\cos{30^{o}}+\sin{45^{o}}\sin{30^{o}}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\((b)\)
প্রদত্ত রাশি \(=\sin{105^{o}}\)
\(=\sin{(60^{o}+45^{o})}\) ➜ \(\because 105^{o}=60^{o}+45^{o}\)
\(=\sin{60^{o}}\cos{45^{o}}+\cos{60^{o}}\sin{45^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\frac{\sqrt{3}}{2}\times\frac{1}{\sqrt{2}}+\frac{1}{2}\times\frac{1}{\sqrt{2}}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{60^{o}}=\frac{1}{2}\)
এবং \(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}\times\sqrt{2}+\sqrt{2}}{2\sqrt{2}\times\sqrt{2}}\) ➜ লব ও হরের সহিত \(\sqrt{2}\) গুণ করে।
\(=\frac{\sqrt{6}+\sqrt{2}}{2\times2}\)
\(=\frac{\sqrt{6}+\sqrt{2}}{4}\)
ইহাই নির্ণেয় মান।
\((c)\)
প্রদত্ত রাশি \(=cosec \ {375^{o}}\)
\(=cosec \ {(90^{o}\times4+15^{o})}\) ➜ \(\because 375^{o}=90^{o}\times4+15^{o}\)
\(=cosec \ {15^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসেকেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(4\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের কোনো পরিবর্তন হয়নি।
\(=\frac{1}{\sin{15^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\sin{(45^{o}-30^{o})}}\) ➜ \(\because 15^{o}=45^{o}-30^{o}\)
\(=\frac{1}{\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{1}{\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}}\)
\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}\) ➜ লব ও হরের সহিত \(2\sqrt{2}(\sqrt{3}+1)\) গুণ করে।
\(=\frac{2(\sqrt{6}+\sqrt{2})}{(\sqrt{3})^2-1^2}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2(\sqrt{6}+\sqrt{2})}{3-1}\)
\(=\frac{2(\sqrt{6}+\sqrt{2})}{2}\)
\(=\sqrt{6}+\sqrt{2}\)
ইহাই নির্ণেয় মান।
\((d)\)
প্রদত্ত রাশি \(=\cos{75^{o}}\)
\(=\cos{(45^{o}+30^{o})}\) ➜ \(\because 75^{o}=45^{o}+30^{o}\)
\(=\cos{45^{o}}\cos{30^{o}}-\sin{45^{o}}\sin{30^{o}}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\((e)\)
প্রদত্ত রাশি \(=\tan{15^{o}}\)
\(=\tan{(45^{o}-30^{o})}\) ➜ \(\because 15^{o}=45^{o}-30^{o}\)
\(=\frac{\tan{45^{o}}-\tan{30^{o}}}{1+\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরের সহিত \(\sqrt{3}\) গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরের সহিত \((\sqrt{3}-1)\) গুণ করে।
\(=\frac{(\sqrt{3})^2-2\sqrt{3}+1^2}{(\sqrt{3})^2-1^2}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{3-2\sqrt{3}+1}{3-1}\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
ইহাই নির্ণেয় মান।
\((f)\)
প্রদত্ত রাশি \(=\sec{165^{o}}\)
\(=\sec{(9^{o}\times2-15^{o})}\) ➜ \(\because 165^{o}=9^{o}\times2-15^{o}\)
\(=-\sec{15^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সেকেন্ট অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=-\sec{(45^{o}-30^{o})}\) ➜
\(\because {15^{o}=(45^{o}-30^{o})\)
\(=-\frac{1}{\cos{(45^{o}-30^{o})}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=-\frac{1}{\cos{45^{o}}\cos{30^{o}}+\sin{45^{o}}\sin{30^{o}}}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(=-\frac{1}{\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=-\frac{1}{\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}}\)
\(=-\frac{1}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\)
\(=-\frac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=-\frac{2\sqrt{2}\times\sqrt{2}}{\sqrt{3}\times\sqrt{2}+\sqrt{2}}\) ➜
লব ও হরকে \(\sqrt{2}\) দ্বারা গুণ করে।
\(=-\frac{2\times2}{\sqrt{6}+\sqrt{2}}\)
\(=-\frac{4}{\sqrt{6}+\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\((g)\)
প্রদত্ত রাশি \(=\tan{105^{o}}\)
\(=\tan{(60^{o}+45^{o})}\) ➜ \(\because 105^{o}=60^{o}+45^{o}\)
\(=\frac{\tan{60^{o}}+\tan{45^{o}}}{1-\tan{60^{o}}\tan{45^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{\sqrt{3}+1}{1-\sqrt{3}.1}\) ➜ \(\because \tan{60^{o}}=\sqrt{3}\)
এবং \(\tan{45^{o}}=1\)
\(=\frac{1+\sqrt{3}}{1-\sqrt{3}}\)
\(=\frac{(1+\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})}\) ➜ লব ও হরের সহিত \((1+\sqrt{3})\) গুণ করে।
\(=\frac{(1+\sqrt{3})^2}{(1-\sqrt{3})(1+\sqrt{3})}\)
\(=\frac{1^2+2.1.\sqrt{3}+(\sqrt{3})^2}{1^2-(\sqrt{3})^2}\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
এবং \((a-b)(a+b)=a^2-b^2\)
\(=\frac{1+2\sqrt{3}+3}{1-3}\)
\(=\frac{4+2\sqrt{3}}{-2}\)
\(=\frac{2(2+\sqrt{3})}{-2}\)
\(=-(2+\sqrt{3})\)
ইহাই নির্ণেয় মান।
\((h)\)
প্রদত্ত রাশি \(=cosec \ {165^{o}}\)
\(=cosec \ {(9^{o}\times2-15^{o})}\) ➜ \(\because 165^{o}=9^{o}\times2-15^{o}\)
\(=cosec \ {15^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসেকেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=cosec \ {(45^{o}-30^{o})}\) ➜
\(\because {15^{o}=(45^{o}-30^{o})\)
\(=\frac{1}{\sin{(45^{o}-30^{o})}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{1}{\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}}\)
\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}\) ➜
লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{2(\sqrt{6}+\sqrt{2})}{(\sqrt{3})^2-1^2}\)
\(=\frac{2(\sqrt{6}+\sqrt{2})}{3-1}\)
\(=\frac{2(\sqrt{6}+\sqrt{2})}{2}\)
\(=\sqrt{6}+\sqrt{2}\)
ইহাই নির্ণেয় মান।
\((i)\)
প্রদত্ত রাশি \(=\cot{165^{o}}\)
\(=\cot{(9^{o}\times2-15^{o})}\) ➜ \(\because 165^{o}=9^{o}\times2-15^{o}\)
\(=-\cot{15^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=-\cot{(45^{o}-30^{o})}\) ➜
\(\because {15^{o}=(45^{o}-30^{o})\)
\(=-\frac{\cot{45^{o}}\cot{30^{o}}+1}{\cot{30^{o}}-\cos{45^{o}}}\) ➜ \(\because \cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cos{A}}\)
\(=-\frac{1\times\sqrt{3}+1}{\sqrt{3}-1}\) ➜ \(\because \cot{45^{o}}=1\)
এবং \(\cot{30^{o}}=\sqrt{3}\)
\(=-\frac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=-\frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)}\) ➜
লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=-\frac{(\sqrt{3})^2+2\sqrt{3}.1+1^2}{(\sqrt{3})^2-1^2}\) ➜
\(\because (a+b)^2=a^2+2ab+b^2\)
এবং \((a-b)(a+b)^2=a^2-b^2\)
\(=-\frac{3+2\sqrt{3}+1}{3-1}\)
\(=-\frac{4+2\sqrt{3}}{2}\)
\(=-\frac{2(2+\sqrt{3})}{2}\)
\(=-(2+\sqrt{3})\)
ইহাই নির্ণেয় মান।
প্রদত্ত রাশি \(=\cos{15^{o}}\)
\(=\cos{(45^{o}-30^{o})}\) ➜ \(\because 15^{o}=45^{o}-30^{o}\)
\(=\cos{45^{o}}\cos{30^{o}}+\sin{45^{o}}\sin{30^{o}}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\((b)\)
প্রদত্ত রাশি \(=\sin{105^{o}}\)
\(=\sin{(60^{o}+45^{o})}\) ➜ \(\because 105^{o}=60^{o}+45^{o}\)
\(=\sin{60^{o}}\cos{45^{o}}+\cos{60^{o}}\sin{45^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\frac{\sqrt{3}}{2}\times\frac{1}{\sqrt{2}}+\frac{1}{2}\times\frac{1}{\sqrt{2}}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{60^{o}}=\frac{1}{2}\)
এবং \(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}\times\sqrt{2}+\sqrt{2}}{2\sqrt{2}\times\sqrt{2}}\) ➜ লব ও হরের সহিত \(\sqrt{2}\) গুণ করে।
\(=\frac{\sqrt{6}+\sqrt{2}}{2\times2}\)
\(=\frac{\sqrt{6}+\sqrt{2}}{4}\)
ইহাই নির্ণেয় মান।
\((c)\)
প্রদত্ত রাশি \(=cosec \ {375^{o}}\)
\(=cosec \ {(90^{o}\times4+15^{o})}\) ➜ \(\because 375^{o}=90^{o}\times4+15^{o}\)
\(=cosec \ {15^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসেকেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(4\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের কোনো পরিবর্তন হয়নি।
\(=\frac{1}{\sin{15^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\sin{(45^{o}-30^{o})}}\) ➜ \(\because 15^{o}=45^{o}-30^{o}\)
\(=\frac{1}{\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{1}{\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}}\)
\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}\) ➜ লব ও হরের সহিত \(2\sqrt{2}(\sqrt{3}+1)\) গুণ করে।
\(=\frac{2(\sqrt{6}+\sqrt{2})}{(\sqrt{3})^2-1^2}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2(\sqrt{6}+\sqrt{2})}{3-1}\)
\(=\frac{2(\sqrt{6}+\sqrt{2})}{2}\)
\(=\sqrt{6}+\sqrt{2}\)
ইহাই নির্ণেয় মান।
\((d)\)
প্রদত্ত রাশি \(=\cos{75^{o}}\)
\(=\cos{(45^{o}+30^{o})}\) ➜ \(\because 75^{o}=45^{o}+30^{o}\)
\(=\cos{45^{o}}\cos{30^{o}}-\sin{45^{o}}\sin{30^{o}}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\((e)\)
প্রদত্ত রাশি \(=\tan{15^{o}}\)
\(=\tan{(45^{o}-30^{o})}\) ➜ \(\because 15^{o}=45^{o}-30^{o}\)
\(=\frac{\tan{45^{o}}-\tan{30^{o}}}{1+\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরের সহিত \(\sqrt{3}\) গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরের সহিত \((\sqrt{3}-1)\) গুণ করে।
\(=\frac{(\sqrt{3})^2-2\sqrt{3}+1^2}{(\sqrt{3})^2-1^2}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{3-2\sqrt{3}+1}{3-1}\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
ইহাই নির্ণেয় মান।
\((f)\)
প্রদত্ত রাশি \(=\sec{165^{o}}\)
\(=\sec{(9^{o}\times2-15^{o})}\) ➜ \(\because 165^{o}=9^{o}\times2-15^{o}\)
\(=-\sec{15^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সেকেন্ট অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=-\sec{(45^{o}-30^{o})}\) ➜

\(\because {15^{o}=(45^{o}-30^{o})\)
\(=-\frac{1}{\cos{(45^{o}-30^{o})}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=-\frac{1}{\cos{45^{o}}\cos{30^{o}}+\sin{45^{o}}\sin{30^{o}}}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(=-\frac{1}{\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=-\frac{1}{\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}}\)
\(=-\frac{1}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\)
\(=-\frac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=-\frac{2\sqrt{2}\times\sqrt{2}}{\sqrt{3}\times\sqrt{2}+\sqrt{2}}\) ➜

লব ও হরকে \(\sqrt{2}\) দ্বারা গুণ করে।
\(=-\frac{2\times2}{\sqrt{6}+\sqrt{2}}\)
\(=-\frac{4}{\sqrt{6}+\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\((g)\)
প্রদত্ত রাশি \(=\tan{105^{o}}\)
\(=\tan{(60^{o}+45^{o})}\) ➜ \(\because 105^{o}=60^{o}+45^{o}\)
\(=\frac{\tan{60^{o}}+\tan{45^{o}}}{1-\tan{60^{o}}\tan{45^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{\sqrt{3}+1}{1-\sqrt{3}.1}\) ➜ \(\because \tan{60^{o}}=\sqrt{3}\)
এবং \(\tan{45^{o}}=1\)
\(=\frac{1+\sqrt{3}}{1-\sqrt{3}}\)
\(=\frac{(1+\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})}\) ➜ লব ও হরের সহিত \((1+\sqrt{3})\) গুণ করে।
\(=\frac{(1+\sqrt{3})^2}{(1-\sqrt{3})(1+\sqrt{3})}\)
\(=\frac{1^2+2.1.\sqrt{3}+(\sqrt{3})^2}{1^2-(\sqrt{3})^2}\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
এবং \((a-b)(a+b)=a^2-b^2\)
\(=\frac{1+2\sqrt{3}+3}{1-3}\)
\(=\frac{4+2\sqrt{3}}{-2}\)
\(=\frac{2(2+\sqrt{3})}{-2}\)
\(=-(2+\sqrt{3})\)
ইহাই নির্ণেয় মান।
\((h)\)
প্রদত্ত রাশি \(=cosec \ {165^{o}}\)
\(=cosec \ {(9^{o}\times2-15^{o})}\) ➜ \(\because 165^{o}=9^{o}\times2-15^{o}\)
\(=cosec \ {15^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসেকেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=cosec \ {(45^{o}-30^{o})}\) ➜

\(\because {15^{o}=(45^{o}-30^{o})\)
\(=\frac{1}{\sin{(45^{o}-30^{o})}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{1}{\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}}\)
\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}\) ➜

লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{2(\sqrt{6}+\sqrt{2})}{(\sqrt{3})^2-1^2}\)
\(=\frac{2(\sqrt{6}+\sqrt{2})}{3-1}\)
\(=\frac{2(\sqrt{6}+\sqrt{2})}{2}\)
\(=\sqrt{6}+\sqrt{2}\)
ইহাই নির্ণেয় মান।
\((i)\)
প্রদত্ত রাশি \(=\cot{165^{o}}\)
\(=\cot{(9^{o}\times2-15^{o})}\) ➜ \(\because 165^{o}=9^{o}\times2-15^{o}\)
\(=-\cot{15^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=-\cot{(45^{o}-30^{o})}\) ➜

\(\because {15^{o}=(45^{o}-30^{o})\)
\(=-\frac{\cot{45^{o}}\cot{30^{o}}+1}{\cot{30^{o}}-\cos{45^{o}}}\) ➜ \(\because \cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cos{A}}\)
\(=-\frac{1\times\sqrt{3}+1}{\sqrt{3}-1}\) ➜ \(\because \cot{45^{o}}=1\)
এবং \(\cot{30^{o}}=\sqrt{3}\)
\(=-\frac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=-\frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)}\) ➜

লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=-\frac{(\sqrt{3})^2+2\sqrt{3}.1+1^2}{(\sqrt{3})^2-1^2}\) ➜

\(\because (a+b)^2=a^2+2ab+b^2\)
এবং \((a-b)(a+b)^2=a^2-b^2\)
\(=-\frac{3+2\sqrt{3}+1}{3-1}\)
\(=-\frac{4+2\sqrt{3}}{2}\)
\(=-\frac{2(2+\sqrt{3})}{2}\)
\(=-(2+\sqrt{3})\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.1.(ii)\) \(\cos{17^{o}40^{\prime}}\sin{77^{o}40^{\prime}}+\cos{107^{o}40^{\prime}}\sin{12^{o}20^{\prime}}\)উত্তরঃ \(\frac{\sqrt{3}}{2}\)
সমাধানঃ
প্রদত্ত রাশি \(=\cos{17^{o}40^{\prime}}\sin{77^{o}40^{\prime}}+\cos{107^{o}40^{\prime}}\sin{12^{o}20^{\prime}}\)
\(=\cos{17^{o}40^{\prime}}\sin{77^{o}40^{\prime}}+\cos{(90^{o}\times1+17^{o}40^{\prime})}\sin{(90^{o}\times1-77^{o}40^{\prime})}\) ➜ \(\because 107^{o}40^{\prime}=90^{o}\times1+17^{o}40^{\prime}\)
এবং \(12^{o}20^{\prime}=90^{o}\times1-77^{o}40^{\prime}\)
\(=\cos{17^{o}40^{\prime}}\sin{77^{o}40^{\prime}}-\sin{17^{o}40^{\prime}}\cos{77^{o}40^{\prime}}\) ➜ \(\because\) তৃতীয় পদে, কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
চতুর্থ পদে, কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\sin{77^{o}40^{\prime}}\cos{17^{o}40^{\prime}}-\cos{77^{o}40^{\prime}}\sin{17^{o}40^{\prime}}\)
\(=\sin{(77^{o}40^{\prime}-17^{o}40^{\prime})}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\sin{60^{o}}\)
\(=\frac{\sqrt{3}}{2}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
ইহাই নির্ণেয় মান।
\(=\cos{17^{o}40^{\prime}}\sin{77^{o}40^{\prime}}+\cos{(90^{o}\times1+17^{o}40^{\prime})}\sin{(90^{o}\times1-77^{o}40^{\prime})}\) ➜ \(\because 107^{o}40^{\prime}=90^{o}\times1+17^{o}40^{\prime}\)
এবং \(12^{o}20^{\prime}=90^{o}\times1-77^{o}40^{\prime}\)
\(=\cos{17^{o}40^{\prime}}\sin{77^{o}40^{\prime}}-\sin{17^{o}40^{\prime}}\cos{77^{o}40^{\prime}}\) ➜ \(\because\) তৃতীয় পদে, কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
চতুর্থ পদে, কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\sin{77^{o}40^{\prime}}\cos{17^{o}40^{\prime}}-\cos{77^{o}40^{\prime}}\sin{17^{o}40^{\prime}}\)
\(=\sin{(77^{o}40^{\prime}-17^{o}40^{\prime})}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\sin{60^{o}}\)
\(=\frac{\sqrt{3}}{2}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.1.(iii)\) \(\sin{78^{o}19^{\prime}}\cos{18^{o}19^{\prime}}-\sin{11^{o}41^{\prime}}\sin{18^{o}19^{\prime}}\)উত্তরঃ \(\sqrt{\frac{3}{2}}\)
চঃ ২০১৯ ।
সমাধানঃ
প্রদত্ত রাশি \(=\sin{78^{o}19^{\prime}}\cos{18^{o}19^{\prime}}-\sin{11^{o}41^{\prime}}\sin{18^{o}19^{\prime}}\)
\(=\sin{(90^{o}\times1-11^{o}41^{\prime})}\cos{18^{o}19^{\prime}}-\sin{11^{o}41^{\prime}}\sin{18^{o}19^{\prime}}\) ➜ \(\because 78^{o}19^{\prime}=90^{o}\times1-11^{o}41^{\prime}\)
\(=\cos{11^{o}41^{\prime}}\cos{18^{o}19^{\prime}}-\sin{11^{o}41^{\prime}}\sin{18^{o}19^{\prime}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\cos{(11^{o}41^{\prime}+18^{o}19^{\prime})}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=\cos{30^{o}}\)
\(=\frac{\sqrt{3}}{2}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
ইহাই নির্ণেয় মান।
\(=\sin{(90^{o}\times1-11^{o}41^{\prime})}\cos{18^{o}19^{\prime}}-\sin{11^{o}41^{\prime}}\sin{18^{o}19^{\prime}}\) ➜ \(\because 78^{o}19^{\prime}=90^{o}\times1-11^{o}41^{\prime}\)
\(=\cos{11^{o}41^{\prime}}\cos{18^{o}19^{\prime}}-\sin{11^{o}41^{\prime}}\sin{18^{o}19^{\prime}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\cos{(11^{o}41^{\prime}+18^{o}19^{\prime})}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=\cos{30^{o}}\)
\(=\frac{\sqrt{3}}{2}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.1.(iv)\) \(\cos{30^{o}32^{\prime}}\cos{29^{o}28^{\prime}}-\sin{149^{o}28^{\prime}}\sin{29^{o}28^{\prime}}\)উত্তরঃ \(\frac{1}{2}\)
যঃ ২০১৯ ।
সমাধানঃ
প্রদত্ত রাশি \(=\cos{30^{o}32^{\prime}}\cos{29^{o}28^{\prime}}-\sin{149^{o}28^{\prime}}\sin{29^{o}28^{\prime}}\)
\(=\cos{30^{o}32^{\prime}}\cos{29^{o}28^{\prime}}-\sin{(90^{o}\times2-30^{o}32^{\prime})}\sin{29^{o}28^{\prime}}\) ➜ \(\because 149^{o}28^{\prime}=90^{o}\times2-30^{o}32^{\prime}\)
\(=\cos{30^{o}32^{\prime}}\cos{29^{o}28^{\prime}}-\sin{30^{o}32^{\prime}}\sin{29^{o}28^{\prime}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=\cos{(30^{o}32^{\prime}+29^{o}28^{\prime})}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=\cos{60^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(=\cos{30^{o}32^{\prime}}\cos{29^{o}28^{\prime}}-\sin{(90^{o}\times2-30^{o}32^{\prime})}\sin{29^{o}28^{\prime}}\) ➜ \(\because 149^{o}28^{\prime}=90^{o}\times2-30^{o}32^{\prime}\)
\(=\cos{30^{o}32^{\prime}}\cos{29^{o}28^{\prime}}-\sin{30^{o}32^{\prime}}\sin{29^{o}28^{\prime}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=\cos{(30^{o}32^{\prime}+29^{o}28^{\prime})}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=\cos{60^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(Q.1.(v)\) \(\cos{74^{o}33^{\prime}}\cos{14^{o}33^{\prime}}+\cos{75^{o}27^{\prime}}\cos{15^{o}27^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
উত্তরঃ \(\frac{1}{2}\)
সমাধানঃ
প্রদত্ত রাশি \(=\cos{74^{o}33^{\prime}}\cos{14^{o}33^{\prime}}+\cos{75^{o}27^{\prime}}\cos{15^{o}27^{\prime}}\)
\(=\cos{(90^{o}\times1-15^{o}27^{\prime})}\cos{14^{o}33^{\prime}}+\cos{(90^{o}\times1-14^{o}33^{\prime})}\cos{15^{o}27^{\prime}}\) ➜ \(\because 74^{o}33^{\prime}=90^{o}\times1-15^{o}27^{\prime}\)
এবং \(75^{o}27^{\prime}=90^{o}\times1-14^{o}33^{\prime}\)
\(=\sin{15^{o}27^{\prime}}\cos{14^{o}33^{\prime}}+\sin{14^{o}33^{\prime}}\cos{15^{o}27^{\prime}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\sin{15^{o}27^{\prime}}\cos{14^{o}33^{\prime}}+\cos{15^{o}27^{\prime}}\sin{14^{o}33^{\prime}}\)
\(=\sin{(15^{o}27^{\prime}+14^{o}33^{\prime})}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(=\sin{30^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(=\cos{(90^{o}\times1-15^{o}27^{\prime})}\cos{14^{o}33^{\prime}}+\cos{(90^{o}\times1-14^{o}33^{\prime})}\cos{15^{o}27^{\prime}}\) ➜ \(\because 74^{o}33^{\prime}=90^{o}\times1-15^{o}27^{\prime}\)
এবং \(75^{o}27^{\prime}=90^{o}\times1-14^{o}33^{\prime}\)
\(=\sin{15^{o}27^{\prime}}\cos{14^{o}33^{\prime}}+\sin{14^{o}33^{\prime}}\cos{15^{o}27^{\prime}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\sin{15^{o}27^{\prime}}\cos{14^{o}33^{\prime}}+\cos{15^{o}27^{\prime}}\sin{14^{o}33^{\prime}}\)
\(=\sin{(15^{o}27^{\prime}+14^{o}33^{\prime})}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(=\sin{30^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(Q.1.(vi)\) \(\cos{38^{o}15^{\prime}}\sin{68^{o}15^{\prime}}-\cos{51^{o}45^{\prime}}\sin{21^{o}45^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
উত্তরঃ \(\frac{1}{2}\)
সমাধানঃ
প্রদত্ত রাশি \(=\cos{38^{o}15^{\prime}}\sin{68^{o}15^{\prime}}-\cos{51^{o}45^{\prime}}\sin{21^{o}45^{\prime}}\)
\(=\cos{38^{o}15^{\prime}}\sin{68^{o}15^{\prime}}-\cos{(90^{o}\times1-38^{o}15^{\prime})}\sin{(90^{o}\times1-68^{o}15^{\prime})}\) ➜ \(\because 51^{o}45^{\prime}=90^{o}\times1-38^{o}15^{\prime}\)
এবং \(21^{o}45^{\prime}=90^{o}\times1-68^{o}15^{\prime}\)
\(=\cos{38^{o}15^{\prime}}\sin{68^{o}15^{\prime}}-\sin{38^{o}15^{\prime}}\cos{68^{o}15^{\prime}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন এবং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন এবং সাইন অনুপাতের পরিবর্তন হয়ে যথাক্রমে সাইন এবং কোসাইন হয়েছে।
\(=\sin{68^{o}15^{\prime}}\cos{38^{o}15^{\prime}}-\cos{68^{o}15^{\prime}}\sin{38^{o}15^{\prime}}\)
\(=\sin{(68^{o}15^{\prime}-38^{o}15^{\prime})}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\sin{30^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(=\cos{38^{o}15^{\prime}}\sin{68^{o}15^{\prime}}-\cos{(90^{o}\times1-38^{o}15^{\prime})}\sin{(90^{o}\times1-68^{o}15^{\prime})}\) ➜ \(\because 51^{o}45^{\prime}=90^{o}\times1-38^{o}15^{\prime}\)
এবং \(21^{o}45^{\prime}=90^{o}\times1-68^{o}15^{\prime}\)
\(=\cos{38^{o}15^{\prime}}\sin{68^{o}15^{\prime}}-\sin{38^{o}15^{\prime}}\cos{68^{o}15^{\prime}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন এবং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন এবং সাইন অনুপাতের পরিবর্তন হয়ে যথাক্রমে সাইন এবং কোসাইন হয়েছে।
\(=\sin{68^{o}15^{\prime}}\cos{38^{o}15^{\prime}}-\cos{68^{o}15^{\prime}}\sin{38^{o}15^{\prime}}\)
\(=\sin{(68^{o}15^{\prime}-38^{o}15^{\prime})}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\sin{30^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(Q.1.(vii)\) \(\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\cos{80^{o}38^{\prime}}\cos{20^{o}38^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
উত্তরঃ \(\frac{1}{2}\)
সমাধানঃ
প্রদত্ত রাশি \(=\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\cos{80^{o}38^{\prime}}\cos{20^{o}38^{\prime}}\)
\(=\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\cos{(90^{o}\times1-9^{o}22^{\prime})}\cos{(90^{o}\times1-69^{o}22^{\prime})}\) ➜ \(\because 80^{o}38^{\prime}=90^{o}\times1-9^{o}22^{\prime}\)
এবং \(20^{o}38^{\prime}=90^{o}\times1-69^{o}22^{\prime}\)
\(=\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\sin{9^{o}22^{\prime}}\sin{69^{o}22^{\prime}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\sin{69^{o}22^{\prime}}\sin{9^{o}22^{\prime}}\)
\(=\cos{(69^{o}22^{\prime}-9^{o}22^{\prime})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\cos{60^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(=\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\cos{(90^{o}\times1-9^{o}22^{\prime})}\cos{(90^{o}\times1-69^{o}22^{\prime})}\) ➜ \(\because 80^{o}38^{\prime}=90^{o}\times1-9^{o}22^{\prime}\)
এবং \(20^{o}38^{\prime}=90^{o}\times1-69^{o}22^{\prime}\)
\(=\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\sin{9^{o}22^{\prime}}\sin{69^{o}22^{\prime}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\cos{69^{o}22^{\prime}}\cos{9^{o}22^{\prime}}+\sin{69^{o}22^{\prime}}\sin{9^{o}22^{\prime}}\)
\(=\cos{(69^{o}22^{\prime}-9^{o}22^{\prime})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\cos{60^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(Q.1.(viii)\) \(\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\cos{73^{o}20^{\prime}}\sin{13^{o}20^{\prime}}\)
উত্তরঃ \(\frac{\sqrt{3}}{2}\)
উত্তরঃ \(\frac{\sqrt{3}}{2}\)
সমাধানঃ
প্রদত্ত রাশি \(=\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\cos{73^{o}20^{\prime}}\sin{13^{o}20^{\prime}}\)
\(=\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\cos{(90^{o}\times1-16^{o}40^{\prime})}\sin{(90^{o}\times1-76^{o}40^{\prime})}\) ➜ \(\because 73^{o}20^{\prime}=90^{o}\times1-16^{o}40^{\prime}\)
এবং \(13^{o}20^{\prime}=90^{o}\times1-76^{o}40^{\prime}\)
\(=\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\sin{16^{o}40^{\prime}}\cos{76^{o}40^{\prime}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন এবং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন এবং সাইন অনুপাতের পরিবর্তন হয়ে যথাক্রমে সাইন এবং কোসাইন হয়েছে।
\(=\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\cos{76^{o}40^{\prime}}\sin{16^{o}40^{\prime}}\)
\(=\sin{(69^{o}22^{\prime}-9^{o}22^{\prime})}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\sin{60^{o}}\)
\(=\frac{\sqrt{3}}{2}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
ইহাই নির্ণেয় মান।
\(=\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\cos{(90^{o}\times1-16^{o}40^{\prime})}\sin{(90^{o}\times1-76^{o}40^{\prime})}\) ➜ \(\because 73^{o}20^{\prime}=90^{o}\times1-16^{o}40^{\prime}\)
এবং \(13^{o}20^{\prime}=90^{o}\times1-76^{o}40^{\prime}\)
\(=\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\sin{16^{o}40^{\prime}}\cos{76^{o}40^{\prime}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন এবং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন এবং সাইন অনুপাতের পরিবর্তন হয়ে যথাক্রমে সাইন এবং কোসাইন হয়েছে।
\(=\sin{76^{o}40^{\prime}}\cos{16^{o}40^{\prime}}-\cos{76^{o}40^{\prime}}\sin{16^{o}40^{\prime}}\)
\(=\sin{(69^{o}22^{\prime}-9^{o}22^{\prime})}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\sin{60^{o}}\)
\(=\frac{\sqrt{3}}{2}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
ইহাই নির্ণেয় মান।
\(Q.1.(ix)\) \(\cos{36^{o}25^{\prime}}\sin{66^{o}25^{\prime}}-\cos{53^{o}35^{\prime}}\sin{23^{o}35^{\prime}}\)
উত্তরঃ \(\frac{1}{2}\)
উত্তরঃ \(\frac{1}{2}\)
সমাধানঃ
প্রদত্ত রাশি \(=\cos{36^{o}25^{\prime}}\sin{66^{o}25^{\prime}}-\cos{53^{o}35^{\prime}}\sin{23^{o}35^{\prime}}\)
\(=\cos{36^{o}25^{\prime}}\sin{(90^{o}\times1-23^{o}35^{\prime})}-\cos{(90^{o}\times1-36^{o}25^{\prime})}\sin{23^{o}35^{\prime}}\) ➜ \(\because 66^{o}25^{\prime}=90^{o}\times1-23^{o}35^{\prime}\)
এবং \(53^{o}35^{\prime}=90^{o}\times1-36^{o}25^{\prime}\)
\(=\cos{36^{o}25^{\prime}}\cos{23^{o}35^{\prime}}-\sin{36^{o}25^{\prime}}\sin{23^{o}35^{\prime}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন এবং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই সাইন এবং কোসাইন অনুপাতের পরিবর্তন হয়ে যথাক্রমে কোসাইন এবং সাইন হয়েছে।
\(=\cos{(36^{o}25^{\prime}+23^{o}35^{\prime})}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=\cos{60^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(=\cos{36^{o}25^{\prime}}\sin{(90^{o}\times1-23^{o}35^{\prime})}-\cos{(90^{o}\times1-36^{o}25^{\prime})}\sin{23^{o}35^{\prime}}\) ➜ \(\because 66^{o}25^{\prime}=90^{o}\times1-23^{o}35^{\prime}\)
এবং \(53^{o}35^{\prime}=90^{o}\times1-36^{o}25^{\prime}\)
\(=\cos{36^{o}25^{\prime}}\cos{23^{o}35^{\prime}}-\sin{36^{o}25^{\prime}}\sin{23^{o}35^{\prime}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন এবং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই সাইন এবং কোসাইন অনুপাতের পরিবর্তন হয়ে যথাক্রমে কোসাইন এবং সাইন হয়েছে।
\(=\cos{(36^{o}25^{\prime}+23^{o}35^{\prime})}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=\cos{60^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.1.(x)\) \(\frac{\tan{65^{o}35^{\prime}}-\cot{69^{o}25^{\prime}}}{1+\tan{65^{o}35^{\prime}}\cot{69^{o}25^{\prime}}}\)উত্তরঃ \(1\)
সমাধানঃ
প্রদত্ত রাশি \(=\frac{\tan{65^{o}35^{\prime}}-\cot{69^{o}25^{\prime}}}{1+\tan{65^{o}35^{\prime}}\cot{69^{o}25^{\prime}}}\)
\(=\frac{\tan{65^{o}35^{\prime}}-\cot{(90^{o}\times1-20^{o}35^{\prime})}}{1+\tan{65^{o}35^{\prime}}\cot{(90^{o}\times1-20^{o}35^{\prime})}}\) ➜ \(\because 69^{o}25^{\prime}=90^{o}\times1-20^{o}35^{\prime}\)
\(=\frac{\tan{65^{o}35^{\prime}}-\tan{20^{o}35^{\prime}}}{1+\tan{65^{o}35^{\prime}}\tan{20^{o}35^{\prime}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে ট্যানজেন্ট হয়েছে।
\(=\tan{(65^{o}35^{\prime}-20^{o}35^{\prime})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{45^{o}}\)
\(=1\) ➜ \(\because \tan{45^{o}}=1\)
ইহাই নির্ণেয় মান।
\(=\frac{\tan{65^{o}35^{\prime}}-\cot{(90^{o}\times1-20^{o}35^{\prime})}}{1+\tan{65^{o}35^{\prime}}\cot{(90^{o}\times1-20^{o}35^{\prime})}}\) ➜ \(\because 69^{o}25^{\prime}=90^{o}\times1-20^{o}35^{\prime}\)
\(=\frac{\tan{65^{o}35^{\prime}}-\tan{20^{o}35^{\prime}}}{1+\tan{65^{o}35^{\prime}}\tan{20^{o}35^{\prime}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে ট্যানজেন্ট হয়েছে।
\(=\tan{(65^{o}35^{\prime}-20^{o}35^{\prime})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{45^{o}}\)
\(=1\) ➜ \(\because \tan{45^{o}}=1\)
ইহাই নির্ণেয় মান।
\(Q.1.(xi)\) \(\frac{\tan{68^{o}35^{\prime}}-\cot{66^{o}25^{\prime}}}{1+\tan{68^{o}35^{\prime}}\cot{66^{o}25^{\prime}}}\)
উত্তরঃ \(1\)
উত্তরঃ \(1\)
সমাধানঃ
প্রদত্ত রাশি \(=\frac{\tan{68^{o}35^{\prime}}-\cot{66^{o}25^{\prime}}}{1+\tan{68^{o}35^{\prime}}\cot{66^{o}25^{\prime}}}\)
\(=\frac{\tan{68^{o}35^{\prime}}-\cot{(90^{o}\times1-23^{o}35^{\prime})}}{1+\tan{68^{o}35^{\prime}}\cot{(90^{o}\times1-23^{o}35^{\prime})}}\) ➜ \(\because 66^{o}25^{\prime}=90^{o}\times1-23^{o}35^{\prime}\)
\(=\frac{\tan{68^{o}35^{\prime}}-\tan{23^{o}35^{\prime}}}{1+\tan{68^{o}35^{\prime}}\tan{23^{o}35^{\prime}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে ট্যানজেন্ট হয়েছে।
\(=\tan{(68^{o}35^{\prime}-23^{o}35^{\prime})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{45^{o}}\)
\(=1\) ➜ \(\because \tan{45^{o}}=1\)
ইহাই নির্ণেয় মান।
\(=\frac{\tan{68^{o}35^{\prime}}-\cot{(90^{o}\times1-23^{o}35^{\prime})}}{1+\tan{68^{o}35^{\prime}}\cot{(90^{o}\times1-23^{o}35^{\prime})}}\) ➜ \(\because 66^{o}25^{\prime}=90^{o}\times1-23^{o}35^{\prime}\)
\(=\frac{\tan{68^{o}35^{\prime}}-\tan{23^{o}35^{\prime}}}{1+\tan{68^{o}35^{\prime}}\tan{23^{o}35^{\prime}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে ট্যানজেন্ট হয়েছে।
\(=\tan{(68^{o}35^{\prime}-23^{o}35^{\prime})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{45^{o}}\)
\(=1\) ➜ \(\because \tan{45^{o}}=1\)
ইহাই নির্ণেয় মান।
\(Q.1.(xii)\) \(\frac{\tan{73^{o}23^{\prime}}-\cot{76^{o}37^{\prime}}}{1+\tan{73^{o}23^{\prime}}\cot{76^{o}37^{\prime}}}\)
উত্তরঃ \(\sqrt{3}\)
উত্তরঃ \(\sqrt{3}\)
সমাধানঃ
প্রদত্ত রাশি \(=\frac{\tan{73^{o}23^{\prime}}-\cot{76^{o}37^{\prime}}}{1+\tan{73^{o}23^{\prime}}\cot{76^{o}37^{\prime}}}\)
\(=\frac{\tan{73^{o}23^{\prime}}-\cot{(90^{o}\times1-13^{o}23^{\prime})}}{1+\tan{73^{o}23^{\prime}}\cot{(90^{o}\times1-13^{o}23^{\prime})}}\) ➜ \(\because 76^{o}37^{\prime}=90^{o}\times1-13^{o}23^{\prime}\)
\(=\frac{\tan{73^{o}23^{\prime}}-\tan{13^{o}23^{\prime}}}{1+\tan{73^{o}23^{\prime}}\tan{13^{o}23^{\prime}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে ট্যানজেন্ট হয়েছে।
\(=\tan{(73^{o}23^{\prime}-13^{o}23^{\prime})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{60^{o}}\)
\(=\sqrt{3}\) ➜ \(\because \tan{60^{o}}=\sqrt{3}\)
ইহাই নির্ণেয় মান।
\(=\frac{\tan{73^{o}23^{\prime}}-\cot{(90^{o}\times1-13^{o}23^{\prime})}}{1+\tan{73^{o}23^{\prime}}\cot{(90^{o}\times1-13^{o}23^{\prime})}}\) ➜ \(\because 76^{o}37^{\prime}=90^{o}\times1-13^{o}23^{\prime}\)
\(=\frac{\tan{73^{o}23^{\prime}}-\tan{13^{o}23^{\prime}}}{1+\tan{73^{o}23^{\prime}}\tan{13^{o}23^{\prime}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে ট্যানজেন্ট হয়েছে।
\(=\tan{(73^{o}23^{\prime}-13^{o}23^{\prime})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{60^{o}}\)
\(=\sqrt{3}\) ➜ \(\because \tan{60^{o}}=\sqrt{3}\)
ইহাই নির্ণেয় মান।
প্রমাণ করঃ
\(Q.1.(xiii)\) \(\tan{75^{o}}=2+\sqrt{3}\) সমাধানঃ
\(L.S=\tan{75^{o}}\)
\(=\tan{(45^{o}+30^{o})}\)
\(=\frac{\tan{45^{o}}+\tan{30^{o}}}{1-\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{1+\frac{1}{\sqrt{3}}}{1-1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3})^2+2\sqrt{3}.1+1^2}{(\sqrt{3})^2-1^2}\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
এবং \((a-b)(a+b)=a^2-b^2\)
\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{(45^{o}+30^{o})}\)
\(=\frac{\tan{45^{o}}+\tan{30^{o}}}{1-\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{1+\frac{1}{\sqrt{3}}}{1-1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3})^2+2\sqrt{3}.1+1^2}{(\sqrt{3})^2-1^2}\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
এবং \((a-b)(a+b)=a^2-b^2\)
\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xiv)\) \(\cos{68^{o}20^{\prime}}\cos{8^{o}20^{\prime}}+\cos{18^{o}40^{\prime}}\cos{21^{o}40^{\prime}}=\frac{1}{2}\)সমাধানঃ
\(L.S=\cos{68^{o}20^{\prime}}\cos{8^{o}20^{\prime}}+\cos{81^{o}40^{\prime}}\cos{21^{o}40^{\prime}}\)
\(=\cos{(90^{o}\times1-21^{o}40^{\prime})}\cos{8^{o}20^{\prime}}+\cos{(90^{o}\times1-8^{o}20^{\prime})}\cos{21^{o}40^{\prime}}\) ➜ \(\because 68^{o}20^{\prime}=90^{o}\times1-21^{o}40^{\prime}\)
এবং \(81^{o}40^{\prime}=90^{o}\times1-8^{o}20^{\prime}\)
\(=\sin{21^{o}40^{\prime}}\cos{8^{o}20^{\prime}}+\sin{8^{o}20^{\prime}}\cos{21^{o}40^{\prime}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\sin{21^{o}40^{\prime}}\cos{8^{o}20^{\prime}}+\cos{21^{o}40^{\prime}}\sin{8^{o}20^{\prime}}\)
\(=\sin{(21^{o}40^{\prime}+8^{o}20^{\prime})}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(=\sin{30^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{(90^{o}\times1-21^{o}40^{\prime})}\cos{8^{o}20^{\prime}}+\cos{(90^{o}\times1-8^{o}20^{\prime})}\cos{21^{o}40^{\prime}}\) ➜ \(\because 68^{o}20^{\prime}=90^{o}\times1-21^{o}40^{\prime}\)
এবং \(81^{o}40^{\prime}=90^{o}\times1-8^{o}20^{\prime}\)
\(=\sin{21^{o}40^{\prime}}\cos{8^{o}20^{\prime}}+\sin{8^{o}20^{\prime}}\cos{21^{o}40^{\prime}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\sin{21^{o}40^{\prime}}\cos{8^{o}20^{\prime}}+\cos{21^{o}40^{\prime}}\sin{8^{o}20^{\prime}}\)
\(=\sin{(21^{o}40^{\prime}+8^{o}20^{\prime})}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(=\sin{30^{o}}\)
\(=\frac{1}{2}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.1.(xv)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\cos{A}=\frac{4}{5},\sin{B}=\frac{5}{13}\) হলে, \(\sin{(A-B)}\) ও \(\cos{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{16}{65}, \frac{33}{65}\)
উত্তরঃ \(\frac{16}{65}, \frac{33}{65}\)
সমাধানঃ
দেওয়া আছে,
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\cos{A}=\frac{4}{5},\sin{B}=\frac{5}{13}\)
\(\Rightarrow \cos^2{A}=\left(\frac{4}{5}\right)^2, \ \sin^2{B}=\left(\frac{5}{13}\right)^2\)
\(\Rightarrow 1-\sin^2{A}=\frac{16}{25}, \ 1-\cos^2{B}=\frac{25}{169}\) ➜ \(\because \cos^2{\theta}=1-\sin^2{\theta}\)
এবং \(\sin^2{\theta}=1-\cos^2{\theta}\)
\(\Rightarrow -\sin^2{A}=\frac{16}{25}-1, \ -\cos^2{B}=\frac{25}{169}-1\)
\(\Rightarrow -\sin^2{A}=\frac{16-25}{25}, \ -\cos^2{B}=\frac{25-169}{169}\)
\(\Rightarrow -\sin^2{A}=\frac{-9}{25}, \ -\cos^2{B}=\frac{-144}{169}\)
\(\Rightarrow \sin^2{A}=\frac{9}{25}, \ \cos^2{B}=\frac{144}{169}\)
\(\Rightarrow \sin{A}=\sqrt{\frac{9}{25}}, \ \cos{B}=\sqrt{\frac{144}{169}}\)
\(\therefore \sin{A}=\frac{3}{5}, \ \cos{B}=\frac{12}{13}\)
এখন, \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13}\) ➜ \(\because \sin{A}=\frac{3}{5}\)
\(\cos{B}=\frac{12}{13}\)
\(\cos{A}=\frac{4}{5}\)
এবং \(\sin{B}=\frac{5}{13}\)
\(=\frac{36}{65}-\frac{4}{13}\)
\(=\frac{36-20}{65}\)
\(=\frac{16}{65}\)
ইহাই নির্ণেয় মান।
আবার, \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{4}{5}\times\frac{12}{13}-\frac{3}{5}\times\frac{5}{13}\) ➜ \(\because \cos{A}=\frac{4}{5}\)
\(\cos{B}=\frac{12}{13}\)
\(\sin{A}=\frac{3}{5}\)
এবং \(\sin{B}=\frac{5}{13}\)
\(=\frac{48}{65}-\frac{3}{13}\)
\(=\frac{48-15}{65}\)
\(=\frac{33}{65}\)
ইহাই নির্ণেয় মান।
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\cos{A}=\frac{4}{5},\sin{B}=\frac{5}{13}\)
\(\Rightarrow \cos^2{A}=\left(\frac{4}{5}\right)^2, \ \sin^2{B}=\left(\frac{5}{13}\right)^2\)
\(\Rightarrow 1-\sin^2{A}=\frac{16}{25}, \ 1-\cos^2{B}=\frac{25}{169}\) ➜ \(\because \cos^2{\theta}=1-\sin^2{\theta}\)
এবং \(\sin^2{\theta}=1-\cos^2{\theta}\)
\(\Rightarrow -\sin^2{A}=\frac{16}{25}-1, \ -\cos^2{B}=\frac{25}{169}-1\)
\(\Rightarrow -\sin^2{A}=\frac{16-25}{25}, \ -\cos^2{B}=\frac{25-169}{169}\)
\(\Rightarrow -\sin^2{A}=\frac{-9}{25}, \ -\cos^2{B}=\frac{-144}{169}\)
\(\Rightarrow \sin^2{A}=\frac{9}{25}, \ \cos^2{B}=\frac{144}{169}\)
\(\Rightarrow \sin{A}=\sqrt{\frac{9}{25}}, \ \cos{B}=\sqrt{\frac{144}{169}}\)
\(\therefore \sin{A}=\frac{3}{5}, \ \cos{B}=\frac{12}{13}\)
এখন, \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13}\) ➜ \(\because \sin{A}=\frac{3}{5}\)
\(\cos{B}=\frac{12}{13}\)
\(\cos{A}=\frac{4}{5}\)
এবং \(\sin{B}=\frac{5}{13}\)
\(=\frac{36}{65}-\frac{4}{13}\)
\(=\frac{36-20}{65}\)
\(=\frac{16}{65}\)
ইহাই নির্ণেয় মান।
আবার, \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{4}{5}\times\frac{12}{13}-\frac{3}{5}\times\frac{5}{13}\) ➜ \(\because \cos{A}=\frac{4}{5}\)
\(\cos{B}=\frac{12}{13}\)
\(\sin{A}=\frac{3}{5}\)
এবং \(\sin{B}=\frac{5}{13}\)
\(=\frac{48}{65}-\frac{3}{13}\)
\(=\frac{48-15}{65}\)
\(=\frac{33}{65}\)
ইহাই নির্ণেয় মান।
\(Q.1.(xvi)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\tan{A}=\frac{2}{11},\tan{B}=\frac{7}{24}\) হলে, \(\cot{(A-B)}\) ও \(\tan{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(-\frac{278}{29}, \frac{1}{2}\)
উত্তরঃ \(-\frac{278}{29}, \frac{1}{2}\)
সমাধানঃ
দেওয়া আছে,
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\tan{A}=\frac{2}{11},\tan{B}=\frac{7}{24}\)
\(\Rightarrow \frac{1}{\tan{A}}=\frac{11}{2}, \ \frac{1}{\tan{B}}=\frac{24}{7}\)
\(\therefore \cot{A}=\frac{11}{2}, \ \cot{B}=\frac{24}{7}\) ➜ \(\because \frac{1}{\tan{\theta}}=\cot{\theta}\)
এখন, \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(=\frac{\frac{11}{2}\times\frac{24}{7}+1}{\frac{24}{7}-\frac{11}{2}}\) ➜ \(\because \cot{A}=\frac{11}{2}\)
এবং \(\cot{B}=\frac{24}{7}\)
\(=\frac{\frac{264}{14}+1}{\frac{24}{7}-\frac{11}{2}}\)
\(=\frac{264+14}{48-77}\) ➜ লব ও হরের সিহিত \(14\) গুণ করে।
\(=\frac{278}{-29}\)
\(=-\frac{278}{29}\)
ইহাই নির্ণেয় মান।
আবার, \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11}\times\frac{7}{24}}\) ➜ \(\because \tan{A}=\frac{2}{11}\)
এবং \(\tan{B}=\frac{7}{24}\)
\(=\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{14}{264}}\)
\(=\frac{48+77}{264-14}\) ➜ লব ও হরের সিহিত \(264\) গুণ করে।
\(=\frac{125}{250}\)
\(=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\tan{A}=\frac{2}{11},\tan{B}=\frac{7}{24}\)
\(\Rightarrow \frac{1}{\tan{A}}=\frac{11}{2}, \ \frac{1}{\tan{B}}=\frac{24}{7}\)
\(\therefore \cot{A}=\frac{11}{2}, \ \cot{B}=\frac{24}{7}\) ➜ \(\because \frac{1}{\tan{\theta}}=\cot{\theta}\)
এখন, \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(=\frac{\frac{11}{2}\times\frac{24}{7}+1}{\frac{24}{7}-\frac{11}{2}}\) ➜ \(\because \cot{A}=\frac{11}{2}\)
এবং \(\cot{B}=\frac{24}{7}\)
\(=\frac{\frac{264}{14}+1}{\frac{24}{7}-\frac{11}{2}}\)
\(=\frac{264+14}{48-77}\) ➜ লব ও হরের সিহিত \(14\) গুণ করে।
\(=\frac{278}{-29}\)
\(=-\frac{278}{29}\)
ইহাই নির্ণেয় মান।
আবার, \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11}\times\frac{7}{24}}\) ➜ \(\because \tan{A}=\frac{2}{11}\)
এবং \(\tan{B}=\frac{7}{24}\)
\(=\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{14}{264}}\)
\(=\frac{48+77}{264-14}\) ➜ লব ও হরের সিহিত \(264\) গুণ করে।
\(=\frac{125}{250}\)
\(=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(Q.1.(xvii)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\sin{A}=\frac{3}{5},\cos{B}=\frac{12}{13}\) হলে, \(\sin{(A-B)}\) ও \(\cos{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{16}{65}, \frac{33}{65}\)
উত্তরঃ \(\frac{16}{65}, \frac{33}{65}\)
সমাধানঃ
দেওয়া আছে,
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\sin{A}=\frac{3}{5},\cos{B}=\frac{12}{13}\)
\(\Rightarrow \sin^2{A}=\left(\frac{3}{5}\right)^2, \ \cos^2{B}=\left(\frac{12}{13}\right)^2\)
\(\Rightarrow 1-\cos^2{A}=\frac{9}{25}, \ 1-\sin^2{B}=\frac{144}{169}\) ➜ \(\because \sin^2{\theta}=1-\cos^2{\theta}\)
এবং \(\cos^2{\theta}=1-\sin^2{\theta}\)
\(\Rightarrow -\cos^2{A}=\frac{9}{25}-1, \ -\sin^2{B}=\frac{144}{169}-1\)
\(\Rightarrow -\cos^2{A}=\frac{9-25}{25}, \ -\sin^2{B}=\frac{144-169}{169}\)
\(\Rightarrow -\cos^2{A}=\frac{-16}{25}, \ -\sin^2{B}=\frac{-25}{169}\)
\(\Rightarrow \cos^2{A}=\frac{16}{25}, \ \sin^2{B}=\frac{25}{169}\)
\(\Rightarrow \cos{A}=\sqrt{\frac{16}{25}}, \ \sin{B}=\sqrt{\frac{25}{169}}\)
\(\therefore \cos{A}=\frac{4}{5}, \ \sin{B}=\frac{5}{13}\)
এখন, \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13}\) ➜ \(\because \sin{A}=\frac{3}{5}\)
\(\cos{B}=\frac{12}{13}\)
\(\cos{A}=\frac{4}{5}\)
এবং \(\sin{B}=\frac{5}{13}\)
\(=\frac{36}{65}-\frac{4}{13}\)
\(=\frac{36-20}{65}\)
\(=\frac{16}{65}\)
ইহাই নির্ণেয় মান।
আবার, \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{4}{5}\times\frac{12}{13}-\frac{3}{5}\times\frac{5}{13}\) ➜ \(\because \cos{A}=\frac{4}{5}\)
\(\cos{B}=\frac{12}{13}\)
\(\sin{A}=\frac{3}{5}\)
এবং \(\sin{B}=\frac{5}{13}\)
\(=\frac{48}{65}-\frac{3}{13}\)
\(=\frac{48-15}{65}\)
\(=\frac{33}{65}\)
ইহাই নির্ণেয় মান।
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\sin{A}=\frac{3}{5},\cos{B}=\frac{12}{13}\)
\(\Rightarrow \sin^2{A}=\left(\frac{3}{5}\right)^2, \ \cos^2{B}=\left(\frac{12}{13}\right)^2\)
\(\Rightarrow 1-\cos^2{A}=\frac{9}{25}, \ 1-\sin^2{B}=\frac{144}{169}\) ➜ \(\because \sin^2{\theta}=1-\cos^2{\theta}\)
এবং \(\cos^2{\theta}=1-\sin^2{\theta}\)
\(\Rightarrow -\cos^2{A}=\frac{9}{25}-1, \ -\sin^2{B}=\frac{144}{169}-1\)
\(\Rightarrow -\cos^2{A}=\frac{9-25}{25}, \ -\sin^2{B}=\frac{144-169}{169}\)
\(\Rightarrow -\cos^2{A}=\frac{-16}{25}, \ -\sin^2{B}=\frac{-25}{169}\)
\(\Rightarrow \cos^2{A}=\frac{16}{25}, \ \sin^2{B}=\frac{25}{169}\)
\(\Rightarrow \cos{A}=\sqrt{\frac{16}{25}}, \ \sin{B}=\sqrt{\frac{25}{169}}\)
\(\therefore \cos{A}=\frac{4}{5}, \ \sin{B}=\frac{5}{13}\)
এখন, \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(=\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13}\) ➜ \(\because \sin{A}=\frac{3}{5}\)
\(\cos{B}=\frac{12}{13}\)
\(\cos{A}=\frac{4}{5}\)
এবং \(\sin{B}=\frac{5}{13}\)
\(=\frac{36}{65}-\frac{4}{13}\)
\(=\frac{36-20}{65}\)
\(=\frac{16}{65}\)
ইহাই নির্ণেয় মান।
আবার, \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{4}{5}\times\frac{12}{13}-\frac{3}{5}\times\frac{5}{13}\) ➜ \(\because \cos{A}=\frac{4}{5}\)
\(\cos{B}=\frac{12}{13}\)
\(\sin{A}=\frac{3}{5}\)
এবং \(\sin{B}=\frac{5}{13}\)
\(=\frac{48}{65}-\frac{3}{13}\)
\(=\frac{48-15}{65}\)
\(=\frac{33}{65}\)
ইহাই নির্ণেয় মান।
\(Q.1.(xviii)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\cot{A}=\frac{11}{2},\tan{B}=\frac{7}{24}\) হলে, \(\cot{(A-B)}\) ও \(\tan{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(-\frac{278}{29}, \frac{1}{2}\)
উত্তরঃ \(-\frac{278}{29}, \frac{1}{2}\)
সমাধানঃ
দেওয়া আছে,
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\cot{A}=\frac{11}{2}, \ \tan{B}=\frac{7}{24}\)
\(\Rightarrow \frac{1}{\cot{A}}=\frac{2}{11}, \ \frac{1}{\tan{B}}=\frac{24}{7}\)
\(\therefore \tan{A}=\frac{2}{11}, \ \cot{B}=\frac{24}{7}\) ➜ \(\because \frac{1}{\cot{A}}=\tan{A}\)
এবং \(\frac{1}{\tan{A}}=\cot{A}\)
এখন, \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(=\frac{\frac{11}{2}\times\frac{24}{7}+1}{\frac{24}{7}-\frac{11}{2}}\) ➜ \(\because \cot{A}=\frac{11}{2}\)
এবং \(\cot{B}=\frac{24}{7}\)
\(=\frac{\frac{264}{14}+1}{\frac{48-77}{14}}\)
\(=\frac{\frac{264+14}{14}}{\frac{-29}{14}}\)
\(=\frac{\frac{278}{14}}{\frac{-29}{14}}\)
\(=\frac{278}{-29}\) ➜ লব ও হরের সিহিত \(14\) গুণ করে।
\(=-\frac{278}{29}\)
ইহাই নির্ণেয় মান।
আবার, \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11}\times\frac{7}{24}}\) ➜ \(\because \tan{A}=\frac{2}{11}\)
এবং \(\tan{B}=\frac{7}{24}\)
\(=\frac{\frac{48+77}{264}}{1-\frac{14}{264}}\)
\(=\frac{\frac{125}{264}}{\frac{264-14}{264}}\)
\(=\frac{\frac{125}{264}}{\frac{250}{264}}\)
\(=\frac{125}{250}\) ➜ লব ও হরের সিহিত \(264\) গুণ করে।
\(=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\cot{A}=\frac{11}{2}, \ \tan{B}=\frac{7}{24}\)
\(\Rightarrow \frac{1}{\cot{A}}=\frac{2}{11}, \ \frac{1}{\tan{B}}=\frac{24}{7}\)
\(\therefore \tan{A}=\frac{2}{11}, \ \cot{B}=\frac{24}{7}\) ➜ \(\because \frac{1}{\cot{A}}=\tan{A}\)
এবং \(\frac{1}{\tan{A}}=\cot{A}\)
এখন, \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(=\frac{\frac{11}{2}\times\frac{24}{7}+1}{\frac{24}{7}-\frac{11}{2}}\) ➜ \(\because \cot{A}=\frac{11}{2}\)
এবং \(\cot{B}=\frac{24}{7}\)
\(=\frac{\frac{264}{14}+1}{\frac{48-77}{14}}\)
\(=\frac{\frac{264+14}{14}}{\frac{-29}{14}}\)
\(=\frac{\frac{278}{14}}{\frac{-29}{14}}\)
\(=\frac{278}{-29}\) ➜ লব ও হরের সিহিত \(14\) গুণ করে।
\(=-\frac{278}{29}\)
ইহাই নির্ণেয় মান।
আবার, \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11}\times\frac{7}{24}}\) ➜ \(\because \tan{A}=\frac{2}{11}\)
এবং \(\tan{B}=\frac{7}{24}\)
\(=\frac{\frac{48+77}{264}}{1-\frac{14}{264}}\)
\(=\frac{\frac{125}{264}}{\frac{264-14}{264}}\)
\(=\frac{\frac{125}{264}}{\frac{250}{264}}\)
\(=\frac{125}{250}\) ➜ লব ও হরের সিহিত \(264\) গুণ করে।
\(=\frac{1}{2}\)
ইহাই নির্ণেয় মান।
\(Q.1.(xix)\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\sec{A}=\frac{17}{8},\ cosec \ {B}=\frac{5}{4}\) হলে, \(\sec{(A+B)}\) এর মান নির্ণয় কর।
উত্তরঃ \(-\frac{85}{36}\)
উত্তরঃ \(-\frac{85}{36}\)
সমাধানঃ
দেওয়া আছে,
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\sec{A}=\frac{17}{8},\ cosec \ {B}=\frac{5}{4}\)
\(\Rightarrow \frac{1}{\sec{A}}=\frac{8}{17}, \ \frac{1}{cosec \ {B}}=\frac{4}{5}\)
\(\Rightarrow \cos{A}=\frac{8}{17}, \ \sin{B}=\frac{4}{5}\) ➜ \(\because \frac{1}{\cot{A}}=\tan{A}\)
এবং \(\frac{1}{\tan{A}}=\cot{A}\)
\(\Rightarrow \cos^2{A}=\left(\frac{8}{17}\right)^2, \ \sin^2{B}=\left(\frac{4}{5}\right)^2\)
\(\Rightarrow 1-\sin^2{A}=\frac{64}{289}, \ 1-\cos^2{B}=\frac{16}{25}\) ➜ \(\because \cos^2{\theta}=1-\sin^2{\theta}\)
এবং \(\sin^2{\theta}=1-\cos^2{\theta}\)
\(\Rightarrow -\sin^2{A}=\frac{64}{289}-1, \ -\cos^2{B}=\frac{16}{25}-1\)
\(\Rightarrow -\sin^2{A}=\frac{64-289}{289}, \ -\cos^2{B}=\frac{16-25}{25}\)
\(\Rightarrow -\sin^2{A}=\frac{-225}{289}, \ -\cos^2{B}=\frac{-9}{25}\)
\(\Rightarrow \sin^2{A}=\frac{225}{289}, \ \cos^2{B}=\frac{9}{25}\)
\(\Rightarrow \sin{A}=\sqrt{\frac{225}{289}}, \ \cos{B}=\sqrt{\frac{9}{25}}\)
\(\therefore \sin{A}=\frac{15}{17}, \ \cos{B}=\frac{3}{5}\)
এখন, \(\sec{(A+B)}=\frac{1}{\cos{(A+B)}\) ➜ \(\because \sec{P}=\frac{1}{\cos{P}}\)
\(=\frac{1}{\cos{A}\cos{B}-\sin{A}\sin{B}}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{1}{\frac{8}{17}\times\frac{3}{5}-\frac{15}{17}\times\frac{4}{5}}\) ➜ \(\because \cos{A}=\frac{8}{17}\)
\(\cos{B}=\frac{3}{5}\)
\(\sin{A}=\frac{15}{17}\)
এবং \(\sin{B}=\frac{4}{5}\)
\(=\frac{1}{\frac{24}{85}-\frac{60}{85}}\)
\(=\frac{1}{\frac{24-60}{85}}\)
\(=\frac{1}{\frac{-36}{85}}\)
\(=\frac{85}{-36}\)
\(=-\frac{85}{36}\)
ইহাই নির্ণেয় মান।
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\sec{A}=\frac{17}{8},\ cosec \ {B}=\frac{5}{4}\)
\(\Rightarrow \frac{1}{\sec{A}}=\frac{8}{17}, \ \frac{1}{cosec \ {B}}=\frac{4}{5}\)
\(\Rightarrow \cos{A}=\frac{8}{17}, \ \sin{B}=\frac{4}{5}\) ➜ \(\because \frac{1}{\cot{A}}=\tan{A}\)
এবং \(\frac{1}{\tan{A}}=\cot{A}\)
\(\Rightarrow \cos^2{A}=\left(\frac{8}{17}\right)^2, \ \sin^2{B}=\left(\frac{4}{5}\right)^2\)
\(\Rightarrow 1-\sin^2{A}=\frac{64}{289}, \ 1-\cos^2{B}=\frac{16}{25}\) ➜ \(\because \cos^2{\theta}=1-\sin^2{\theta}\)
এবং \(\sin^2{\theta}=1-\cos^2{\theta}\)
\(\Rightarrow -\sin^2{A}=\frac{64}{289}-1, \ -\cos^2{B}=\frac{16}{25}-1\)
\(\Rightarrow -\sin^2{A}=\frac{64-289}{289}, \ -\cos^2{B}=\frac{16-25}{25}\)
\(\Rightarrow -\sin^2{A}=\frac{-225}{289}, \ -\cos^2{B}=\frac{-9}{25}\)
\(\Rightarrow \sin^2{A}=\frac{225}{289}, \ \cos^2{B}=\frac{9}{25}\)
\(\Rightarrow \sin{A}=\sqrt{\frac{225}{289}}, \ \cos{B}=\sqrt{\frac{9}{25}}\)
\(\therefore \sin{A}=\frac{15}{17}, \ \cos{B}=\frac{3}{5}\)
এখন, \(\sec{(A+B)}=\frac{1}{\cos{(A+B)}\) ➜ \(\because \sec{P}=\frac{1}{\cos{P}}\)
\(=\frac{1}{\cos{A}\cos{B}-\sin{A}\sin{B}}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{1}{\frac{8}{17}\times\frac{3}{5}-\frac{15}{17}\times\frac{4}{5}}\) ➜ \(\because \cos{A}=\frac{8}{17}\)
\(\cos{B}=\frac{3}{5}\)
\(\sin{A}=\frac{15}{17}\)
এবং \(\sin{B}=\frac{4}{5}\)
\(=\frac{1}{\frac{24}{85}-\frac{60}{85}}\)
\(=\frac{1}{\frac{24-60}{85}}\)
\(=\frac{1}{\frac{-36}{85}}\)
\(=\frac{85}{-36}\)
\(=-\frac{85}{36}\)
ইহাই নির্ণেয় মান।
\(Q.1.(xx)\) \(\tan{A}\tan{B}=1\) হলে, \((A+B)\) এর মান কত?
উত্তরঃ \(\frac{\pi}{2}\)
উত্তরঃ \(\frac{\pi}{2}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{A}\tan{B}=1\)
\(\Rightarrow \frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}=1\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow \cos{A}\cos{B}=\sin{A}\sin{B}\) ➜ আড় গুণ করে।
\(\Rightarrow \cos{A}\cos{B}-\sin{A}\sin{B}=0\)
\(\Rightarrow \cos{(A+B)}=0\) ➜ \(\because \cos{P}\cos{Q}-\sin{P}\sin{Q}=\cos{(P+Q)}\)
\(\Rightarrow \cos{(A+B)}=\cos{\frac{\pi}{2}}\) ➜ \(\because \cos{\frac{\pi}{2}}=0\)
\(\therefore A+B=\frac{\pi}{2}\)
ইহাই নির্ণেয় মান।
\(\tan{A}\tan{B}=1\)
\(\Rightarrow \frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}=1\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow \cos{A}\cos{B}=\sin{A}\sin{B}\) ➜ আড় গুণ করে।
\(\Rightarrow \cos{A}\cos{B}-\sin{A}\sin{B}=0\)
\(\Rightarrow \cos{(A+B)}=0\) ➜ \(\because \cos{P}\cos{Q}-\sin{P}\sin{Q}=\cos{(P+Q)}\)
\(\Rightarrow \cos{(A+B)}=\cos{\frac{\pi}{2}}\) ➜ \(\because \cos{\frac{\pi}{2}}=0\)
\(\therefore A+B=\frac{\pi}{2}\)
ইহাই নির্ণেয় মান।
\(Q.1.(xxi)\) \(\triangle{ABC}\)-এ \(A+B=105^{o}\) হলে, \(\sin{C}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{\sqrt{3}+1}{2\sqrt{2}}\)
উত্তরঃ \(\frac{\sqrt{3}+1}{2\sqrt{2}}\)
সমাধানঃ
দেওয়া আছে,
\(\triangle{ABC}\)-এ \(A+B=105^{o}\)
কিন্তু \(\triangle{ABC}\)-এ \(A+B+C=180^{o}\)
\(\Rightarrow C=180^{o}-(A+B)\)
\(\Rightarrow C=180^{o}-105^{o}\) ➜ \(\because A+B=105^{o}\)
\(\Rightarrow C=75^{o}\)
\(\Rightarrow \sin{C}=\sin{75^{o}}\)
\(=\sin{(45^{o}+30^{o})}\) ➜ \(\because 75^{o}=45^{o}+30^{o}\)
\(=\sin{45^{o}}\cos{30^{o}}+\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\(\triangle{ABC}\)-এ \(A+B=105^{o}\)
কিন্তু \(\triangle{ABC}\)-এ \(A+B+C=180^{o}\)
\(\Rightarrow C=180^{o}-(A+B)\)
\(\Rightarrow C=180^{o}-105^{o}\) ➜ \(\because A+B=105^{o}\)
\(\Rightarrow C=75^{o}\)
\(\Rightarrow \sin{C}=\sin{75^{o}}\)
\(=\sin{(45^{o}+30^{o})}\) ➜ \(\because 75^{o}=45^{o}+30^{o}\)
\(=\sin{45^{o}}\cos{30^{o}}+\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
ইহাই নির্ণেয় মান।
\(Q.1.(xxii)\) \(\sin{(A-B-C)}\) এবং \(\cos{(A-B+C)}\) কে বিস্তৃত কর।
উত্তরঃ \(\cos{A}\cos{B}\cos{C}(\tan{A}-\tan{B}-\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(\cos{A}\cos{B}\cos{C}(1+\tan{A}\tan{B}+\tan{B}\tan{C}-\tan{C}\tan{A})\)
উত্তরঃ \(\cos{A}\cos{B}\cos{C}(\tan{A}-\tan{B}-\tan{C}-\tan{A}\tan{B}\tan{C})\)
\(\cos{A}\cos{B}\cos{C}(1+\tan{A}\tan{B}+\tan{B}\tan{C}-\tan{C}\tan{A})\)
সমাধানঃ
প্রদত্ত প্রথম রাশি, \(=\sin{(A-B-C)}\)
\(=\sin{\{(A-B)-C\}}\)
\(=\sin{(A-B)}\cos{C}-\cos{(A-B)}\sin{C}\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=(\sin{A}\cos{B}-\cos{A}\sin{B})\cos{C}-(\cos{A}\cos{B}+\sin{A}\sin{B})\sin{C}\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(\cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
\(=\sin{A}\cos{B}\cos{C}-\cos{A}\sin{B}\cos{C}-\cos{A}\cos{B}\sin{C}-\sin{A}\sin{B}\sin{C}\)
\(=\cos{A}\cos{B}\cos{C}\left(\frac{\sin{A}}{\cos{A}}-\frac{\sin{B}}{\cos{B}}-\frac{\sin{C}}{\cos{C}}-\frac{\sin{A}\sin{B}\sin{C}}{\cos{A}\cos{B}\cos{C}}\right)\)
\(=\cos{A}\cos{B}\cos{C}(\tan{A}-\tan{B}-\tan{C}-\tan{A}\tan{B}\tan{C})\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
প্রদত্ত দ্বিতীয় রাশি, \(=\cos{(A-B+C)}\)
\(=\cos{\{(A-B)+C\}}\)
\(=\cos{(A-B)}\cos{C}-\sin{(A-B)}\sin{C}\) ➜ \(\because \cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(=(\cos{A}\cos{B}+\sin{A}\sin{B})\cos{C}-(\sin{A}\cos{B}-\cos{A}\sin{B})\sin{C}\) ➜ \(\because \cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
\(\sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=\cos{A}\cos{B}\cos{C}+\sin{A}\sin{B}\cos{C}-\sin{A}\cos{B}\sin{C}+\cos{A}\sin{B}\sin{C}\)
\(=\cos{A}\cos{B}\cos{C}\left(1+\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}+\frac{\sin{B}\sin{C}}{\cos{B}\cos{C}}-\frac{\sin{C}\sin{A}}{\cos{C}\cos{A}}\right)\)
\(=\cos{A}\cos{B}\cos{C}(1+\tan{A}\tan{B}+\tan{B}\tan{C}-\tan{C}\tan{A})\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(=\sin{\{(A-B)-C\}}\)
\(=\sin{(A-B)}\cos{C}-\cos{(A-B)}\sin{C}\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=(\sin{A}\cos{B}-\cos{A}\sin{B})\cos{C}-(\cos{A}\cos{B}+\sin{A}\sin{B})\sin{C}\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(\cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
\(=\sin{A}\cos{B}\cos{C}-\cos{A}\sin{B}\cos{C}-\cos{A}\cos{B}\sin{C}-\sin{A}\sin{B}\sin{C}\)
\(=\cos{A}\cos{B}\cos{C}\left(\frac{\sin{A}}{\cos{A}}-\frac{\sin{B}}{\cos{B}}-\frac{\sin{C}}{\cos{C}}-\frac{\sin{A}\sin{B}\sin{C}}{\cos{A}\cos{B}\cos{C}}\right)\)
\(=\cos{A}\cos{B}\cos{C}(\tan{A}-\tan{B}-\tan{C}-\tan{A}\tan{B}\tan{C})\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
প্রদত্ত দ্বিতীয় রাশি, \(=\cos{(A-B+C)}\)
\(=\cos{\{(A-B)+C\}}\)
\(=\cos{(A-B)}\cos{C}-\sin{(A-B)}\sin{C}\) ➜ \(\because \cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(=(\cos{A}\cos{B}+\sin{A}\sin{B})\cos{C}-(\sin{A}\cos{B}-\cos{A}\sin{B})\sin{C}\) ➜ \(\because \cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
\(\sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=\cos{A}\cos{B}\cos{C}+\sin{A}\sin{B}\cos{C}-\sin{A}\cos{B}\sin{C}+\cos{A}\sin{B}\sin{C}\)
\(=\cos{A}\cos{B}\cos{C}\left(1+\frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}+\frac{\sin{B}\sin{C}}{\cos{B}\cos{C}}-\frac{\sin{C}\sin{A}}{\cos{C}\cos{A}}\right)\)
\(=\cos{A}\cos{B}\cos{C}(1+\tan{A}\tan{B}+\tan{B}\tan{C}-\tan{C}\tan{A})\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(Q.1.(xxiii)\) \(\cot{(A+B+C)}\) কে \(\cot{A}, \ \cot{B}, \ \cot{C}\) পদে প্রকাশ কর।
উত্তরঃ \(\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
উত্তরঃ \(\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
সমাধানঃ
প্রদত্ত রাশি, \(=\cot{(A+B+C)}\)
\(=\cot{\{(A+B)+C\}}\)
\(=\frac{\cot{(A+B)}\cot{C}-1}{\cot{C}+\cot{(A+B)}}\) ➜ \(\because \cot{(P+Q)}=\frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}\)
\(=\frac{\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\cot{C}-1}{\cot{C}+\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}}\) ➜ \(\because \cot{(P+Q)}=\frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}\)
\(=\frac{\frac{\cot{A}\cot{B}\cot{C}-\cot{C}}{\cot{B}+\cot{A}}-1}{\cot{C}+\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}}\)
\(=\frac{\cot{A}\cot{B}\cot{C}-\cot{C}-\cot{B}-\cot{A}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\) ➜ লব ও হরকে \((\cot{B}+\cot{A})\) দ্বারা গুণ করে।
\(=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
\(=\cot{\{(A+B)+C\}}\)
\(=\frac{\cot{(A+B)}\cot{C}-1}{\cot{C}+\cot{(A+B)}}\) ➜ \(\because \cot{(P+Q)}=\frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}\)
\(=\frac{\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\cot{C}-1}{\cot{C}+\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}}\) ➜ \(\because \cot{(P+Q)}=\frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}\)
\(=\frac{\frac{\cot{A}\cot{B}\cot{C}-\cot{C}}{\cot{B}+\cot{A}}-1}{\cot{C}+\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}}\)
\(=\frac{\cot{A}\cot{B}\cot{C}-\cot{C}-\cot{B}-\cot{A}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\) ➜ লব ও হরকে \((\cot{B}+\cot{A})\) দ্বারা গুণ করে।
\(=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
অধ্যায় \(7B\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.2.(i)\) \(\cos{(x-60^{o})}\cos{(x-30^{o})}-\sin{(x-60^{o})}\sin{(x+330^{o})}\)\(=\sin{2x}\) \(Q.2.(ii)\) \(\sin{x}\sin{(x+30^{o})}+\cos{x}\sin{(x+120^{o})}=\frac{\sqrt{3}}{2}\)
কুয়েটঃ ২০০৭-২০০৮ ।
\(Q.2.(iii)\) \(\cos{A}+\cos{(120^{o}-A)}+\cos{(120^{o}+A)}=0\)
\(Q.2.(iv)\) \(\frac{\sin{(B-C)}}{\cos{B}\cos{C}}+\frac{\sin{(C-A)}}{\cos{C}\cos{A}}+\frac{\sin{(A-B)}}{\cos{A}\cos{B}}=0\)
\(Q.2.(v)\) \(\frac{\cos{(45^{o}+A)}+\cos{(45^{o}-A)}}{\cos{(45^{o}-A)}-\cos{(45^{o}+A)}}=\cot{A}\)
\(Q.2.(vi)\) \(\frac{\tan{\left(\frac{\pi}{4}+\theta\right)}-\tan{\left(\frac{\pi}{4}-\theta\right)}}{\tan{\left(\frac{\pi}{4}+\theta\right)}+\tan{\left(\frac{\pi}{4}-\theta\right)}}=\sin{2A}\)
\(Q.2.(vii)\) \(2\sin{\left(\frac{\pi}{4}+A\right)}\cos{\left(\frac{\pi}{4}+B\right)}=\cos{(A+B)}+\sin{(A-B)}\)
\(Q.2.(viii)\) \(\tan{\left(\alpha+\frac{\pi}{3}\right)}+\tan{\left(\alpha-\frac{\pi}{3}\right)}=\frac{4\sin{2\alpha}}{1-4\sin^2{\alpha}}\)
সিঃ ২০১৩ ।
\(Q.2.(ix)\) \(\cot{(A+B)}+\cot{(A-B)}=\frac{\sin{2A}}{\sin^2{A}-\sin^2{B}}\)
\(Q.2.(x)\) \(\tan{70^{o}}=\tan{20^{o}}+2\tan{50^{o}}\)
রাঃ,কুঃ,চঃ,বঃ ২০১৮; ঢাঃ২০১৫,২০১০; বঃ২০০৬; চঃ২০০৫; বুয়েটঃ২০০৩-২০০৪ ।
\(Q.2.(xi)\) \(\tan{54^{o}}=\tan{36^{o}}+2\tan{18^{o}}\)
\(Q.2.(xii)\) \(\tan{\frac{\pi}{20}}+\tan{\frac{\pi}{5}}+\tan{\frac{\pi}{20}}\tan{\frac{\pi}{5}}=1\)
\(Q.2.(xiii)\) \(\tan{5A}\tan{3A}\tan{2A}=\tan{5A}-\tan{3A}-\tan{2A}\)
\(Q.2.(xiv)\) \(\sin{(n+1)\theta}\sin{(n-1)\theta}+\cos{(n+1)\theta}\cos{(n-1)\theta}=\cos{2\theta}\)
\(Q.2.(xv)\) \(\tan{20^{o}}+\tan{25^{o}}+\tan{20^{o}}\tan{25^{o}}=1\)
\(Q.2.(xvi)\) \(\tan{65^{o}}=\tan{25^{o}}+2\tan{40^{o}}\)
\(Q.2.(xvii)\) \(\tan{3\theta}-\tan{2\theta}-\tan{\theta}=\tan{3\theta}\tan{2\theta}\tan{\theta}\)
\(Q.2.(xviii)\) \(\tan{(A+60^{o})}+\tan{(A-60^{o})}=\frac{4\sin{2A}}{1-4\sin^2{A}}\)
প্রমাণ করঃ
\(Q.2.(xix)\) \(\sin{(25^{o}+A)}\cos{(25^{o}-A)}+\cos{(25^{o}+A)}\cos{(115^{o}-A)}\)\(=\sin{2A}\) \(Q.2.(xx)\) \(\sin{A}\sin{(B-C)}+\sin{B}\sin{(C-A)}+\sin{C}\sin{(A-B)}=0\)
\(Q.2.(xxi)\) \(\sin{(B+C)}\sin{(B-C)}+\sin{(C+A)}\sin{(C-A)}\)\(+\sin{(A+B)}\sin{(A-B)}=0\)
\(Q.2.(xxii)\) \(\sin{(135^{o}-A)}+\cos{(135^{o}+A)}=0\)
\(Q.2.(xxiii)\) \(\tan{(B-C)}+\tan{(C-A)}+\tan{(A-B)}\)\(=\tan{(B-C)}\tan{(C-A)}\tan{(A-B)}\)
\(Q.2.(xxiv)\) \(\tan{(A+B)}\tan{(A-B)}=\frac{\sin^2{A}-\sin^2{B}}{\cos^2{A}-\sin^2{B}}\)
\(Q.2.(xxv)\) \(\cos{(A-B)}\cos{(A-C)}+\sin{(A-B)}\sin{(A-C)}\)\(=\cos{(B-C)}\)
\(Q.2.(xxvi)\) \(\frac{\cot{(3A-B)}\cot{B}-1}{-\cot{B}-\cot{(3A-B)}}=-\cot{3A}\)
\(Q.2.(xxvii)\) \(\cos{A}+\cos{\left(\frac{2\pi}{3}-A\right)}+\cos{\left(\frac{2\pi}{3}+A\right)}=0\)
\(Q.2.(xxviii)\) \(\tan{32^{o}}+\tan{13^{o}}+\tan{32^{o}}\tan{13^{o}}=1\)
\(Q.2.(xxix)\) \(\tan{50^{o}}=\tan{40^{o}}+2\tan{10^{o}}\)
\(Q.2.(xxx)\) \(\tan{(45^{o}+A)}\tan{(45^{o}-A)}=1\)
\(Q.2.(xxxi)\) \(\cos^2{(A-B)}-\sin^2{(A+B)}=\cos{2A}\cos{2B}\)
\(Q.2.(xxxii)\) \(\cos{\left(\frac{\pi}{3}-\alpha\right)}\cos{\left(\frac{\pi}{6}-\beta\right)}-\sin{\left(\frac{\pi}{3}-\alpha\right)}\sin{\left(\frac{\pi}{6}-\beta\right)}\)\(=\sin{(\alpha+\beta)}\)
\(Q.2.(xxxiii)\) \(\cos{x}\sin{(y-z)}+\cos{y}\sin{(z-x)}+\cos{z}\sin{(x-y)}=0\)
\(Q.2.(xxxiv)\) \(\frac{\tan{(3\theta-2\phi)}+\tan{2\phi}}{1-\tan{(3\theta-2\phi)}\tan{2\phi}}=\tan{3\theta}\)
\(Q.2.(xxxv)\) \(1+\tan{2A}\tan{A}=\sec{2A}\)
\(Q.2.(xxxvi)\) \(\sin{2\theta}\cos{\theta}+\cos{2\theta}\sin{\theta}=\sin{4\theta}\cos{\theta}-\cos{4\theta}\sin{\theta}\)
প্রমাণ করঃ
\(Q.2.(i)\) \(\cos{(x-60^{o})}\cos{(x-30^{o})}-\sin{(x-60^{o})}\sin{(x+330^{o})}=\sin{2x}\) সমাধানঃ
\(L.S=\cos{(x-60^{o})}\cos{(x-30^{o})}-\sin{(x-60^{o})}\sin{(x+330^{o})}\)
\(=\cos{(x-60^{o})}\cos{(x-30^{o})}-\sin{(x-60^{o})}\sin{\{90^{o}\times4+(x-30^{o})\}}\) ➜ \(\because x+330^{o}=90^{o}\times4+(x-30^{o})\)
\(=\cos{(x-60^{o})}\cos{(x-30^{o})}-\sin{(x-60^{o})}\sin{(x-30^{o})}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(4\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের কোনো পরিবর্তন হয়নি।
\(=\cos{\{(x-60^{o})+(x-30^{o})\}}\) ➜
\(\because \cos{(A)}\cos{(B)}-\sin{(A)}\sin{(B)}=\cos{(A+B)}\)
\(=\cos{(x-60^{o}+x-30^{o})}\)
\(=\cos{(2x-90^{o})}\)
\(=\cos{\{-(90^{o}\times1-2x)\}}\)
\(=\cos{(90^{o}\times1-2x)}\)➜
\(\because \cos{(-A)}=\cos{A}\)
\(=\sin{2A}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{(x-60^{o})}\cos{(x-30^{o})}-\sin{(x-60^{o})}\sin{\{90^{o}\times4+(x-30^{o})\}}\) ➜ \(\because x+330^{o}=90^{o}\times4+(x-30^{o})\)
\(=\cos{(x-60^{o})}\cos{(x-30^{o})}-\sin{(x-60^{o})}\sin{(x-30^{o})}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(4\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের কোনো পরিবর্তন হয়নি।
\(=\cos{\{(x-60^{o})+(x-30^{o})\}}\) ➜

\(\because \cos{(A)}\cos{(B)}-\sin{(A)}\sin{(B)}=\cos{(A+B)}\)
\(=\cos{(x-60^{o}+x-30^{o})}\)
\(=\cos{(2x-90^{o})}\)
\(=\cos{\{-(90^{o}\times1-2x)\}}\)
\(=\cos{(90^{o}\times1-2x)}\)➜

\(\because \cos{(-A)}=\cos{A}\)
\(=\sin{2A}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(ii)\) \(\sin{x}\sin{(x+30^{o})}+\cos{x}\sin{(x+120^{o})}=\frac{\sqrt{3}}{2}\) কুয়েটঃ ২০০৭-২০০৮ ।
সমাধানঃ
\(L.S=\sin{x}\sin{(x+30^{o})}+\cos{x}\sin{(x+120^{o})}\)
\(=\sin{x}\sin{(x+30^{o})}+\cos{x}\sin{\{90^{o}\times1+(x+30^{o})\}}\) ➜ \(\because x+120^{o}=90^{o}\times1+(x+30^{o})\)
\(=\sin{x}\sin{(x+30^{o})}+\cos{x}\cos{(x+30^{o})}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\cos{(x+30^{o})}\cos{x}+\sin{(x+30^{o})}\sin{x}\)
\(=\cos{(x+30^{o}-x)}\) ➜
\(\because \cos{(A)}\cos{(B)}+\sin{(A)}\sin{(B)}=\cos{(A-B)}\)
\(=\cos{30^{o}}\)
\(=\frac{\sqrt{3}}{2}\)➜
\(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{x}\sin{(x+30^{o})}+\cos{x}\sin{\{90^{o}\times1+(x+30^{o})\}}\) ➜ \(\because x+120^{o}=90^{o}\times1+(x+30^{o})\)
\(=\sin{x}\sin{(x+30^{o})}+\cos{x}\cos{(x+30^{o})}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\cos{(x+30^{o})}\cos{x}+\sin{(x+30^{o})}\sin{x}\)
\(=\cos{(x+30^{o}-x)}\) ➜

\(\because \cos{(A)}\cos{(B)}+\sin{(A)}\sin{(B)}=\cos{(A-B)}\)
\(=\cos{30^{o}}\)
\(=\frac{\sqrt{3}}{2}\)➜

\(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(iii)\) \(\cos{A}+\cos{(120^{o}-A)}+\cos{(120^{o}+A)}=0\) সমাধানঃ
\(L.S=\cos{A}+\cos{(120^{o}-A)}+\cos{(120^{o}+A)}\)
\(=\cos{A}+\cos{120^{o}}\cos{A}+\sin{120^{o}}\sin{A}+\cos{120^{o}}\cos{A}-\sin{120^{o}}\sin{A}\) ➜ \(\because \cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
এবং \(\cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(=\cos{A}+2\cos{120^{o}}\cos{A}\)
\(=\cos{A}+2\left(-\frac{1}{2}\right)\times\cos{A}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\cos{A}-\cos{A}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{A}+\cos{120^{o}}\cos{A}+\sin{120^{o}}\sin{A}+\cos{120^{o}}\cos{A}-\sin{120^{o}}\sin{A}\) ➜ \(\because \cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
এবং \(\cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(=\cos{A}+2\cos{120^{o}}\cos{A}\)
\(=\cos{A}+2\left(-\frac{1}{2}\right)\times\cos{A}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\cos{A}-\cos{A}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(iv)\) \(\frac{\sin{(B-C)}}{\cos{B}\cos{C}}+\frac{\sin{(C-A)}}{\cos{C}\cos{A}}+\frac{\sin{(A-B)}}{\cos{A}\cos{B}}=0\) সমাধানঃ
\(L.S=\frac{\sin{(B-C)}}{\cos{B}\cos{C}}+\frac{\sin{(C-A)}}{\cos{C}\cos{A}}+\frac{\sin{(A-B)}}{\cos{A}\cos{B}}\)
\(=\frac{\sin{B}\cos{C}-\cos{B}\sin{C}}{\cos{B}\cos{C}}+\frac{\sin{C}\cos{A}-\cos{C}\sin{A}}{\cos{C}\cos{A}}+\frac{\sin{A}\cos{B}-\cos{A}\sin{B}}{\cos{A}\cos{B}}\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=\frac{\sin{B}\cos{C}}{\cos{B}\cos{C}}-\frac{\cos{B}\sin{C}}{\cos{B}\cos{C}}+\frac{\sin{C}\cos{A}}{\cos{C}\cos{A}}-\frac{\cos{C}\sin{A}}{\cos{C}\cos{A}}+\frac{\sin{A}\cos{B}}{\cos{A}\cos{B}}-\frac{\cos{A}\sin{B}}{\cos{A}\cos{B}}\)
\(=\frac{\sin{B}}{\cos{B}}-\frac{\sin{C}}{\cos{C}}+\frac{\sin{C}}{\cos{C}}-\frac{\sin{A}}{\cos{A}}+\frac{\sin{A}}{\cos{A}}-\frac{\sin{B}}{\cos{B}}\)
\(=\tan{B}-\tan{C}+\tan{C}-\tan{A}+\tan{A}-\tan{B}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{B}\cos{C}-\cos{B}\sin{C}}{\cos{B}\cos{C}}+\frac{\sin{C}\cos{A}-\cos{C}\sin{A}}{\cos{C}\cos{A}}+\frac{\sin{A}\cos{B}-\cos{A}\sin{B}}{\cos{A}\cos{B}}\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=\frac{\sin{B}\cos{C}}{\cos{B}\cos{C}}-\frac{\cos{B}\sin{C}}{\cos{B}\cos{C}}+\frac{\sin{C}\cos{A}}{\cos{C}\cos{A}}-\frac{\cos{C}\sin{A}}{\cos{C}\cos{A}}+\frac{\sin{A}\cos{B}}{\cos{A}\cos{B}}-\frac{\cos{A}\sin{B}}{\cos{A}\cos{B}}\)
\(=\frac{\sin{B}}{\cos{B}}-\frac{\sin{C}}{\cos{C}}+\frac{\sin{C}}{\cos{C}}-\frac{\sin{A}}{\cos{A}}+\frac{\sin{A}}{\cos{A}}-\frac{\sin{B}}{\cos{B}}\)
\(=\tan{B}-\tan{C}+\tan{C}-\tan{A}+\tan{A}-\tan{B}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(v)\) \(\frac{\cos{(45^{o}+A)}+\cos{(45^{o}-A)}}{\cos{(45^{o}-A)}-\cos{(45^{o}+A)}}=\cot{A}\) সমাধানঃ
\(L.S=\frac{\cos{(45^{o}+A)}+\cos{(45^{o}-A)}}{\cos{(45^{o}-A)}-\cos{(45^{o}+A)}}\)
\(=\frac{\cos{45^{o}}\cos{A}-\sin{45^{o}}\sin{A}+\cos{45^{o}}\cos{A}+\sin{45^{o}}\sin{A}}{\cos{45^{o}}\cos{A}+\sin{45^{o}}\sin{A}-\cos{45^{o}}\cos{A}+\sin{45^{o}}\sin{A}}\) ➜ \(\because \cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
এবং \(\cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
\(=\frac{2\cos{45^{o}}\cos{A}}{2\sin{45^{o}}\sin{A}}\)
\(=\frac{\frac{1}{\sqrt{2}}\cos{A}}{\frac{1}{\sqrt{2}}\sin{A}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{\cos{A}}{\sin{A}}\)
\(=\cot{A}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{45^{o}}\cos{A}-\sin{45^{o}}\sin{A}+\cos{45^{o}}\cos{A}+\sin{45^{o}}\sin{A}}{\cos{45^{o}}\cos{A}+\sin{45^{o}}\sin{A}-\cos{45^{o}}\cos{A}+\sin{45^{o}}\sin{A}}\) ➜ \(\because \cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
এবং \(\cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
\(=\frac{2\cos{45^{o}}\cos{A}}{2\sin{45^{o}}\sin{A}}\)
\(=\frac{\frac{1}{\sqrt{2}}\cos{A}}{\frac{1}{\sqrt{2}}\sin{A}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
এবং \(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{\cos{A}}{\sin{A}}\)
\(=\cot{A}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(vi)\) \(\frac{\tan{\left(\frac{\pi}{4}+\theta\right)}-\tan{\left(\frac{\pi}{4}-\theta\right)}}{\tan{\left(\frac{\pi}{4}+\theta\right)}+\tan{\left(\frac{\pi}{4}-\theta\right)}}=\sin{2A}\) সমাধানঃ
\(L.S=\frac{\tan{\left(\frac{\pi}{4}+\theta\right)}-\tan{\left(\frac{\pi}{4}-\theta\right)}}{\tan{\left(\frac{\pi}{4}+\theta\right)}+\tan{\left(\frac{\pi}{4}-\theta\right)}}\)
\(=\frac{\frac{\sin{\left(\frac{\pi}{4}+\theta\right)}}{\cos{\left(\frac{\pi}{4}+\theta\right)}}-\frac{\sin{\left(\frac{\pi}{4}-\theta\right)}}{\cos{\left(\frac{\pi}{4}-\theta\right)}}}{\frac{\sin{\left(\frac{\pi}{4}+\theta\right)}}{\cos{\left(\frac{\pi}{4}+\theta\right)}}+\frac{\sin{\left(\frac{\pi}{4}-\theta\right)}}{\cos{\left(\frac{\pi}{4}-\theta\right)}}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\sin{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}-\cos{\left(\frac{\pi}{4}+\theta\right)}\sin{\left(\frac{\pi}{4}-\theta\right)}}{\sin{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}+\cos{\left(\frac{\pi}{4}+\theta\right)}\sin{\left(\frac{\pi}{4}-\theta\right)}}\) ➜ লব ও হরের সহিত \(\left\{\cos{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}\right\}\) গুণ করে।
\(=\frac{\sin{\left(\frac{\pi}{4}+\theta-\frac{\pi}{4}+\theta\right)}}{\sin{\left(\frac{\pi}{4}+\theta+\frac{\pi}{4}-\theta\right)}}\) ➜ \(\because \sin{P}\cos{Q}-\cos{P}\sin{Q}=\sin{(P-Q)}\)
এবং \(\sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
\(=\frac{\sin{2\theta}}{\sin{2\left(\frac{\pi}{4}\right)}}\)
\(=\frac{\sin{2\theta}}{\sin{\left(\frac{\pi}{2}\right)}}\)
\(=\frac{\sin{2\theta}}{1}\) ➜ \(\because \sin{\left(\frac{\pi}{2}\right)}=1\)
\(=\sin{2\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\frac{\sin{\left(\frac{\pi}{4}+\theta\right)}}{\cos{\left(\frac{\pi}{4}+\theta\right)}}-\frac{\sin{\left(\frac{\pi}{4}-\theta\right)}}{\cos{\left(\frac{\pi}{4}-\theta\right)}}}{\frac{\sin{\left(\frac{\pi}{4}+\theta\right)}}{\cos{\left(\frac{\pi}{4}+\theta\right)}}+\frac{\sin{\left(\frac{\pi}{4}-\theta\right)}}{\cos{\left(\frac{\pi}{4}-\theta\right)}}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\sin{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}-\cos{\left(\frac{\pi}{4}+\theta\right)}\sin{\left(\frac{\pi}{4}-\theta\right)}}{\sin{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}+\cos{\left(\frac{\pi}{4}+\theta\right)}\sin{\left(\frac{\pi}{4}-\theta\right)}}\) ➜ লব ও হরের সহিত \(\left\{\cos{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}\right\}\) গুণ করে।
\(=\frac{\sin{\left(\frac{\pi}{4}+\theta-\frac{\pi}{4}+\theta\right)}}{\sin{\left(\frac{\pi}{4}+\theta+\frac{\pi}{4}-\theta\right)}}\) ➜ \(\because \sin{P}\cos{Q}-\cos{P}\sin{Q}=\sin{(P-Q)}\)
এবং \(\sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
\(=\frac{\sin{2\theta}}{\sin{2\left(\frac{\pi}{4}\right)}}\)
\(=\frac{\sin{2\theta}}{\sin{\left(\frac{\pi}{2}\right)}}\)
\(=\frac{\sin{2\theta}}{1}\) ➜ \(\because \sin{\left(\frac{\pi}{2}\right)}=1\)
\(=\sin{2\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(vii)\) \(2\sin{\left(\frac{\pi}{4}+A\right)}\cos{\left(\frac{\pi}{4}+B\right)}=\cos{(A+B)}+\sin{(A-B)}\) সমাধানঃ
\(L.S=2\sin{\left(\frac{\pi}{4}+A\right)}\cos{\left(\frac{\pi}{4}+B\right)}\)
\(=\sin{\left(\frac{\pi}{4}+A\right)}\cos{\left(\frac{\pi}{4}+B\right)}+\cos{\left(\frac{\pi}{4}+A\right)}\sin{\left(\frac{\pi}{4}+B\right)}+\sin{\left(\frac{\pi}{4}+A\right)}\cos{\left(\frac{\pi}{4}+B\right)}-\cos{\left(\frac{\pi}{4}+A\right)}\sin{\left(\frac{\pi}{4}+B\right)}\)
\(=\sin{\left(\frac{\pi}{4}+A+\frac{\pi}{4}+B\right)}+\sin{\left(\frac{\pi}{4}+A-\frac{\pi}{4}-B\right)}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
এবং \(\sin{P}\cos{Q}-\cos{P}\sin{Q}=\sin{(P-Q)}\)
\(=\sin{\left\{2\times\frac{\pi}{4}+(A+B)\right\}}+\sin{(A-B)}\)
\(=\sin{\left\{\frac{\pi}{2}\times1+(A+B)\right\}}+\sin{(A-B)}\)
\(=\cos{(A+B)}+\sin{(A-B)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\left(\frac{\pi}{4}+A\right)}\cos{\left(\frac{\pi}{4}+B\right)}+\cos{\left(\frac{\pi}{4}+A\right)}\sin{\left(\frac{\pi}{4}+B\right)}+\sin{\left(\frac{\pi}{4}+A\right)}\cos{\left(\frac{\pi}{4}+B\right)}-\cos{\left(\frac{\pi}{4}+A\right)}\sin{\left(\frac{\pi}{4}+B\right)}\)
\(=\sin{\left(\frac{\pi}{4}+A+\frac{\pi}{4}+B\right)}+\sin{\left(\frac{\pi}{4}+A-\frac{\pi}{4}-B\right)}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
এবং \(\sin{P}\cos{Q}-\cos{P}\sin{Q}=\sin{(P-Q)}\)
\(=\sin{\left\{2\times\frac{\pi}{4}+(A+B)\right\}}+\sin{(A-B)}\)
\(=\sin{\left\{\frac{\pi}{2}\times1+(A+B)\right\}}+\sin{(A-B)}\)
\(=\cos{(A+B)}+\sin{(A-B)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(viii)\) \(\tan{\left(\alpha+\frac{\pi}{3}\right)}+\tan{\left(\alpha-\frac{\pi}{3}\right)}=\frac{4\sin{2\alpha}}{1-4\sin^2{\alpha}}\) সিঃ ২০১৩ ।
সমাধানঃ
\(L.S=\tan{\left(\alpha+\frac{\pi}{3}\right)}+\tan{\left(\alpha-\frac{\pi}{3}\right)}\)
\(=\frac{\sin{\left(\alpha+\frac{\pi}{3}\right)}}{\cos{\left(\alpha+\frac{\pi}{3}\right)}}+\frac{\sin{\left(\alpha-\frac{\pi}{3}\right)}}{\cos{\left(\alpha-\frac{\pi}{3}\right)}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\sin{\left(\alpha+\frac{\pi}{3}\right)}\cos{\left(\alpha-\frac{\pi}{3}\right)}+\cos{\left(\alpha+\frac{\pi}{3}\right)}\sin{\left(\alpha-\frac{\pi}{3}\right)}}{\cos{\left(\alpha+\frac{\pi}{3}\right)}\cos{\left(\alpha-\frac{\pi}{3}\right)}}\)
\(=\frac{\sin{\left(\alpha+\frac{\pi}{3}+\alpha-\frac{\pi}{3}\right)}}{\cos{\left(\alpha+\frac{\pi}{3}\right)}\cos{\left(\alpha-\frac{\pi}{3}\right)}}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
\(=\frac{\sin{2\alpha}}{\cos^2{\frac{\pi}{3}}-\sin^2{\alpha}}\) ➜ \(\because \cos{(A+B)}\cos{(A-B)}=\cos^2{B}-\sin^2{A}\)
\(=\frac{\sin{2\alpha}}{\left(\frac{1}{2}\right)^2-\sin^2{\alpha}}\) ➜ \(\because \cos{\frac{\pi}{3}}=\frac{1}{2}\)
\(=\frac{\sin{2\alpha}}{\frac{1}{4}-\sin^2{\alpha}}\)
\(=\frac{4\sin{2\alpha}}{1-4\sin^2{\alpha}}\) ➜ লব ও হরের সহিত \(4\) গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{\left(\alpha+\frac{\pi}{3}\right)}}{\cos{\left(\alpha+\frac{\pi}{3}\right)}}+\frac{\sin{\left(\alpha-\frac{\pi}{3}\right)}}{\cos{\left(\alpha-\frac{\pi}{3}\right)}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\sin{\left(\alpha+\frac{\pi}{3}\right)}\cos{\left(\alpha-\frac{\pi}{3}\right)}+\cos{\left(\alpha+\frac{\pi}{3}\right)}\sin{\left(\alpha-\frac{\pi}{3}\right)}}{\cos{\left(\alpha+\frac{\pi}{3}\right)}\cos{\left(\alpha-\frac{\pi}{3}\right)}}\)
\(=\frac{\sin{\left(\alpha+\frac{\pi}{3}+\alpha-\frac{\pi}{3}\right)}}{\cos{\left(\alpha+\frac{\pi}{3}\right)}\cos{\left(\alpha-\frac{\pi}{3}\right)}}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
\(=\frac{\sin{2\alpha}}{\cos^2{\frac{\pi}{3}}-\sin^2{\alpha}}\) ➜ \(\because \cos{(A+B)}\cos{(A-B)}=\cos^2{B}-\sin^2{A}\)
\(=\frac{\sin{2\alpha}}{\left(\frac{1}{2}\right)^2-\sin^2{\alpha}}\) ➜ \(\because \cos{\frac{\pi}{3}}=\frac{1}{2}\)
\(=\frac{\sin{2\alpha}}{\frac{1}{4}-\sin^2{\alpha}}\)
\(=\frac{4\sin{2\alpha}}{1-4\sin^2{\alpha}}\) ➜ লব ও হরের সহিত \(4\) গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(ix)\) \(\cot{(A+B)}+\cot{(A-B)}=\frac{\sin{2A}}{\sin^2{A}-\sin^2{B}}\) সমাধানঃ
\(L.S=\cot{(A+B)}+\cot{(A-B)}\)
\(=\frac{\cos{(A+B)}}{\sin{(A+B)}}+\frac{\cos{(A-B)}}{\sin{(A-B)}}\) ➜ \(\because \cot{P}=\frac{\cos{P}}{\sin{P}}\)
\(=\frac{\cos{(A+B)}\sin{(A-B)}+\sin{(A+B)}\cos{(A-B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A+B)}\cos{(A-B)}+\cos{(A+B)}\sin{(A-B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A+B+A-B)}}{\sin^2{A}-\sin^2{B}}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
এবং \(\sin{(P+Q)}\sin{(P-Q)}=\sin^2{P}-\sin^2{Q}\)
\(=\frac{\sin{2A}}{\sin^2{A}-\sin^2{B}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{(A+B)}}{\sin{(A+B)}}+\frac{\cos{(A-B)}}{\sin{(A-B)}}\) ➜ \(\because \cot{P}=\frac{\cos{P}}{\sin{P}}\)
\(=\frac{\cos{(A+B)}\sin{(A-B)}+\sin{(A+B)}\cos{(A-B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A+B)}\cos{(A-B)}+\cos{(A+B)}\sin{(A-B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A+B+A-B)}}{\sin^2{A}-\sin^2{B}}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
এবং \(\sin{(P+Q)}\sin{(P-Q)}=\sin^2{P}-\sin^2{Q}\)
\(=\frac{\sin{2A}}{\sin^2{A}-\sin^2{B}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(x)\) \(\tan{70^{o}}=\tan{20^{o}}+2\tan{50^{o}}\) রাঃ,কুঃ,চঃ,বঃ ২০১৮; ঢাঃ২০১৫,২০১০; বঃ২০০৬; চঃ২০০৫; বুয়েটঃ২০০৩-২০০৪ ।
সমাধানঃ
লেখা যায়,
\(\tan{70^{o}}=\tan{(50^{o}+20^{o})}\)
\(\Rightarrow \tan{70^{o}}=\frac{\tan{50^{o}}+\tan{20^{o}}}{1-\tan{50^{o}}\tan{20^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{70^{o}}-\tan{70^{o}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{70^{o}}-\tan{(90^{o}\times1-20^{o})}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ \(\because 70^{o}=(90^{o}\times1-20^{o}\)
\(\Rightarrow \tan{70^{o}}-\cot{20^{o}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{70^{o}}-\frac{1}{\tan{20^{o}}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{70^{o}}-\tan{50^{o}}=\tan{50^{o}}+\tan{20^{o}}\)
\(\Rightarrow \tan{70^{o}}=\tan{50^{o}}+\tan{50^{o}}+\tan{20^{o}}\)
\(\Rightarrow \tan{70^{o}}=2\tan{50^{o}}+\tan{20^{o}}\)
\(\therefore \tan{70^{o}}=\tan{20^{o}}+2\tan{50^{o}}\)
(প্রমাণিত)
\(\tan{70^{o}}=\tan{(50^{o}+20^{o})}\)
\(\Rightarrow \tan{70^{o}}=\frac{\tan{50^{o}}+\tan{20^{o}}}{1-\tan{50^{o}}\tan{20^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{70^{o}}-\tan{70^{o}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{70^{o}}-\tan{(90^{o}\times1-20^{o})}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ \(\because 70^{o}=(90^{o}\times1-20^{o}\)
\(\Rightarrow \tan{70^{o}}-\cot{20^{o}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{70^{o}}-\frac{1}{\tan{20^{o}}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{70^{o}}-\tan{50^{o}}=\tan{50^{o}}+\tan{20^{o}}\)
\(\Rightarrow \tan{70^{o}}=\tan{50^{o}}+\tan{50^{o}}+\tan{20^{o}}\)
\(\Rightarrow \tan{70^{o}}=2\tan{50^{o}}+\tan{20^{o}}\)
\(\therefore \tan{70^{o}}=\tan{20^{o}}+2\tan{50^{o}}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xi)\) \(\tan{54^{o}}=\tan{36^{o}}+2\tan{18^{o}}\) সমাধানঃ
লেখা যায়,
\(\tan{54^{o}}=\tan{(36^{o}+18^{o})}\)
\(\Rightarrow \tan{54^{o}}=\frac{\tan{36^{o}}+\tan{18^{o}}}{1-\tan{36^{o}}\tan{18^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{54^{o}}-\tan{54^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{54^{o}}-\tan{(90^{o}\times1-36^{o})}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because 54^{o}=(90^{o}\times1-36^{o}\)
\(\Rightarrow \tan{54^{o}}-\cot{36^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{54^{o}}-\frac{1}{\tan{36^{o}}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{54^{o}}-\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\)
\(\Rightarrow \tan{54^{o}}=\tan{36^{o}}+\tan{18^{o}}+\tan{18^{o}}\)
\(\therefore \tan{54^{o}}=\tan{36^{o}}+2\tan{18^{o}}\)
(প্রমাণিত)
\(\tan{54^{o}}=\tan{(36^{o}+18^{o})}\)
\(\Rightarrow \tan{54^{o}}=\frac{\tan{36^{o}}+\tan{18^{o}}}{1-\tan{36^{o}}\tan{18^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{54^{o}}-\tan{54^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{54^{o}}-\tan{(90^{o}\times1-36^{o})}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because 54^{o}=(90^{o}\times1-36^{o}\)
\(\Rightarrow \tan{54^{o}}-\cot{36^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{54^{o}}-\frac{1}{\tan{36^{o}}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{54^{o}}-\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\)
\(\Rightarrow \tan{54^{o}}=\tan{36^{o}}+\tan{18^{o}}+\tan{18^{o}}\)
\(\therefore \tan{54^{o}}=\tan{36^{o}}+2\tan{18^{o}}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xii)\) \(\tan{\frac{\pi}{20}}+\tan{\frac{\pi}{5}}+\tan{\frac{\pi}{20}}\tan{\frac{\pi}{5}}=1\) সমাধানঃ
লেখা যায়,
\(\tan{\frac{\pi}{4}}=\tan{\left(\frac{\pi}{20}+\frac{\pi}{5}\right)}\)
\(\Rightarrow 1=\frac{\tan{\frac{\pi}{20}}+\tan{\frac{\pi}{5}}}{1-\tan{\frac{\pi}{20}}\tan{\frac{\pi}{5}}}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
এবং \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{\frac{\pi}{20}}+\tan{\frac{\pi}{5}}=1-\tan{\frac{\pi}{20}}\tan{\frac{\pi}{5}}\) ➜ আড় গুণ করে।
\(\therefore \tan{\frac{\pi}{20}}+\tan{\frac{\pi}{5}}+\tan{\frac{\pi}{20}}\tan{\frac{\pi}{5}}=1\)
(প্রমাণিত)
\(\tan{\frac{\pi}{4}}=\tan{\left(\frac{\pi}{20}+\frac{\pi}{5}\right)}\)
\(\Rightarrow 1=\frac{\tan{\frac{\pi}{20}}+\tan{\frac{\pi}{5}}}{1-\tan{\frac{\pi}{20}}\tan{\frac{\pi}{5}}}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
এবং \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{\frac{\pi}{20}}+\tan{\frac{\pi}{5}}=1-\tan{\frac{\pi}{20}}\tan{\frac{\pi}{5}}\) ➜ আড় গুণ করে।
\(\therefore \tan{\frac{\pi}{20}}+\tan{\frac{\pi}{5}}+\tan{\frac{\pi}{20}}\tan{\frac{\pi}{5}}=1\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xiii)\) \(\tan{5A}\tan{3A}\tan{2A}=\tan{5A}-\tan{3A}-\tan{2A}\) সমাধানঃ
লেখা যায়,
\(\tan{5A}=\tan{(3A+2A)}\)
\(\Rightarrow \tan{5A}=\frac{\tan{3A}+\tan{2A}}{1-\tan{3A}\tan{2A}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow \tan{3A}+\tan{2A}=\tan{5A}-\tan{5A}\tan{3A}+\tan{2A}\) ➜ আড় গুণ করে।
\(\therefore \tan{5A}\tan{3A}\tan{2A}=\tan{5A}-\tan{3A}-\tan{2A}\)
(প্রমাণিত)
\(\tan{5A}=\tan{(3A+2A)}\)
\(\Rightarrow \tan{5A}=\frac{\tan{3A}+\tan{2A}}{1-\tan{3A}\tan{2A}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow \tan{3A}+\tan{2A}=\tan{5A}-\tan{5A}\tan{3A}+\tan{2A}\) ➜ আড় গুণ করে।
\(\therefore \tan{5A}\tan{3A}\tan{2A}=\tan{5A}-\tan{3A}-\tan{2A}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xiv)\) \(\sin{(n+1)\theta}\sin{(n-1)\theta}+\cos{(n+1)\theta}\cos{(n-1)\theta}=\cos{2\theta}\) সমাধানঃ
\(L.S=\sin{(n+1)\theta}\sin{(n-1)\theta}+\cos{(n+1)\theta}\cos{(n-1)\theta}\)
\(=\cos{(n+1)\theta}\cos{(n-1)\theta}+\sin{(n+1)\theta}\sin{(n-1)\theta}\)
\(=\cos{\{(n+1)\theta-(n-1)\theta\}}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\cos{\{(n+1-n+1)\theta\}}\)
\(=\cos{\{2\theta\}}\)
\(=\cos{2\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{(n+1)\theta}\cos{(n-1)\theta}+\sin{(n+1)\theta}\sin{(n-1)\theta}\)
\(=\cos{\{(n+1)\theta-(n-1)\theta\}}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\cos{\{(n+1-n+1)\theta\}}\)
\(=\cos{\{2\theta\}}\)
\(=\cos{2\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xv)\) \(\tan{20^{o}}+\tan{25^{o}}+\tan{20^{o}}\tan{25^{o}}=1\) সমাধানঃ
লেখা যায়,
\(\tan{45^{o}}=\tan{(20^{o}+25^{o})}\)
\(\Rightarrow \tan{45^{o}}=\frac{\tan{20^{o}}+\tan{25^{o}}}{1-\tan{20^{o}}\tan{25^{o}}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow 1=\frac{\tan{20^{o}}+\tan{25^{o}}}{1-\tan{20^{o}}\tan{25^{o}}}\) ➜ \(\because \tan{45^{o}}=1\)
\(\Rightarrow \tan{20^{o}}+\tan{25^{o}}=1-\tan{20^{o}}\tan{25^{o}}\) ➜ আড় গুণ করে।
\(\therefore \tan{20^{o}}+\tan{25^{o}}+\tan{20^{o}}\tan{25^{o}}=1\)
(প্রমাণিত)
\(\tan{45^{o}}=\tan{(20^{o}+25^{o})}\)
\(\Rightarrow \tan{45^{o}}=\frac{\tan{20^{o}}+\tan{25^{o}}}{1-\tan{20^{o}}\tan{25^{o}}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow 1=\frac{\tan{20^{o}}+\tan{25^{o}}}{1-\tan{20^{o}}\tan{25^{o}}}\) ➜ \(\because \tan{45^{o}}=1\)
\(\Rightarrow \tan{20^{o}}+\tan{25^{o}}=1-\tan{20^{o}}\tan{25^{o}}\) ➜ আড় গুণ করে।
\(\therefore \tan{20^{o}}+\tan{25^{o}}+\tan{20^{o}}\tan{25^{o}}=1\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xvi)\) \(\tan{65^{o}}=\tan{25^{o}}+2\tan{40^{o}}\) সমাধানঃ
লেখা যায়,
\(\tan{65^{o}}=\tan{(40^{o}+25^{o})}\)
\(\Rightarrow \tan{65^{o}}=\frac{\tan{40^{o}}+\tan{25^{o}}}{1-\tan{40^{o}}\tan{25^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{65^{o}}-\tan{65^{o}}\tan{40^{o}}\tan{25^{o}}=\tan{40^{o}}+\tan{25^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{65^{o}}-\tan{(90^{o}\times1-25^{o})}\tan{40^{o}}\tan{25^{o}}=\tan{40^{o}}+\tan{25^{o}}\) ➜ \(\because 65^{o}=(90^{o}\times1-25^{o}\)
\(\Rightarrow \tan{65^{o}}-\cot{25^{o}}\tan{40^{o}}\tan{25^{o}}=\tan{40^{o}}+\tan{25^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{65^{o}}-\frac{1}{\tan{25^{o}}}\tan{40^{o}}\tan{25^{o}}=\tan{40^{o}}+\tan{25^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{65^{o}}-\tan{40^{o}}=\tan{40^{o}}+\tan{25^{o}}\)
\(\Rightarrow \tan{65^{o}}=\tan{40^{o}}+\tan{40^{o}}+\tan{25^{o}}\)
\(\Rightarrow \tan{65^{o}}=2\tan{40^{o}}+\tan{25^{o}}\)
\(\therefore \tan{65^{o}}=\tan{25^{o}}+2\tan{40^{o}}\)
(প্রমাণিত)
\(\tan{65^{o}}=\tan{(40^{o}+25^{o})}\)
\(\Rightarrow \tan{65^{o}}=\frac{\tan{40^{o}}+\tan{25^{o}}}{1-\tan{40^{o}}\tan{25^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{65^{o}}-\tan{65^{o}}\tan{40^{o}}\tan{25^{o}}=\tan{40^{o}}+\tan{25^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{65^{o}}-\tan{(90^{o}\times1-25^{o})}\tan{40^{o}}\tan{25^{o}}=\tan{40^{o}}+\tan{25^{o}}\) ➜ \(\because 65^{o}=(90^{o}\times1-25^{o}\)
\(\Rightarrow \tan{65^{o}}-\cot{25^{o}}\tan{40^{o}}\tan{25^{o}}=\tan{40^{o}}+\tan{25^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{65^{o}}-\frac{1}{\tan{25^{o}}}\tan{40^{o}}\tan{25^{o}}=\tan{40^{o}}+\tan{25^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{65^{o}}-\tan{40^{o}}=\tan{40^{o}}+\tan{25^{o}}\)
\(\Rightarrow \tan{65^{o}}=\tan{40^{o}}+\tan{40^{o}}+\tan{25^{o}}\)
\(\Rightarrow \tan{65^{o}}=2\tan{40^{o}}+\tan{25^{o}}\)
\(\therefore \tan{65^{o}}=\tan{25^{o}}+2\tan{40^{o}}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xvii)\) \(\tan{3\theta}-\tan{2\theta}-\tan{\theta}=\tan{3\theta}\tan{2\theta}\tan{\theta}\) সমাধানঃ
লেখা যায়,
\(\tan{3\theta}=\tan{(2\theta+\theta)}\)
\(\Rightarrow \tan{3\theta}=\frac{\tan{2\theta}+\tan{\theta}}{1-\tan{2\theta}\tan{\theta}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow \tan{3\theta}-\tan{3\theta}\tan{2\theta}+\tan{\theta}=\tan{2\theta}+\tan{\theta}\) ➜ আড় গুণ করে।
\(\therefore \tan{3\theta}-\tan{2\theta}-\tan{\theta}=\tan{3\theta}\tan{2\theta}+\tan{\theta}\)
(প্রমাণিত)
\(\tan{3\theta}=\tan{(2\theta+\theta)}\)
\(\Rightarrow \tan{3\theta}=\frac{\tan{2\theta}+\tan{\theta}}{1-\tan{2\theta}\tan{\theta}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow \tan{3\theta}-\tan{3\theta}\tan{2\theta}+\tan{\theta}=\tan{2\theta}+\tan{\theta}\) ➜ আড় গুণ করে।
\(\therefore \tan{3\theta}-\tan{2\theta}-\tan{\theta}=\tan{3\theta}\tan{2\theta}+\tan{\theta}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xviii)\) \(\tan{(A+60^{o})}+\tan{(A-60^{o})}=\frac{4\sin{2A}}{1-4\sin^2{A}}\) সমাধানঃ
\(L.S=\tan{(A+60^{o})}+\tan{(A-60^{o})}\)
\(=\frac{\sin{(A+60^{o})}}{\cos{(A+60^{o})}}+\frac{\sin{(A-60^{o})}}{\cos{(A-60^{o})}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\sin{(A+60^{o})}\cos{(A-60^{o})}+\cos{(A+60^{o})}\sin{(A-60^{o})}}{\cos{(A+60^{o})}\cos{(A-60^{o})}}\)
\(=\frac{\sin{(A+60^{o}+A-60^{o})}}{\cos{(A+60^{o})}\cos{(A-60^{o})}}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
\(=\frac{\sin{2A}}{\cos^2{60^{o}}-\sin^2{A}}\) ➜ \(\because \cos{(A+B)}\cos{(A-B)}=\cos^2{B}-\sin^2{A}\)
\(=\frac{\sin{2A}}{\left(\frac{1}{2}\right)^2-\sin^2{A}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{\sin{2A}}{\frac{1}{4}-\sin^2{A}}\)
\(=\frac{4\sin{2A}}{1-4\sin^2{A}}\) ➜ লব ও হরের সহিত \(4\) গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{(A+60^{o})}}{\cos{(A+60^{o})}}+\frac{\sin{(A-60^{o})}}{\cos{(A-60^{o})}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\sin{(A+60^{o})}\cos{(A-60^{o})}+\cos{(A+60^{o})}\sin{(A-60^{o})}}{\cos{(A+60^{o})}\cos{(A-60^{o})}}\)
\(=\frac{\sin{(A+60^{o}+A-60^{o})}}{\cos{(A+60^{o})}\cos{(A-60^{o})}}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
\(=\frac{\sin{2A}}{\cos^2{60^{o}}-\sin^2{A}}\) ➜ \(\because \cos{(A+B)}\cos{(A-B)}=\cos^2{B}-\sin^2{A}\)
\(=\frac{\sin{2A}}{\left(\frac{1}{2}\right)^2-\sin^2{A}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{\sin{2A}}{\frac{1}{4}-\sin^2{A}}\)
\(=\frac{4\sin{2A}}{1-4\sin^2{A}}\) ➜ লব ও হরের সহিত \(4\) গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xix)\) \(\sin{(25^{o}+A)}\cos{(25^{o}-A)}+\cos{(25^{o}+A)}\cos{(115^{o}-A)}=\sin{2A}\) সমাধানঃ
\(L.S=\sin{(25^{o}+A)}\cos{(25^{o}-A)}+\cos{(25^{o}+A)}\cos{(115^{o}-A)}\)
\(=\sin{(25^{o}+A)}\cos{(25^{o}-A)}+\cos{(25^{o}+A)}\cos{\{90^{o}\times1+(25^{o}-A)\}}\) ➜ \(\because 115^{o}-A=90^{o}\times1+(25^{o}-A)\)
\(=\sin{(25^{o}+A)}\cos{(25^{o}-A)}-\cos{(25^{o}+A)}\sin{(25^{o}-A)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\sin{(25^{o}+A-25^{o}+A)}\) ➜
\(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\sin{2A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{(25^{o}+A)}\cos{(25^{o}-A)}+\cos{(25^{o}+A)}\cos{\{90^{o}\times1+(25^{o}-A)\}}\) ➜ \(\because 115^{o}-A=90^{o}\times1+(25^{o}-A)\)
\(=\sin{(25^{o}+A)}\cos{(25^{o}-A)}-\cos{(25^{o}+A)}\sin{(25^{o}-A)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\sin{(25^{o}+A-25^{o}+A)}\) ➜

\(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(=\sin{2A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xx)\) \(\sin{A}\sin{(B-C)}+\sin{B}\sin{(C-A)}+\sin{C}\sin{(A-B)}=0\)সমাধানঃ
\(L.S=\sin{A}\sin{(B-C)}+\sin{B}\sin{(C-A)}+\sin{C}\sin{(A-B)}\)
\(=\sin{A}(\sin{B}\cos{C}-\cos{B}\sin{C})+\sin{B}(\sin{C}\cos{A}-\cos{C}\sin{A})+\sin{C}(\sin{A}\cos{B}-\cos{A}\sin{B})\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{A}(\sin{B}\cos{C}-\cos{B}\sin{C})+\sin{B}(\sin{C}\cos{A}-\cos{C}\sin{A})+\sin{C}(\sin{A}\cos{B}-\cos{A}\sin{B})\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxi)\) \(\sin{(B+C)}\sin{(B-C)}+\sin{(C+A)}\sin{(C-A)}+\sin{(A+B)}\sin{(A-B)}=0\)সমাধানঃ
\(L.S=\sin{(B+C)}\sin{(B-C)}+\sin{(C+A)}\sin{(C-A)}+\sin{(A+B)}\sin{(A-B)}\)
\(=\sin^2{B}-\sin^2{C}+\sin^2{C}-\sin^2{A}+\sin^2{A}-\sin^2{B}\) ➜ \(\because \sin{(P+Q)}\sin{(P-Q)}=\sin^2{P}-\sin^2{Q}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin^2{B}-\sin^2{C}+\sin^2{C}-\sin^2{A}+\sin^2{A}-\sin^2{B}\) ➜ \(\because \sin{(P+Q)}\sin{(P-Q)}=\sin^2{P}-\sin^2{Q}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxii)\) \(\sin{(135^{o}-A)}+\cos{(135^{o}+A)}=0\)সমাধানঃ
\(L.S=\sin{(135^{o}-A)}+\cos{(135^{o}+A)}\)
\(=\sin{\{90^{o}\times2-(45^{o}+A)\}}+\cos{\{90^{o}\times1+(45^{o}+A)\}}\) ➜ \(\because 135^{o}-A=90^{o}\times2-(45^{o}+A)\)
এবং \(135^{o}+A=90^{o}\times1+(45^{o}+A)\)
\(=\sin{(45^{o}+A)}-\sin{(45^{o}+A)}\) ➜ \(\because\) প্রথম পদে কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
দ্বিতীয় পদে কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\{90^{o}\times2-(45^{o}+A)\}}+\cos{\{90^{o}\times1+(45^{o}+A)\}}\) ➜ \(\because 135^{o}-A=90^{o}\times2-(45^{o}+A)\)
এবং \(135^{o}+A=90^{o}\times1+(45^{o}+A)\)
\(=\sin{(45^{o}+A)}-\sin{(45^{o}+A)}\) ➜ \(\because\) প্রথম পদে কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
দ্বিতীয় পদে কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxiii)\) \(\tan{(B-C)}+\tan{(C-A)}+\tan{(A-B)}=\tan{(B-C)}\tan{(C-A)}\tan{(A-B)}\)সমাধানঃ
লেখা যায়,
\(\tan{(A-B)}=-\tan{(B-A)}\)
\(\Rightarrow \tan{(A-B)}=-\tan{\{(B-C)+(C-A)\}}\)
\(\Rightarrow \tan{(A-B)}=-\frac{\tan{(B-C)}+\tan{(C-A)}}{1-\tan{(B-C)}\tan{(C-A)}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow \tan{(B-C)}+\tan{(C-A)}=-\tan{(A-B)}+\tan{(B-C)}\tan{(C-A)}\tan{(A-B)}\) ➜ আড় গুণ করে।
\(\therefore \tan{(B-C)}+\tan{(C-A)}+\tan{(A-B)}=\tan{(B-C)}\tan{(C-A)}\tan{(A-B)}\)
(প্রমাণিত)
\(\tan{(A-B)}=-\tan{(B-A)}\)
\(\Rightarrow \tan{(A-B)}=-\tan{\{(B-C)+(C-A)\}}\)
\(\Rightarrow \tan{(A-B)}=-\frac{\tan{(B-C)}+\tan{(C-A)}}{1-\tan{(B-C)}\tan{(C-A)}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow \tan{(B-C)}+\tan{(C-A)}=-\tan{(A-B)}+\tan{(B-C)}\tan{(C-A)}\tan{(A-B)}\) ➜ আড় গুণ করে।
\(\therefore \tan{(B-C)}+\tan{(C-A)}+\tan{(A-B)}=\tan{(B-C)}\tan{(C-A)}\tan{(A-B)}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxiv)\) \(\tan{(A+B)}\tan{(A-B)}=\frac{\sin^2{A}-\sin^2{B}}{\cos^2{A}-\sin^2{B}}\)সমাধানঃ
\(L.S=\tan{(A+B)}\tan{(A-B)}\)
\(=\frac{\sin{(A+B)}\sin{(A-B)}}{\cos{(A+B)}\cos{(A-B)}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\sin^2{A}-\sin^2{B}}{\cos^2{A}-\sin^2{B}}\) ➜ \(\because \sin{(P+Q)}\sin{(P-Q)}=\sin^2{P}-\sin^2{Q}\)
\(\cos{(P+Q)}\cos{(P-Q)}=\cos^2{P}-\sin^2{Q}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{(A+B)}\sin{(A-B)}}{\cos{(A+B)}\cos{(A-B)}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\sin^2{A}-\sin^2{B}}{\cos^2{A}-\sin^2{B}}\) ➜ \(\because \sin{(P+Q)}\sin{(P-Q)}=\sin^2{P}-\sin^2{Q}\)
\(\cos{(P+Q)}\cos{(P-Q)}=\cos^2{P}-\sin^2{Q}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxv)\) \(\cos{(A-B)}\cos{(A-C)}+\sin{(A-B)}\sin{(A-C)}=\cos{(B-C)}\)সমাধানঃ
\(L.S=\cos{(A-B)}\cos{(A-C)}+\sin{(A-B)}\sin{(A-C)}\)
\(=\cos{\{(A-B)-(A-C)\}}\) ➜ \(\because \cos{P}\cos{Q}+\sin{P}\sin{Q}=\cos{(P-Q)}\)
\(=\cos{(A-B-A+C)}\)
\(=\cos{(-B+C)}\)
\(=\cos{\{-(B-C)\}}\)
\(=\cos{(B-C)}\) ➜ \(\because \cos{(-\theta)}=\cos{\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\{(A-B)-(A-C)\}}\) ➜ \(\because \cos{P}\cos{Q}+\sin{P}\sin{Q}=\cos{(P-Q)}\)
\(=\cos{(A-B-A+C)}\)
\(=\cos{(-B+C)}\)
\(=\cos{\{-(B-C)\}}\)
\(=\cos{(B-C)}\) ➜ \(\because \cos{(-\theta)}=\cos{\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxvi)\) \(\frac{\cot{(3A-B)}\cot{B}-1}{-\cot{B}-\cot{(3A-B)}}=-\cot{3A}\)সমাধানঃ
\(L.S=\frac{\cot{(3A-B)}\cot{B}-1}{-\cot{B}-\cot{(3A-B)}}\)
\(=\frac{\cot{(3A-B)}\cot{B}-1}{-\{\cot{B}+\cot{(3A-B)}}\}\)
\(=-\frac{\cot{(3A-B)}\cot{B}-1}{\cot{B}+\cot{(3A-B)}}\)
\(=-\cot{\{(3A-B)+B\}}\) ➜ \(\because \frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}=\cot{(P+Q)}\)
\(=-\cot{(3A-B+B)}\)
\(=-\cot{3A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cot{(3A-B)}\cot{B}-1}{-\{\cot{B}+\cot{(3A-B)}}\}\)
\(=-\frac{\cot{(3A-B)}\cot{B}-1}{\cot{B}+\cot{(3A-B)}}\)
\(=-\cot{\{(3A-B)+B\}}\) ➜ \(\because \frac{\cot{P}\cot{Q}-1}{\cot{Q}+\cot{P}}=\cot{(P+Q)}\)
\(=-\cot{(3A-B+B)}\)
\(=-\cot{3A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxvii)\) \(\cos{A}+\cos{\left(\frac{2\pi}{3}-A\right)}+\cos{\left(\frac{2\pi}{3}+A\right)}=0\) সমাধানঃ
\(L.S=\cos{A}+\cos{\left(\frac{2\pi}{3}-A\right)}+\cos{\left(\frac{2\pi}{3}+A\right)}\)
\(=\cos{A}+\cos{\frac{2\pi}{3}}\cos{A}+\sin{\frac{2\pi}{3}}\sin{A}+\cos{\frac{2\pi}{3}}\cos{A}-\sin{\frac{2\pi}{3}}\sin{A}\) ➜ \(\because \cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
এবং \(\cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(=\cos{A}+2\cos{\frac{2\pi}{3}}\cos{A}\)
\(=\cos{A}+2\left(-\frac{1}{2}\right)\times\cos{A}\) ➜ \(\because \cos{\frac{2\pi}{3}}=-\frac{1}{2}\)
\(=\cos{A}-\cos{A}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{A}+\cos{\frac{2\pi}{3}}\cos{A}+\sin{\frac{2\pi}{3}}\sin{A}+\cos{\frac{2\pi}{3}}\cos{A}-\sin{\frac{2\pi}{3}}\sin{A}\) ➜ \(\because \cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
এবং \(\cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(=\cos{A}+2\cos{\frac{2\pi}{3}}\cos{A}\)
\(=\cos{A}+2\left(-\frac{1}{2}\right)\times\cos{A}\) ➜ \(\because \cos{\frac{2\pi}{3}}=-\frac{1}{2}\)
\(=\cos{A}-\cos{A}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxviii)\) \(\tan{32^{o}}+\tan{13^{o}}+\tan{32^{o}}\tan{13^{o}}=1\) সমাধানঃ
লেখা যায়,
\(\tan{45^{o}}=\tan{(32^{o}+13^{o})}\)
\(\Rightarrow \tan{45^{o}}=\frac{\tan{32^{o}}+\tan{13^{o}}}{1-\tan{32^{o}}\tan{13^{o}}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow 1=\frac{\tan{32^{o}}+\tan{13^{o}}}{1-\tan{32^{o}}\tan{13^{o}}}\) ➜ \(\because \tan{45^{o}}=1\)
\(\Rightarrow \tan{32^{o}}+\tan{13^{o}}=1-\tan{32^{o}}\tan{13^{o}}\) ➜ আড় গুণ করে।
\(\therefore \tan{32^{o}}+\tan{13^{o}}+\tan{32^{o}}\tan{13^{o}}=1\)
(প্রমাণিত)
\(\tan{45^{o}}=\tan{(32^{o}+13^{o})}\)
\(\Rightarrow \tan{45^{o}}=\frac{\tan{32^{o}}+\tan{13^{o}}}{1-\tan{32^{o}}\tan{13^{o}}}\) ➜ \(\because \tan{(P+Q)}=\frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}\)
\(\Rightarrow 1=\frac{\tan{32^{o}}+\tan{13^{o}}}{1-\tan{32^{o}}\tan{13^{o}}}\) ➜ \(\because \tan{45^{o}}=1\)
\(\Rightarrow \tan{32^{o}}+\tan{13^{o}}=1-\tan{32^{o}}\tan{13^{o}}\) ➜ আড় গুণ করে।
\(\therefore \tan{32^{o}}+\tan{13^{o}}+\tan{32^{o}}\tan{13^{o}}=1\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxix)\) \(\tan{50^{o}}=\tan{40^{o}}+2\tan{10^{o}}\) সমাধানঃ
লেখা যায়,
\(\tan{50^{o}}=\tan{(40^{o}+10^{o})}\)
\(\Rightarrow \tan{50^{o}}=\frac{\tan{40^{o}}+\tan{10^{o}}}{1-\tan{40^{o}}\tan{10^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{50^{o}}-\tan{50^{o}}\tan{40^{o}}\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{50^{o}}-\tan{(90^{o}\times1-40^{o})}\tan{40^{o}}\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\) ➜ \(\because 50^{o}=(90^{o}\times1-40^{o}\)
\(\Rightarrow \tan{50^{o}}-\cot{40^{o}}\tan{40^{o}}\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{50^{o}}-\frac{1}{\tan{40^{o}}}\tan{40^{o}}\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{50^{o}}-\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\)
\(\Rightarrow \tan{50^{o}}=\tan{40^{o}}+\tan{10^{o}}+\tan{10^{o}}\)
\(\therefore \tan{50^{o}}=\tan{40^{o}}+2\tan{10^{o}}\)
(প্রমাণিত)
\(\tan{50^{o}}=\tan{(40^{o}+10^{o})}\)
\(\Rightarrow \tan{50^{o}}=\frac{\tan{40^{o}}+\tan{10^{o}}}{1-\tan{40^{o}}\tan{10^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{50^{o}}-\tan{50^{o}}\tan{40^{o}}\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{50^{o}}-\tan{(90^{o}\times1-40^{o})}\tan{40^{o}}\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\) ➜ \(\because 50^{o}=(90^{o}\times1-40^{o}\)
\(\Rightarrow \tan{50^{o}}-\cot{40^{o}}\tan{40^{o}}\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{50^{o}}-\frac{1}{\tan{40^{o}}}\tan{40^{o}}\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{50^{o}}-\tan{10^{o}}=\tan{40^{o}}+\tan{10^{o}}\)
\(\Rightarrow \tan{50^{o}}=\tan{40^{o}}+\tan{10^{o}}+\tan{10^{o}}\)
\(\therefore \tan{50^{o}}=\tan{40^{o}}+2\tan{10^{o}}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxx)\) \(\tan{(45^{o}+A)}\tan{(45^{o}-A)}=1\) সমাধানঃ
\(L.S=\tan{(45^{o}+A)}\tan{(45^{o}-A)}\)
\(=\tan{(45^{o}+A)}\tan{\{90^{o}\times1-(45^{o}+A)\}}\) ➜ \(\because 45^{o}-A=90^{o}\times1-(45^{o}+A)\)
\(=\tan{(45^{o}+A)}\cot{(45^{o}+A)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(=\tan{(45^{o}+A)}\frac{1}{\tan{(45^{o}+A)}}\) ➜
\(\because \cot{P}=\frac{1}{\tan{P}}\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{(45^{o}+A)}\tan{\{90^{o}\times1-(45^{o}+A)\}}\) ➜ \(\because 45^{o}-A=90^{o}\times1-(45^{o}+A)\)
\(=\tan{(45^{o}+A)}\cot{(45^{o}+A)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(=\tan{(45^{o}+A)}\frac{1}{\tan{(45^{o}+A)}}\) ➜

\(\because \cot{P}=\frac{1}{\tan{P}}\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxxi)\) \(\cos^2{(A-B)}-\sin^2{(A+B)}=\cos{2A}\cos{2B}\) সমাধানঃ
\(L.S=\cos^2{(A-B)}-\sin^2{(A+B)}\)
\(=\cos{\{(A-B)+(A+B)\}}\cos{\{(A-B)-(A+B)\}}\) ➜ \(\because \cos^2{P}-\sin^2{Q}=\cos{(P+Q)}\cos{(P-Q)}\)
\(=\cos{(A-B+A+B)}\cos{(A-B-A-B)}\)
\(=\cos{2A}\cos{(-2B)}\)
\(=\cos{2A}\cos{2B}\) ➜ \(\because \cos{(-\theta)}=\cos{\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\{(A-B)+(A+B)\}}\cos{\{(A-B)-(A+B)\}}\) ➜ \(\because \cos^2{P}-\sin^2{Q}=\cos{(P+Q)}\cos{(P-Q)}\)
\(=\cos{(A-B+A+B)}\cos{(A-B-A-B)}\)
\(=\cos{2A}\cos{(-2B)}\)
\(=\cos{2A}\cos{2B}\) ➜ \(\because \cos{(-\theta)}=\cos{\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxxii)\) \(\cos{\left(\frac{\pi}{3}-\alpha\right)}\cos{\left(\frac{\pi}{6}-\beta\right)}-\sin{\left(\frac{\pi}{3}-\alpha\right)}\sin{\left(\frac{\pi}{6}-\beta\right)}=\sin{(\alpha+\beta)}\) সমাধানঃ
\(L.S=\cos{\left(\frac{\pi}{3}-\alpha\right)}\cos{\left(\frac{\pi}{6}-\beta\right)}-\sin{\left(\frac{\pi}{3}-\alpha\right)}\sin{\left(\frac{\pi}{6}-\beta\right)}\)
\(=\cos{\left(\frac{\pi}{3}-\alpha+\frac{\pi}{6}-\beta\right)}\) ➜ \(\because \cos{P}\cos{Q}-\sin{P}\sin{Q}=\cos{(P+Q)}\)
\(=\cos{\left\{\frac{\pi}{3}+\frac{\pi}{6}-(\alpha+\beta)\right\}}\)
\(=\cos{\left\{\frac{2\pi+\pi}{6}-(\alpha+\beta)\right\}}\)
\(=\cos{\left\{\frac{3\pi}{6}-(\alpha+\beta)\right\}}\)
\(=\cos{\left\{\frac{\pi}{2}-(\alpha+\beta)\right\}}\)
\(=\cos{\left\{\frac{\pi}{2}\times1-(\alpha+\beta)\right\}}\)
\(=\sin{(\alpha+\beta)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\left(\frac{\pi}{3}-\alpha+\frac{\pi}{6}-\beta\right)}\) ➜ \(\because \cos{P}\cos{Q}-\sin{P}\sin{Q}=\cos{(P+Q)}\)
\(=\cos{\left\{\frac{\pi}{3}+\frac{\pi}{6}-(\alpha+\beta)\right\}}\)
\(=\cos{\left\{\frac{2\pi+\pi}{6}-(\alpha+\beta)\right\}}\)
\(=\cos{\left\{\frac{3\pi}{6}-(\alpha+\beta)\right\}}\)
\(=\cos{\left\{\frac{\pi}{2}-(\alpha+\beta)\right\}}\)
\(=\cos{\left\{\frac{\pi}{2}\times1-(\alpha+\beta)\right\}}\)
\(=\sin{(\alpha+\beta)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxxiii)\) \(\cos{x}\sin{(y-z)}+\cos{y}\sin{(z-x)}+\cos{z}\sin{(x-y)}=0\)সমাধানঃ
\(L.S=\cos{x}\sin{(y-z)}+\cos{y}\sin{(z-x)}+\cos{z}\sin{(x-y)}\)
\(=\cos{x}(\sin{y}\cos{z}-\cos{y}\sin{z})+\cos{y}(\sin{z}\cos{x}-\cos{z}\sin{x})+\cos{z}(\sin{x}\cos{y}-\cos{x}\sin{y})\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=\cos{x}\sin{y}\cos{z}-\cos{x}\cos{y}\sin{z}+\cos{x}\cos{y}\sin{z}-\sin{x}\cos{y}\cos{z}+\sin{x}\cos{y}\cos{z}-\cos{x}\sin{y}\cos{z}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{x}(\sin{y}\cos{z}-\cos{y}\sin{z})+\cos{y}(\sin{z}\cos{x}-\cos{z}\sin{x})+\cos{z}(\sin{x}\cos{y}-\cos{x}\sin{y})\) ➜ \(\because \sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(=\cos{x}\sin{y}\cos{z}-\cos{x}\cos{y}\sin{z}+\cos{x}\cos{y}\sin{z}-\sin{x}\cos{y}\cos{z}+\sin{x}\cos{y}\cos{z}-\cos{x}\sin{y}\cos{z}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxxiv)\) \(\frac{\tan{(3\theta-2\phi)}+\tan{2\phi}}{1-\tan{(3\theta-2\phi)}\tan{2\phi}}=\tan{3\theta}\)সমাধানঃ
\(L.S=\frac{\tan{(3\theta-2\phi)}+\tan{2\phi}}{1-\tan{(3\theta-2\phi)}\tan{2\phi}}=\tan{3\theta}\)
\(=\tan{\{(3\theta-2\phi)+2\phi\}}\) ➜ \(\because \frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}=\tan{(P+Q)}\)
\(=\tan{(3\theta-2\phi+2\phi)}\)
\(=\tan{3\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{\{(3\theta-2\phi)+2\phi\}}\) ➜ \(\because \frac{\tan{P}+\tan{Q}}{1-\tan{P}\tan{Q}}=\tan{(P+Q)}\)
\(=\tan{(3\theta-2\phi+2\phi)}\)
\(=\tan{3\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxxv)\) \(1+\tan{2A}\tan{A}=\sec{2A}\)সমাধানঃ
\(L.S=1+\tan{2A}\tan{A}\)
\(=1+\frac{\sin{2A}\sin{A}}{\cos{2A}\cos{A}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\cos{2A}\cos{A}+\sin{2A}\sin{A}}{\cos{2A}\cos{A}}\)
\(=\frac{\cos{(2A-A)}}{\cos{2A}\cos{A}}\) ➜ \(\because \cos{P}\cos{Q}+\sin{P}\sin{Q}=\cos{(P-Q)}\)
\(=\frac{\cos{A}}{\cos{2A}\cos{A}}\)
\(=\frac{1}{\cos{2A}}\)
\(=\sec{2A}\) ➜ \(\because \frac{1}{\cos{P}}=\sec{P}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=1+\frac{\sin{2A}\sin{A}}{\cos{2A}\cos{A}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(=\frac{\cos{2A}\cos{A}+\sin{2A}\sin{A}}{\cos{2A}\cos{A}}\)
\(=\frac{\cos{(2A-A)}}{\cos{2A}\cos{A}}\) ➜ \(\because \cos{P}\cos{Q}+\sin{P}\sin{Q}=\cos{(P-Q)}\)
\(=\frac{\cos{A}}{\cos{2A}\cos{A}}\)
\(=\frac{1}{\cos{2A}}\)
\(=\sec{2A}\) ➜ \(\because \frac{1}{\cos{P}}=\sec{P}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxxvi)\) \(\sin{2\theta}\cos{\theta}+\cos{2\theta}\sin{\theta}=\sin{4\theta}\cos{\theta}-\cos{4\theta}\sin{\theta}\)সমাধানঃ
\(L.S=\sin{2\theta}\cos{\theta}+\cos{2\theta}\sin{\theta}\)
\(=\sin{(2\theta+\theta)}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
\(=\sin{3\theta}\)
আবার, \(R.S=\sin{4\theta}\cos{\theta}-\cos{4\theta}\sin{\theta}\)
\(=\sin{(4\theta-\theta)}\) ➜ \(\because \sin{P}\cos{Q}-\cos{P}\sin{Q}=\sin{(P-Q)}\)
\(=\sin{3\theta}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{(2\theta+\theta)}\) ➜ \(\because \sin{P}\cos{Q}+\cos{P}\sin{Q}=\sin{(P+Q)}\)
\(=\sin{3\theta}\)
আবার, \(R.S=\sin{4\theta}\cos{\theta}-\cos{4\theta}\sin{\theta}\)
\(=\sin{(4\theta-\theta)}\) ➜ \(\because \sin{P}\cos{Q}-\cos{P}\sin{Q}=\sin{(P-Q)}\)
\(=\sin{3\theta}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7B\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.3.(i)\) \(\frac{\cos{8^{o}}+\sin{8^{o}}}{\cos{8^{o}}-\sin{8^{o}}}=\tan{53^{o}}\)\(Q.3.(ii)\) \(\frac{\cos{25^{o}}+\sin{25^{o}}}{\cos{25^{o}}-\sin{25^{o}}}=\cot{20^{o}}\)
রুয়েটঃ ২০১০-২০১১ ।
\(Q.3.(iii)\) \(\frac{\sin{75^{o}}+\sin{15^{o}}}{\sin{75^{o}}-\sin{15^{o}}}=\sqrt{3}\)
মাঃ ২০১০ ।
প্রমাণ করঃ
\(Q.3.(iv)\) \(\frac{\cos{75^{o}}+\cos{15^{o}}}{\cos{75^{o}}-\cos{15^{o}}}=-\sqrt{3}\) চঃ ২০১০ ।
\(Q.3.(v)\) \(\frac{\cos{27^{o}}-\cos{63^{o}}}{\cos{27^{o}}+\cos{63^{o}}}=\tan{18^{o}}\)
\(Q.3.(vi)\) \(\frac{\cos{10^{o}}-\sin{10^{o}}}{\cos{10^{o}}+\sin{10^{o}}}=\tan{35^{o}}\)
প্রমাণ করঃ
\(Q.3.(i)\) \(\frac{\cos{8^{o}}+\sin{8^{o}}}{\cos{8^{o}}-\sin{8^{o}}}=\tan{53^{o}}\)সমাধানঃ
\(L.S=\frac{\cos{8^{o}}+\sin{8^{o}}}{\cos{8^{o}}-\sin{8^{o}}}\)
\(=\frac{\frac{\cos{8^{o}}}{\cos{8^{o}}}+\frac{\sin{8^{o}}}{\cos{8^{o}}}}{\frac{\cos{8^{o}}}{\cos{8^{o}}}-\frac{\sin{8^{o}}}{\cos{8^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{8^{o}}\) ভাগ করে।
\(=\frac{1+\tan{8^{o}}}{1-\tan{8^{o}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{45^{o}}+\tan{8^{o}}}{1-\tan{45^{o}}\tan{8^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=\tan{(45^{o}+8^{o})}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=\tan{53^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\frac{\cos{8^{o}}}{\cos{8^{o}}}+\frac{\sin{8^{o}}}{\cos{8^{o}}}}{\frac{\cos{8^{o}}}{\cos{8^{o}}}-\frac{\sin{8^{o}}}{\cos{8^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{8^{o}}\) ভাগ করে।
\(=\frac{1+\tan{8^{o}}}{1-\tan{8^{o}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{45^{o}}+\tan{8^{o}}}{1-\tan{45^{o}}\tan{8^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=\tan{(45^{o}+8^{o})}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=\tan{53^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(ii)\) \(\frac{\cos{25^{o}}+\sin{25^{o}}}{\cos{25^{o}}-\sin{25^{o}}}=\cot{20^{o}}\) রুয়েটঃ ২০১০-২০১১ ।
সমাধানঃ
\(L.S=\frac{\cos{25^{o}}+\sin{25^{o}}}{\cos{25^{o}}-\sin{25^{o}}}\)
\(=\frac{\frac{\cos{25^{o}}}{\sin{25^{o}}}+\frac{\sin{25^{o}}}{\sin{25^{o}}}}{\frac{\cos{25^{o}}}{\sin{25^{o}}}-\frac{\sin{25^{o}}}{\sin{25^{o}}}}\) ➜ লব ও হরের সহিত \(\sin{25^{o}}\) ভাগ করে।
\(=\frac{\cot{25^{o}}+1}{\cot{25^{o}}-1}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(=\frac{\cot{25^{o}}\cot{45^{o}}+1}{\cot{25^{o}}-\cot{45^{o}}}\) ➜ \(\because 1=\cot{45^{o}}\)
\(=\cot{(45^{o}-25^{o})}\) ➜ \(\because \frac{\cot{B}\cot{A}+1}{\cot{B}-\cot{A}}=\cot{(A-B)}\)
\(=\cot{20^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\frac{\cos{25^{o}}}{\sin{25^{o}}}+\frac{\sin{25^{o}}}{\sin{25^{o}}}}{\frac{\cos{25^{o}}}{\sin{25^{o}}}-\frac{\sin{25^{o}}}{\sin{25^{o}}}}\) ➜ লব ও হরের সহিত \(\sin{25^{o}}\) ভাগ করে।
\(=\frac{\cot{25^{o}}+1}{\cot{25^{o}}-1}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(=\frac{\cot{25^{o}}\cot{45^{o}}+1}{\cot{25^{o}}-\cot{45^{o}}}\) ➜ \(\because 1=\cot{45^{o}}\)
\(=\cot{(45^{o}-25^{o})}\) ➜ \(\because \frac{\cot{B}\cot{A}+1}{\cot{B}-\cot{A}}=\cot{(A-B)}\)
\(=\cot{20^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(iii)\) \(\frac{\sin{75^{o}}+\sin{15^{o}}}{\sin{75^{o}}-\sin{15^{o}}}=\sqrt{3}\) মাঃ ২০১০ ।
সমাধানঃ
\(L.S=\frac{\sin{75^{o}}+\sin{15^{o}}}{\sin{75^{o}}-\sin{15^{o}}}\)
\(=\frac{\sin{(90^{o}\times1-15^{o})}+\sin{15^{o}}}{\sin{(90^{o}\times1-15^{o})}-\sin{15^{o}}}\) ➜ \(\because 75^{o}=90^{o}\times1-15^{o}\)
\(=\frac{\cos{15^{o}}+\sin{15^{o}}}{\cos{15^{o}}-\sin{15^{o}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\frac{\frac{\cos{15^{o}}}{\cos{15^{o}}}+\frac{\sin{15^{o}}}{\cos{15^{o}}}}{\frac{\cos{15^{o}}}{\cos{15^{o}}}-\frac{\sin{15^{o}}}{\cos{15^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{15^{o}}\) ভাগ করে।
\(=\frac{1+\tan{15^{o}}}{1-\tan{15^{o}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{45^{o}}+\tan{15^{o}}}{1-\tan{45^{o}}\tan{15^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=\tan{(45^{o}+15^{o})}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=\tan{60^{o}}\)
\(=\sqrt{3}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{(90^{o}\times1-15^{o})}+\sin{15^{o}}}{\sin{(90^{o}\times1-15^{o})}-\sin{15^{o}}}\) ➜ \(\because 75^{o}=90^{o}\times1-15^{o}\)
\(=\frac{\cos{15^{o}}+\sin{15^{o}}}{\cos{15^{o}}-\sin{15^{o}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=\frac{\frac{\cos{15^{o}}}{\cos{15^{o}}}+\frac{\sin{15^{o}}}{\cos{15^{o}}}}{\frac{\cos{15^{o}}}{\cos{15^{o}}}-\frac{\sin{15^{o}}}{\cos{15^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{15^{o}}\) ভাগ করে।
\(=\frac{1+\tan{15^{o}}}{1-\tan{15^{o}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{45^{o}}+\tan{15^{o}}}{1-\tan{45^{o}}\tan{15^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=\tan{(45^{o}+15^{o})}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=\tan{60^{o}}\)
\(=\sqrt{3}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(iv)\) \(\frac{\cos{75^{o}}+\cos{15^{o}}}{\cos{75^{o}}-\cos{15^{o}}}=-\sqrt{3}\) চঃ ২০১০ ।
সমাধানঃ
\(L.S=\frac{\cos{75^{o}}+\cos{15^{o}}}{\cos{75^{o}}-\cos{15^{o}}}\)
\(=\frac{\cos{(90^{o}\times1-15^{o})}+\cos{15^{o}}}{\cos{(90^{o}\times1-15^{o})}-\cos{15^{o}}}\) ➜ \(\because 75^{o}=90^{o}\times1-15^{o}\)
\(=\frac{\sin{15^{o}}+\cos{15^{o}}}{\sin{15^{o}}-\cos{15^{o}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\frac{\frac{\sin{15^{o}}}{\cos{15^{o}}}+\frac{\cos{15^{o}}}{\cos{15^{o}}}}{\frac{\sin{15^{o}}}{\cos{15^{o}}}-\frac{\cos{15^{o}}}{\cos{15^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{15^{o}}\) ভাগ করে।
\(=\frac{\tan{15^{o}}+1}{\tan{15^{o}}-1}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=-\frac{1+\tan{15^{o}}}{1-\tan{15^{o}}}\)
\(=-\frac{\tan{45^{o}}+\tan{15^{o}}}{1-\tan{45^{o}}\tan{15^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=-\tan{(45^{o}+15^{o})}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=-\tan{60^{o}}\)
\(=-\sqrt{3}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{(90^{o}\times1-15^{o})}+\cos{15^{o}}}{\cos{(90^{o}\times1-15^{o})}-\cos{15^{o}}}\) ➜ \(\because 75^{o}=90^{o}\times1-15^{o}\)
\(=\frac{\sin{15^{o}}+\cos{15^{o}}}{\sin{15^{o}}-\cos{15^{o}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\frac{\frac{\sin{15^{o}}}{\cos{15^{o}}}+\frac{\cos{15^{o}}}{\cos{15^{o}}}}{\frac{\sin{15^{o}}}{\cos{15^{o}}}-\frac{\cos{15^{o}}}{\cos{15^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{15^{o}}\) ভাগ করে।
\(=\frac{\tan{15^{o}}+1}{\tan{15^{o}}-1}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=-\frac{1+\tan{15^{o}}}{1-\tan{15^{o}}}\)
\(=-\frac{\tan{45^{o}}+\tan{15^{o}}}{1-\tan{45^{o}}\tan{15^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=-\tan{(45^{o}+15^{o})}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=-\tan{60^{o}}\)
\(=-\sqrt{3}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(v)\) \(\frac{\cos{27^{o}}-\cos{63^{o}}}{\cos{27^{o}}+\cos{63^{o}}}=\tan{18^{o}}\)সমাধানঃ
\(L.S=\frac{\cos{27^{o}}-\cos{63^{o}}}{\cos{27^{o}}+\cos{63^{o}}}\)
\(=\frac{\cos{27^{o}}-\cos{(90^{o}\times1-27^{o})}}{\cos{27^{o}}+\cos{(90^{o}\times1-27^{o})}}\) ➜ \(\because 63^{o}=90^{o}\times1-27^{o}\)
\(=\frac{\cos{27^{o}}-\sin{27^{o}}}{\cos{27^{o}}+\sin{27^{o}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\frac{\frac{\cos{27^{o}}}{\cos{27^{o}}}-\frac{\sin{27^{o}}}{\cos{27^{o}}}}{\frac{\cos{27^{o}}}{\cos{27^{o}}}+\frac{\sin{27^{o}}}{\cos{27^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{27^{o}}\) ভাগ করে।
\(=\frac{1-\tan{27^{o}}}{1+\tan{27^{o}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{45^{o}}-\tan{27^{o}}}{1+\tan{45^{o}}\tan{27^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=\tan{(45^{o}-27^{o})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{18^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{27^{o}}-\cos{(90^{o}\times1-27^{o})}}{\cos{27^{o}}+\cos{(90^{o}\times1-27^{o})}}\) ➜ \(\because 63^{o}=90^{o}\times1-27^{o}\)
\(=\frac{\cos{27^{o}}-\sin{27^{o}}}{\cos{27^{o}}+\sin{27^{o}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\frac{\frac{\cos{27^{o}}}{\cos{27^{o}}}-\frac{\sin{27^{o}}}{\cos{27^{o}}}}{\frac{\cos{27^{o}}}{\cos{27^{o}}}+\frac{\sin{27^{o}}}{\cos{27^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{27^{o}}\) ভাগ করে।
\(=\frac{1-\tan{27^{o}}}{1+\tan{27^{o}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{45^{o}}-\tan{27^{o}}}{1+\tan{45^{o}}\tan{27^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=\tan{(45^{o}-27^{o})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{18^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(vi)\) \(\frac{\cos{10^{o}}-\sin{10^{o}}}{\cos{10^{o}}+\sin{10^{o}}}=\tan{35^{o}}\)সমাধানঃ
\(L.S=\frac{\cos{10^{o}}-\sin{10^{o}}}{\cos{10^{o}}+\sin{10^{o}}}\)
\(=\frac{\frac{\cos{10^{o}}}{\cos{10^{o}}}-\frac{\sin{10^{o}}}{\cos{10^{o}}}}{\frac{\cos{10^{o}}}{\cos{10^{o}}}+\frac{\sin{10^{o}}}{\cos{10^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{10^{o}}\) ভাগ করে।
\(=\frac{1-\tan{10^{o}}}{1+\tan{10^{o}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{45^{o}}-\tan{10^{o}}}{1+\tan{45^{o}}\tan{10^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=\tan{(45^{o}-10^{o})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{35^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\frac{\cos{10^{o}}}{\cos{10^{o}}}-\frac{\sin{10^{o}}}{\cos{10^{o}}}}{\frac{\cos{10^{o}}}{\cos{10^{o}}}+\frac{\sin{10^{o}}}{\cos{10^{o}}}}\) ➜ লব ও হরের সহিত \(\cos{10^{o}}\) ভাগ করে।
\(=\frac{1-\tan{10^{o}}}{1+\tan{10^{o}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{45^{o}}-\tan{10^{o}}}{1+\tan{45^{o}}\tan{10^{o}}}\) ➜ \(\because 1=\tan{45^{o}}\)
\(=\tan{(45^{o}-10^{o})}\) ➜ \(\because \frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}=\tan{(A-B)}\)
\(=\tan{35^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7B\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
\(Q.4.(i)\) যদি \(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\) হয়, তবে প্রমাণ কর যে, \(\tan{\theta}=\frac{ab}{a-b}\)
\(Q.4.(ii)\) যদি \(\tan{\alpha}-\tan{\beta}=a\) এবং \(\cot{\beta}-\cot{\alpha}=b\) হয়, তবে প্রমাণ কর যে, \(\cot{(\alpha-\beta)}=\frac{1}{a}+\frac{1}{b}\)
\(Q.4.(iii)\) যদি \(A+B=\frac{\pi}{4}\) হয়, তবে দেখাও যে, \((1+\tan{A})(1+\tan{B})=2\)
\(Q.4.(iv)\) যদি \(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}=1\) হয়, তবে দেখাও যে, \(1+\cot{\alpha}\tan{\beta}=0\)
\(Q.4.(v)\) যদি \(\frac{\sin{(\alpha+\gamma)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\gamma)}}{\sin{\beta}}\) হয়, তবে প্রমাণ কর যে, \(\cot{\alpha}-\cot{\gamma}=2\cot{\beta}\)
\(Q.4.(vi)\) যদি \(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\) হয়, তবে প্রমাণ কর যে, \(\cot{\alpha}+\cot{\gamma}=2\cot{\beta}\)
\(Q.4.(vii)\) যদি \(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\) হয়, তবে প্রমাণ কর যে, \((a+b)\tan{x}=(a-b)\cot{\alpha}\)
\(Q.4.(viii)\) যদি \(a\sin{(x+\theta)}=b\sin{(x-\theta)}\) হয়, তবে প্রমাণ কর যে, \((a-b)\tan{x}+(a+b)\tan{\theta}=0\)
\(Q.4.(ix)\) যদি \(a\sin{(\theta+\alpha)}=b\sin{(\theta+\beta)}\) হয়, তবে প্রমাণ কর যে, \(\cot{\theta}=\frac{a\cos{\alpha}-b\cos{\beta}}{b\sin{\beta}-a\sin{\alpha}}\)
\(Q.4.(x)\) যদি \(\theta+\phi=\alpha\) এবং \(\tan{\theta}=k\tan{\phi}\) হয়, তবে প্রমাণ কর যে, \(\sin{(\theta-\phi)}=\frac{k-1}{k+1}\sin{\alpha}\)
\(Q.4.(xi)\) যদি \(\tan{\beta}=\frac{n\sin{\alpha}\cos{\alpha}}{1-n\sin^2{\alpha}}\) হয়, তবে দেখাও যে, \(\tan{(\alpha-\beta)}=(1-n)\tan{\alpha}\)
\(Q.4.(xii)\) \(\cot{\theta}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) হলে, দেখাও যে, \(\frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}\)
\(Q.4.(xiii)\) যদি \(\sin{\alpha}=\frac{m^2-n^2}{m^2+n^2}\) হয়, তবে দেখাও যে, \(\frac{\tan{(\alpha-\beta)}+\tan{\beta}}{1-\tan{(\alpha-\beta)}\tan{\beta}}=\frac{m^2-n^2}{2mn}\)
\(Q.4.(xiv)\) যদি \(\tan{\alpha}=\frac{b}{a}\) হয়, তবে প্রমাণ কর যে, \(a\cos{\theta}+b\sin{\theta}=\sqrt{a^2+b^2}\cos{(\theta-\alpha)}\)
\(Q.4.(xv)\) যদি \(\sqrt{2}\cos{A}=\cos{B}+\cos^3{B}\) এবং \(\sqrt{2}\sin{A}=\sin{B}-\sin^3{B}\) হয়, তবে প্রমাণ কর যে, \(cosec \ {(A-B)}=\pm{3}\)
\(Q.4.(xvii)\) \(\tan{\theta}=\frac{a\sin{x}+b\sin{y}}{a\cos{x}+b\cos{y}}\) হলে দেখাও যে, \(a\sin{(\theta-x)}+b\sin{(\theta-y)}=0\)
\(Q.4.(xviii)\) \(\triangle{ABC}\)-এ \(\sec{B}=\sec{C}\sec{A}\) হলে দেখাও যে, \(\tan{A}=2\cot{C}\)
ঢাঃ২০১১; রাঃ২০১৫; দিঃ২০১৬; চঃ২০১৬,২০১২; বঃ২০০৮; কুয়েটঃ২০১২-২০১৩ ।
\(Q.4.(ii)\) যদি \(\tan{\alpha}-\tan{\beta}=a\) এবং \(\cot{\beta}-\cot{\alpha}=b\) হয়, তবে প্রমাণ কর যে, \(\cot{(\alpha-\beta)}=\frac{1}{a}+\frac{1}{b}\)
\(Q.4.(iii)\) যদি \(A+B=\frac{\pi}{4}\) হয়, তবে দেখাও যে, \((1+\tan{A})(1+\tan{B})=2\)
রুয়েটঃ২০১০-২০১১ ।
\(Q.4.(iv)\) যদি \(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}=1\) হয়, তবে দেখাও যে, \(1+\cot{\alpha}\tan{\beta}=0\)
সিঃ২০১৬; যঃ২০০৭ ।
\(Q.4.(v)\) যদি \(\frac{\sin{(\alpha+\gamma)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\gamma)}}{\sin{\beta}}\) হয়, তবে প্রমাণ কর যে, \(\cot{\alpha}-\cot{\gamma}=2\cot{\beta}\)
কুঃ২০১২ ।
\(Q.4.(vi)\) যদি \(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\) হয়, তবে প্রমাণ কর যে, \(\cot{\alpha}+\cot{\gamma}=2\cot{\beta}\)
\(Q.4.(vii)\) যদি \(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\) হয়, তবে প্রমাণ কর যে, \((a+b)\tan{x}=(a-b)\cot{\alpha}\)
ঢাঃ২০০৫ ।
\(Q.4.(viii)\) যদি \(a\sin{(x+\theta)}=b\sin{(x-\theta)}\) হয়, তবে প্রমাণ কর যে, \((a-b)\tan{x}+(a+b)\tan{\theta}=0\)
\(Q.4.(ix)\) যদি \(a\sin{(\theta+\alpha)}=b\sin{(\theta+\beta)}\) হয়, তবে প্রমাণ কর যে, \(\cot{\theta}=\frac{a\cos{\alpha}-b\cos{\beta}}{b\sin{\beta}-a\sin{\alpha}}\)
যঃ২০০৫ ।
\(Q.4.(x)\) যদি \(\theta+\phi=\alpha\) এবং \(\tan{\theta}=k\tan{\phi}\) হয়, তবে প্রমাণ কর যে, \(\sin{(\theta-\phi)}=\frac{k-1}{k+1}\sin{\alpha}\)
কুয়েটঃ২০০৩-২০০৪ ।
\(Q.4.(xi)\) যদি \(\tan{\beta}=\frac{n\sin{\alpha}\cos{\alpha}}{1-n\sin^2{\alpha}}\) হয়, তবে দেখাও যে, \(\tan{(\alpha-\beta)}=(1-n)\tan{\alpha}\)
\(Q.4.(xii)\) \(\cot{\theta}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) হলে, দেখাও যে, \(\frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}\)
\(Q.4.(xiii)\) যদি \(\sin{\alpha}=\frac{m^2-n^2}{m^2+n^2}\) হয়, তবে দেখাও যে, \(\frac{\tan{(\alpha-\beta)}+\tan{\beta}}{1-\tan{(\alpha-\beta)}\tan{\beta}}=\frac{m^2-n^2}{2mn}\)
\(Q.4.(xiv)\) যদি \(\tan{\alpha}=\frac{b}{a}\) হয়, তবে প্রমাণ কর যে, \(a\cos{\theta}+b\sin{\theta}=\sqrt{a^2+b^2}\cos{(\theta-\alpha)}\)
\(Q.4.(xv)\) যদি \(\sqrt{2}\cos{A}=\cos{B}+\cos^3{B}\) এবং \(\sqrt{2}\sin{A}=\sin{B}-\sin^3{B}\) হয়, তবে প্রমাণ কর যে, \(cosec \ {(A-B)}=\pm{3}\)
রাঃ, কুঃ, চঃ, বঃ ২০১৮ ।
\(Q.4.(xvi)\) \(\theta\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\tan{\alpha}:\tan{\beta}=x:y\) হয়, প্রমাণ কর যে, \(\sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{\theta}\)\(Q.4.(xvii)\) \(\tan{\theta}=\frac{a\sin{x}+b\sin{y}}{a\cos{x}+b\cos{y}}\) হলে দেখাও যে, \(a\sin{(\theta-x)}+b\sin{(\theta-y)}=0\)
\(Q.4.(xviii)\) \(\triangle{ABC}\)-এ \(\sec{B}=\sec{C}\sec{A}\) হলে দেখাও যে, \(\tan{A}=2\cot{C}\)
\(Q.4.(xix)\) যদি \(\tan{\alpha}-\tan{\beta}=x\) এবং \(\cot{\beta}-\cot{\alpha}=y\) হয়, তবে প্রমাণ কর যে, \(\cot{(\alpha-\beta)}=\frac{1}{x}+\frac{1}{y}\)
\(Q.4.(xx)\) \(\tan{\theta}=\frac{a\sin{\alpha}+b\sin{\beta}}{a\cos{\alpha}+b\cos{\beta}}\) হলে দেখাও যে, \(a\sin{(\theta-\alpha)}+b\sin{(\theta-\beta)}=0\)
\(Q.4.(xxi)\) \(A\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\frac{\tan{\alpha}}{x}=\frac{\tan{\beta}}{y}\) হয়, প্রমাণ কর যে, \(\sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{A}\)
\(Q.4.(xxii)\) \(\sin{\theta}=k\cos{(\theta-\alpha)}\) হলে দেখাও যে, \(\cot{\theta}=\frac{1-k\sin{\alpha}}{k\cos{\alpha}}\)
\(Q.4.(xxiii)\) \(\tan{\theta}+\sec{\theta}=\frac{x}{y}\) হলে দেখাও যে, \(\sin{\theta}=\frac{x^2-y^2}{x^2+y^2}\)
\(Q.4.(xxiv)\) যদি \(\cos{(\beta-\gamma)}+\cos{(\gamma-\alpha)}+\cos{(\alpha-\beta)}=-\frac{3}{2}\) হয়, তবে প্রমাণ কর যে, \(\sum{\sin{\alpha}}=0\) এবং \(\sum{\cos{\alpha}}=0\)
\(Q.4.(xxv)\) \(\sin{(A+B)}=n\sin{(A-B)}\) এবং \(n\ne{0}\) হলে দেখাও যে, \(\cot{A}=\frac{n-1}{n+1}\cot{B}\)
\(Q.4.(xxvi)\) \(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\) হলে দেখাও যে, \((a-b)\tan{\theta}=ab\)
\(Q.4.(xxvii)\) \(\frac{\sin{(\alpha+\theta)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\theta)}}{\sin{\beta}}\) হলে দেখাও যে, \(\cot{\alpha}-\cot{\theta}=2\cot{\beta}\)
\(Q.4.(xxviii)\) \(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\) হলে দেখাও যে, \(\frac{1}{\tan{\alpha}}+\frac{1}{\tan{\gamma}}=\frac{2}{\tan{\beta}}\)
\(Q.4.(xxix)\) \(\tan{\theta}=\frac{x\sin{\phi}}{1-x\cos{\phi}}\) এবং \(\tan{\phi}=\frac{y\sin{\theta}}{1-y\cos{\\theta}}\) হলে দেখাও যে, \(\frac{\sin{\theta}}{\sin{\phi}}=\frac{x}{y}\)
\(Q.4.(xxx)\) \(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\) হলে প্রমাণ কর যে, \(\sin{\frac{1}{2}(x-y)}=\pm{\frac{1}{2}\sqrt{4-a^2-b^2}}\)
\(Q.4.(xxxi)\) \(\cos{(\alpha-\beta)}\cos{\gamma}=\cos{(\alpha-\gamma+\beta)}\) হলে দেখাও যে, \(\cot{\alpha}, \cot{\gamma}\) এবং \(\cot{\beta}\) সমান্তর প্রগমন ভুক্ত।
\(Q.4.(xxxii)\) \(\sin{\alpha}=k\sin{(\alpha+\beta)}\) হলে দেখাও যে, \(\tan{(\alpha+\beta)}=\frac{\sin{\beta}}{\cos{\beta}-k}\)
\(Q.4.(xxxiii)\) \(\cos{\alpha}+\cos{\beta}=a\) এবং \(\sin{\alpha}+\sin{\beta}=b\) হলে দেখাও যে, \(\cos{(\alpha-\beta)}=\frac{1}{2}(a^2+b^2-2)\)
\(Q.4.(xxxiv)\) \(\tan{\beta}=\frac{\sin{2\alpha}}{5+\cos{2\alpha}}\) হলে দেখাও যে, \(3\tan{(\alpha-\beta)}=2\tan{\alpha}\)
\(Q.4.(xxxv)\) \(\cos{(\alpha+\beta)}\sin{(\gamma+\theta)}=\cos{(\alpha-\beta)}\sin{(\gamma-\theta)}\) হলে দেখাও যে, \(\tan{\theta}=\tan{\alpha}\tan{\beta}\tan{\gamma}\)
\(Q.4.(xxxvi)\) \(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\) হলে দেখাও যে, \((m-n)\tan{\theta}=(m+n)\tan{\alpha}\)
\(Q.4.(xxxvii)\) \(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\) হলে দেখাও যে, \(\cot{A}\cot{B}\cot{C}=\cot{D}\)
\(Q.4.(xx)\) \(\tan{\theta}=\frac{a\sin{\alpha}+b\sin{\beta}}{a\cos{\alpha}+b\cos{\beta}}\) হলে দেখাও যে, \(a\sin{(\theta-\alpha)}+b\sin{(\theta-\beta)}=0\)
\(Q.4.(xxi)\) \(A\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\frac{\tan{\alpha}}{x}=\frac{\tan{\beta}}{y}\) হয়, প্রমাণ কর যে, \(\sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{A}\)
\(Q.4.(xxii)\) \(\sin{\theta}=k\cos{(\theta-\alpha)}\) হলে দেখাও যে, \(\cot{\theta}=\frac{1-k\sin{\alpha}}{k\cos{\alpha}}\)
\(Q.4.(xxiii)\) \(\tan{\theta}+\sec{\theta}=\frac{x}{y}\) হলে দেখাও যে, \(\sin{\theta}=\frac{x^2-y^2}{x^2+y^2}\)
\(Q.4.(xxiv)\) যদি \(\cos{(\beta-\gamma)}+\cos{(\gamma-\alpha)}+\cos{(\alpha-\beta)}=-\frac{3}{2}\) হয়, তবে প্রমাণ কর যে, \(\sum{\sin{\alpha}}=0\) এবং \(\sum{\cos{\alpha}}=0\)
\(Q.4.(xxv)\) \(\sin{(A+B)}=n\sin{(A-B)}\) এবং \(n\ne{0}\) হলে দেখাও যে, \(\cot{A}=\frac{n-1}{n+1}\cot{B}\)
\(Q.4.(xxvi)\) \(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\) হলে দেখাও যে, \((a-b)\tan{\theta}=ab\)
ঢাঃ২০১১; রাঃ২০১৫; দিঃ২০১৬; চঃ২০১৬,২০১২; বঃ২০০৮; কুয়েটঃ২০১২-২০১৩ ।
\(Q.4.(xxvii)\) \(\frac{\sin{(\alpha+\theta)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\theta)}}{\sin{\beta}}\) হলে দেখাও যে, \(\cot{\alpha}-\cot{\theta}=2\cot{\beta}\)
কুঃ২০১২ ।
\(Q.4.(xxviii)\) \(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\) হলে দেখাও যে, \(\frac{1}{\tan{\alpha}}+\frac{1}{\tan{\gamma}}=\frac{2}{\tan{\beta}}\)
\(Q.4.(xxix)\) \(\tan{\theta}=\frac{x\sin{\phi}}{1-x\cos{\phi}}\) এবং \(\tan{\phi}=\frac{y\sin{\theta}}{1-y\cos{\\theta}}\) হলে দেখাও যে, \(\frac{\sin{\theta}}{\sin{\phi}}=\frac{x}{y}\)
\(Q.4.(xxx)\) \(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\) হলে প্রমাণ কর যে, \(\sin{\frac{1}{2}(x-y)}=\pm{\frac{1}{2}\sqrt{4-a^2-b^2}}\)
\(Q.4.(xxxi)\) \(\cos{(\alpha-\beta)}\cos{\gamma}=\cos{(\alpha-\gamma+\beta)}\) হলে দেখাও যে, \(\cot{\alpha}, \cot{\gamma}\) এবং \(\cot{\beta}\) সমান্তর প্রগমন ভুক্ত।
\(Q.4.(xxxii)\) \(\sin{\alpha}=k\sin{(\alpha+\beta)}\) হলে দেখাও যে, \(\tan{(\alpha+\beta)}=\frac{\sin{\beta}}{\cos{\beta}-k}\)
\(Q.4.(xxxiii)\) \(\cos{\alpha}+\cos{\beta}=a\) এবং \(\sin{\alpha}+\sin{\beta}=b\) হলে দেখাও যে, \(\cos{(\alpha-\beta)}=\frac{1}{2}(a^2+b^2-2)\)
\(Q.4.(xxxiv)\) \(\tan{\beta}=\frac{\sin{2\alpha}}{5+\cos{2\alpha}}\) হলে দেখাও যে, \(3\tan{(\alpha-\beta)}=2\tan{\alpha}\)
\(Q.4.(xxxv)\) \(\cos{(\alpha+\beta)}\sin{(\gamma+\theta)}=\cos{(\alpha-\beta)}\sin{(\gamma-\theta)}\) হলে দেখাও যে, \(\tan{\theta}=\tan{\alpha}\tan{\beta}\tan{\gamma}\)
\(Q.4.(xxxvi)\) \(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\) হলে দেখাও যে, \((m-n)\tan{\theta}=(m+n)\tan{\alpha}\)
\(Q.4.(xxxvii)\) \(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\) হলে দেখাও যে, \(\cot{A}\cot{B}\cot{C}=\cot{D}\)
\(Q.4.(i)\) যদি \(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\) হয়, তবে প্রমাণ কর যে, \(\tan{\theta}=\frac{ab}{a-b}\)
ঢাঃ২০১১; রাঃ২০১৫; দিঃ২০১৬; চঃ২০১৬,২০১২; বঃ২০০৮; কুয়েটঃ২০১২-২০১৩ ।
সমাধানঃ
দেওয়া আছে,
\(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\)
\(\Rightarrow \frac{1}{\tan{\alpha}}+\frac{1}{\tan{\beta}}=a\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \frac{\tan{\beta}+\tan{\alpha}}{\tan{\alpha}\tan{\beta}}=a\)
\(\Rightarrow \frac{\tan{\alpha}+\tan{\beta}}{\tan{\alpha}\tan{\beta}}=a\)
\(\Rightarrow \frac{b}{\tan{\alpha}\tan{\beta}}=a\) ➜ \(\because \tan{\alpha}+\tan{\beta}=b\)
\(\Rightarrow a\tan{\alpha}\tan{\beta}=b\)
\(\therefore \tan{\alpha}\tan{\beta}=\frac{b}{a}\)
আবার,
\(\alpha+\beta=\theta\)
\(\Rightarrow \tan{(\alpha+\beta)}=\tan{\theta}\) ➜ উভয় পার্শে ট্যানজেন্ট অনুপাত নিয়ে।
\(\Rightarrow \frac{\tan{\alpha}+\tan{\beta}}{1-\tan{\alpha}\tan{\beta}}=\tan{\theta}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \frac{b}{1-\frac{b}{a}}=\tan{\theta}\) ➜ \(\because \tan{\alpha}+\tan{\beta}=b\)
এবং \(\tan{\alpha}\tan{\beta}=\frac{b}{a}\)
\(\Rightarrow \frac{ab}{a-b}=\tan{\theta}\) ➜ লব ও হরের সহিত \(a\) গুণ করে।
\(\therefore \tan{\theta}=\frac{ab}{a-b}\)
(প্রমাণিত)
\(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\)
\(\Rightarrow \frac{1}{\tan{\alpha}}+\frac{1}{\tan{\beta}}=a\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \frac{\tan{\beta}+\tan{\alpha}}{\tan{\alpha}\tan{\beta}}=a\)
\(\Rightarrow \frac{\tan{\alpha}+\tan{\beta}}{\tan{\alpha}\tan{\beta}}=a\)
\(\Rightarrow \frac{b}{\tan{\alpha}\tan{\beta}}=a\) ➜ \(\because \tan{\alpha}+\tan{\beta}=b\)
\(\Rightarrow a\tan{\alpha}\tan{\beta}=b\)
\(\therefore \tan{\alpha}\tan{\beta}=\frac{b}{a}\)
আবার,
\(\alpha+\beta=\theta\)
\(\Rightarrow \tan{(\alpha+\beta)}=\tan{\theta}\) ➜ উভয় পার্শে ট্যানজেন্ট অনুপাত নিয়ে।
\(\Rightarrow \frac{\tan{\alpha}+\tan{\beta}}{1-\tan{\alpha}\tan{\beta}}=\tan{\theta}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \frac{b}{1-\frac{b}{a}}=\tan{\theta}\) ➜ \(\because \tan{\alpha}+\tan{\beta}=b\)
এবং \(\tan{\alpha}\tan{\beta}=\frac{b}{a}\)
\(\Rightarrow \frac{ab}{a-b}=\tan{\theta}\) ➜ লব ও হরের সহিত \(a\) গুণ করে।
\(\therefore \tan{\theta}=\frac{ab}{a-b}\)
(প্রমাণিত)
\(Q.4.(ii)\) যদি \(\tan{\alpha}-\tan{\beta}=a\) এবং \(\cot{\beta}-\cot{\alpha}=b\) হয়, তবে প্রমাণ কর যে, \(\cot{(\alpha-\beta)}=\frac{1}{a}+\frac{1}{b}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\alpha}-\tan{\beta}=a\) এবং \(\cot{\beta}-\cot{\alpha}=b\)
\(\Rightarrow \frac{1}{\cot{\alpha}}-\frac{1}{\cot{\beta}}=a\) ➜ \(\because \tan{A}=\frac{1}{\cot{A}}\)
\(\Rightarrow \frac{\cot{\beta}-\cot{\alpha}}{\cot{\alpha}\cot{\beta}}=a\)
\(\Rightarrow \frac{b}{\cot{\alpha}\cot{\beta}}=a\) ➜ \(\because \cot{\beta}-\cot{\alpha}=b\)
\(\Rightarrow a\cot{\alpha}\cot{\beta}=b\)
\(\therefore \cot{\alpha}\cot{\beta}=\frac{b}{a}\)
আবার,
\(\cot{(\alpha-\beta)}=\frac{\cot{\alpha}\cot{\beta}+1}{\cot{\beta}-\cot{\alpha}}\)
\(=\frac{\frac{b}{a}+1}{b}\) ➜ \(\because \cot{\alpha}\cot{\beta}=\frac{b}{a}\)
এবং \(\cot{\beta}-\cot{\alpha}=b\)
\(=\frac{b+a}{ab}\) ➜ লব ও হরের সহিত \(a\) গুণ করে।
\(=\frac{b}{ab}+\frac{a}{ab}\)
\(=\frac{1}{a}+\frac{1}{b}\)
\(\therefore \cot{(\alpha-\beta)}=\frac{1}{a}+\frac{1}{b}\)
(প্রমাণিত)
\(\tan{\alpha}-\tan{\beta}=a\) এবং \(\cot{\beta}-\cot{\alpha}=b\)
\(\Rightarrow \frac{1}{\cot{\alpha}}-\frac{1}{\cot{\beta}}=a\) ➜ \(\because \tan{A}=\frac{1}{\cot{A}}\)
\(\Rightarrow \frac{\cot{\beta}-\cot{\alpha}}{\cot{\alpha}\cot{\beta}}=a\)
\(\Rightarrow \frac{b}{\cot{\alpha}\cot{\beta}}=a\) ➜ \(\because \cot{\beta}-\cot{\alpha}=b\)
\(\Rightarrow a\cot{\alpha}\cot{\beta}=b\)
\(\therefore \cot{\alpha}\cot{\beta}=\frac{b}{a}\)
আবার,
\(\cot{(\alpha-\beta)}=\frac{\cot{\alpha}\cot{\beta}+1}{\cot{\beta}-\cot{\alpha}}\)
\(=\frac{\frac{b}{a}+1}{b}\) ➜ \(\because \cot{\alpha}\cot{\beta}=\frac{b}{a}\)
এবং \(\cot{\beta}-\cot{\alpha}=b\)
\(=\frac{b+a}{ab}\) ➜ লব ও হরের সহিত \(a\) গুণ করে।
\(=\frac{b}{ab}+\frac{a}{ab}\)
\(=\frac{1}{a}+\frac{1}{b}\)
\(\therefore \cot{(\alpha-\beta)}=\frac{1}{a}+\frac{1}{b}\)
(প্রমাণিত)
\(Q.4.(iii)\) যদি \(A+B=\frac{\pi}{4}\) হয়, তবে দেখাও যে, \((1+\tan{A})(1+\tan{B})=2\)
রুয়েটঃ২০১০-২০১১ ।
সমাধানঃ
দেওয়া আছে,
\(A+B=\frac{\pi}{4}\)
\(\therefore B=\frac{\pi}{4}-A\)
\(L.S=(1+\tan{A})(1+\tan{B})\)
\(=(1+\tan{A})\left\{1+\tan{\left(\frac{\pi}{4}-A\right)}\right\}\) ➜ \(\because B=\frac{\pi}{4}-A\)
\(=(1+\tan{A})\left\{1+\frac{\tan{\frac{\pi}{4}}-\tan{A}}{1+\tan{\frac{\pi}{4}}\tan{A}}\right\}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=(1+\tan{A})\left\{1+\frac{1-\tan{A}}{1+1.\tan{A}}\right\}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=(1+\tan{A})\left\{1+\frac{1-\tan{A}}{1+\tan{A}}\right\}\)
\(=(1+\tan{A})\left\{\frac{1+\tan{A}+1-\tan{A}}{1+\tan{A}}\right\}\)
\(=(1+\tan{A})\left\{\frac{2}{1+\tan{A}}\right\}\)
\(=2\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(A+B=\frac{\pi}{4}\)
\(\therefore B=\frac{\pi}{4}-A\)
\(L.S=(1+\tan{A})(1+\tan{B})\)
\(=(1+\tan{A})\left\{1+\tan{\left(\frac{\pi}{4}-A\right)}\right\}\) ➜ \(\because B=\frac{\pi}{4}-A\)
\(=(1+\tan{A})\left\{1+\frac{\tan{\frac{\pi}{4}}-\tan{A}}{1+\tan{\frac{\pi}{4}}\tan{A}}\right\}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=(1+\tan{A})\left\{1+\frac{1-\tan{A}}{1+1.\tan{A}}\right\}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=(1+\tan{A})\left\{1+\frac{1-\tan{A}}{1+\tan{A}}\right\}\)
\(=(1+\tan{A})\left\{\frac{1+\tan{A}+1-\tan{A}}{1+\tan{A}}\right\}\)
\(=(1+\tan{A})\left\{\frac{2}{1+\tan{A}}\right\}\)
\(=2\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(iv)\) যদি \(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}=1\) হয়, তবে দেখাও যে, \(1+\cot{\alpha}\tan{\beta}=0\)
সিঃ২০১৬; যঃ২০০৭ ।
সমাধানঃ
দেওয়া আছে,
\(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}=1\)
\(\Rightarrow \cos{(\alpha+\beta)}=\cos{0^{o}}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
এবং \(1=\cos{0^{o}}\)
\(\Rightarrow \alpha+\beta=0\)
\(\therefore \beta=-\alpha\)
\(L.S=1+\cot{\alpha}\tan{\beta}\)
\(=1+\cot{\alpha}\tan{(-\alpha)}\) ➜ \(\because \beta=-\alpha\)
\(=1-\cot{\alpha}\tan{\alpha}\) ➜ \(\because \tan{(-\theta)}=-\tan{\theta}\)
\(=1-\cot{\alpha}\times\frac{1}{\cot{\alpha}}\) ➜ \(\because \tan{A}=\frac{1}{\cot{A}}\)
\(=1-1\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}=1\)
\(\Rightarrow \cos{(\alpha+\beta)}=\cos{0^{o}}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
এবং \(1=\cos{0^{o}}\)
\(\Rightarrow \alpha+\beta=0\)
\(\therefore \beta=-\alpha\)
\(L.S=1+\cot{\alpha}\tan{\beta}\)
\(=1+\cot{\alpha}\tan{(-\alpha)}\) ➜ \(\because \beta=-\alpha\)
\(=1-\cot{\alpha}\tan{\alpha}\) ➜ \(\because \tan{(-\theta)}=-\tan{\theta}\)
\(=1-\cot{\alpha}\times\frac{1}{\cot{\alpha}}\) ➜ \(\because \tan{A}=\frac{1}{\cot{A}}\)
\(=1-1\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(v)\) যদি \(\frac{\sin{(\alpha+\gamma)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\gamma)}}{\sin{\beta}}\) হয়, তবে প্রমাণ কর যে, \(\cot{\alpha}-\cot{\gamma}=2\cot{\beta}\)
কুঃ২০১২ ।
সমাধানঃ
দেওয়া আছে,
\(\frac{\sin{(\alpha+\gamma)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\gamma)}}{\sin{\beta}}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{\sin{\alpha}}=\frac{2(\sin{\beta}\cos{\gamma}+\cos{\beta}\sin{\gamma})}}{\sin{\beta}}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{\sin{\alpha}}=\frac{2\sin{\beta}\cos{\gamma}+2\cos{\beta}\sin{\gamma}}}{\sin{\beta}}\)
\(\Rightarrow \sin{\alpha}\sin{\beta}\cos{\gamma}+\cos{\alpha}\sin{\beta}\sin{\gamma}=2\sin{\alpha}\sin{\beta}\cos{\gamma}+2\sin{\alpha}\cos{\beta}\sin{\gamma}\) ➜ আড় গুণ করে।
\(\Rightarrow \sin{\alpha}\sin{\beta}\cos{\gamma}+\cos{\alpha}\sin{\beta}\sin{\gamma}-2\sin{\alpha}\sin{\beta}\cos{\gamma}=2\sin{\alpha}\cos{\beta}\sin{\gamma}\)
\(\Rightarrow \cos{\alpha}\sin{\beta}\sin{\gamma}-\sin{\alpha}\sin{\beta}\cos{\gamma}=2\sin{\alpha}\cos{\beta}\sin{\gamma}\)
\(\Rightarrow \frac{\cos{\alpha}\sin{\beta}\sin{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}-\frac{\sin{\alpha}\sin{\beta}\cos{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}=2\frac{\sin{\alpha}\cos{\beta}\sin{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}\) ➜ উভয় পার্শে \(\sin{\alpha}\sin{\beta}\sin{\gamma}\) দ্বারা ভাগ করে।
\(\Rightarrow \frac{\cos{\alpha}}{\sin{\alpha}}-\frac{\cos{\gamma}}{\sin{\gamma}}=2\frac{\cos{\beta}}{\sin{\beta}}\)
\(\therefore \cot{\alpha}-\cot{\gamma}=2\cot{\beta}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
(প্রমাণিত)
\(\frac{\sin{(\alpha+\gamma)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\gamma)}}{\sin{\beta}}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{\sin{\alpha}}=\frac{2(\sin{\beta}\cos{\gamma}+\cos{\beta}\sin{\gamma})}}{\sin{\beta}}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{\sin{\alpha}}=\frac{2\sin{\beta}\cos{\gamma}+2\cos{\beta}\sin{\gamma}}}{\sin{\beta}}\)
\(\Rightarrow \sin{\alpha}\sin{\beta}\cos{\gamma}+\cos{\alpha}\sin{\beta}\sin{\gamma}=2\sin{\alpha}\sin{\beta}\cos{\gamma}+2\sin{\alpha}\cos{\beta}\sin{\gamma}\) ➜ আড় গুণ করে।
\(\Rightarrow \sin{\alpha}\sin{\beta}\cos{\gamma}+\cos{\alpha}\sin{\beta}\sin{\gamma}-2\sin{\alpha}\sin{\beta}\cos{\gamma}=2\sin{\alpha}\cos{\beta}\sin{\gamma}\)
\(\Rightarrow \cos{\alpha}\sin{\beta}\sin{\gamma}-\sin{\alpha}\sin{\beta}\cos{\gamma}=2\sin{\alpha}\cos{\beta}\sin{\gamma}\)
\(\Rightarrow \frac{\cos{\alpha}\sin{\beta}\sin{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}-\frac{\sin{\alpha}\sin{\beta}\cos{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}=2\frac{\sin{\alpha}\cos{\beta}\sin{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}\) ➜ উভয় পার্শে \(\sin{\alpha}\sin{\beta}\sin{\gamma}\) দ্বারা ভাগ করে।
\(\Rightarrow \frac{\cos{\alpha}}{\sin{\alpha}}-\frac{\cos{\gamma}}{\sin{\gamma}}=2\frac{\cos{\beta}}{\sin{\beta}}\)
\(\therefore \cot{\alpha}-\cot{\gamma}=2\cot{\beta}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
(প্রমাণিত)
\(Q.4.(vi)\) যদি \(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\) হয়, তবে প্রমাণ কর যে, \(\cot{\alpha}+\cot{\gamma}=2\cot{\beta}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\)
\(\Rightarrow \frac{1}{\tan{\beta}}=\frac{\sin{(\alpha+\gamma)}}{2\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow \cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{2\sin{\alpha}\sin{\gamma}}\) ➜ \(\because \frac{1}{\tan{A}}=\cot{A}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow 2\cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow 2\cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}}{\sin{\alpha}\sin{\gamma}}+\frac{\cos{\alpha}\sin{\gamma}}{\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow 2\cot{\beta}=\frac{\cos{\gamma}}{\sin{\gamma}}+\frac{\cos{\alpha}}{\sin{\alpha}}\)
\(\Rightarrow 2\cot{\beta}=\cot{\gamma}+\cot{\alpha}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\therefore \cot{\alpha}+\cot{\gamma}=2\cot{\beta}\)
(প্রমাণিত)
\(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\)
\(\Rightarrow \frac{1}{\tan{\beta}}=\frac{\sin{(\alpha+\gamma)}}{2\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow \cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{2\sin{\alpha}\sin{\gamma}}\) ➜ \(\because \frac{1}{\tan{A}}=\cot{A}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow 2\cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow 2\cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}}{\sin{\alpha}\sin{\gamma}}+\frac{\cos{\alpha}\sin{\gamma}}{\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow 2\cot{\beta}=\frac{\cos{\gamma}}{\sin{\gamma}}+\frac{\cos{\alpha}}{\sin{\alpha}}\)
\(\Rightarrow 2\cot{\beta}=\cot{\gamma}+\cot{\alpha}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\therefore \cot{\alpha}+\cot{\gamma}=2\cot{\beta}\)
(প্রমাণিত)
\(Q.4.(vii)\) যদি \(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\) হয়, তবে প্রমাণ কর যে, \((a+b)\tan{x}=(a-b)\cot{\alpha}\)
ঢাঃ২০০৫ ।
সমাধানঃ
দেওয়া আছে,
\(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\)
\(\Rightarrow \frac{a}{b}=\frac{\cos{(x-\alpha)}}{\cos{(x+\alpha)}}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{\cos{(x-\alpha)}+\cos{(x+\alpha)}}{\cos{(x-\alpha)}-\cos{(x+\alpha)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{a+b}{a-b}=\frac{\cos{x}\cos{\alpha}+\sin{x}\sin{\alpha}+\cos{x}\cos{\alpha}-\sin{x}\sin{\alpha}}{\cos{x}\cos{\alpha}+\sin{x}\sin{\alpha}-\cos{x}\cos{\alpha}+\sin{x}\sin{\alpha}}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{2\cos{x}\cos{\alpha}}{2\sin{x}\sin{\alpha}}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{\cos{x}\cos{\alpha}}{\sin{x}\sin{\alpha}}\)
\(\Rightarrow (a+b)\sin{x}\sin{\alpha}=(a-b)\cos{x}\cos{\alpha}\) ➜ আড় গুণ করে।
\(\Rightarrow (a+b)\frac{\sin{x}}{\cos{x}}=(a-b)\frac{\cos{\alpha}}{\sin{\alpha}}\)
\(\therefore (a+b)\tan{x}=(a-b)\cot{\alpha}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
(প্রমাণিত)
\(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\)
\(\Rightarrow \frac{a}{b}=\frac{\cos{(x-\alpha)}}{\cos{(x+\alpha)}}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{\cos{(x-\alpha)}+\cos{(x+\alpha)}}{\cos{(x-\alpha)}-\cos{(x+\alpha)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{a+b}{a-b}=\frac{\cos{x}\cos{\alpha}+\sin{x}\sin{\alpha}+\cos{x}\cos{\alpha}-\sin{x}\sin{\alpha}}{\cos{x}\cos{\alpha}+\sin{x}\sin{\alpha}-\cos{x}\cos{\alpha}+\sin{x}\sin{\alpha}}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{2\cos{x}\cos{\alpha}}{2\sin{x}\sin{\alpha}}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{\cos{x}\cos{\alpha}}{\sin{x}\sin{\alpha}}\)
\(\Rightarrow (a+b)\sin{x}\sin{\alpha}=(a-b)\cos{x}\cos{\alpha}\) ➜ আড় গুণ করে।
\(\Rightarrow (a+b)\frac{\sin{x}}{\cos{x}}=(a-b)\frac{\cos{\alpha}}{\sin{\alpha}}\)
\(\therefore (a+b)\tan{x}=(a-b)\cot{\alpha}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
(প্রমাণিত)
\(Q.4.(viii)\) যদি \(a\sin{(x+\theta)}=b\sin{(x-\theta)}\) হয়, তবে প্রমাণ কর যে, \((a-b)\tan{x}+(a+b)\tan{\theta}=0\)
সমাধানঃ
দেওয়া আছে,
\(a\sin{(x+\theta)}=b\sin{(x-\theta)}\)
\(\Rightarrow \frac{a}{b}=\frac{\sin{(x-\alpha)}}{\sin{(x+\alpha)}}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{\sin{(x-\alpha)}+\sin{(x+\alpha)}}{\sin{(x-\alpha)}-\sin{(x+\alpha)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{a+b}{a-b}=\frac{\sin{x}\cos{\alpha}-\cos{x}\sin{\alpha}+\sin{x}\cos{\alpha}+\cos{x}\sin{\alpha}}{\sin{x}\cos{\alpha}-\cos{x}\sin{\alpha}-\sin{x}\cos{\alpha}-\cos{x}\sin{\alpha}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{2\sin{x}\cos{\alpha}}{-2\cos{x}\sin{\alpha}}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{\sin{x}\cos{\alpha}}{-\cos{x}\sin{\alpha}}\)
\(\Rightarrow (a+b)\cos{x}\sin{\alpha}=-(a-b)\sin{x}\cos{\alpha}\) ➜ আড় গুণ করে।
\(\Rightarrow (a+b)\frac{\sin{\alpha}}{\cos{\alpha}}=-(a-b)\frac{\sin{x}}{\cos{x}}\)
\(\Rightarrow (a+b)\tan{\alpha}=-(a-b)\tan{x}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\therefore (a-b)\tan{x}+(a+b)\tan{\alpha}=0\)
(প্রমাণিত)
\(a\sin{(x+\theta)}=b\sin{(x-\theta)}\)
\(\Rightarrow \frac{a}{b}=\frac{\sin{(x-\alpha)}}{\sin{(x+\alpha)}}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{\sin{(x-\alpha)}+\sin{(x+\alpha)}}{\sin{(x-\alpha)}-\sin{(x+\alpha)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{a+b}{a-b}=\frac{\sin{x}\cos{\alpha}-\cos{x}\sin{\alpha}+\sin{x}\cos{\alpha}+\cos{x}\sin{\alpha}}{\sin{x}\cos{\alpha}-\cos{x}\sin{\alpha}-\sin{x}\cos{\alpha}-\cos{x}\sin{\alpha}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{2\sin{x}\cos{\alpha}}{-2\cos{x}\sin{\alpha}}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{\sin{x}\cos{\alpha}}{-\cos{x}\sin{\alpha}}\)
\(\Rightarrow (a+b)\cos{x}\sin{\alpha}=-(a-b)\sin{x}\cos{\alpha}\) ➜ আড় গুণ করে।
\(\Rightarrow (a+b)\frac{\sin{\alpha}}{\cos{\alpha}}=-(a-b)\frac{\sin{x}}{\cos{x}}\)
\(\Rightarrow (a+b)\tan{\alpha}=-(a-b)\tan{x}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\therefore (a-b)\tan{x}+(a+b)\tan{\alpha}=0\)
(প্রমাণিত)
\(Q.4.(ix)\) যদি \(a\sin{(\theta+\alpha)}=b\sin{(\theta+\beta)}\) হয়, তবে প্রমাণ কর যে, \(\cot{\theta}=\frac{a\cos{\alpha}-b\cos{\beta}}{b\sin{\beta}-a\sin{\alpha}}\)
যঃ২০০৫ ।
সমাধানঃ
দেওয়া আছে,
\(a\sin{(\theta+\alpha)}=b\sin{(\theta+\beta)}\)
\(\Rightarrow a(\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha})=b(\sin{\theta}\cos{\beta}+\cos{\theta}\sin{\beta})\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow a\sin{\theta}\cos{\alpha}+a\cos{\theta}\sin{\alpha}=b\sin{\theta}\cos{\beta}+b\cos{\theta}\sin{\beta}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow a\cos{\theta}\sin{\alpha}-b\cos{\theta}\sin{\beta}=b\sin{\theta}\cos{\beta}-a\sin{\theta}\cos{\alpha}\)
\(\Rightarrow \cos{\theta}(a\sin{\alpha}-b\sin{\beta})=\sin{\theta}(b\cos{\beta}-a\cos{\alpha})\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}=\frac{b\cos{\beta}-a\cos{\alpha}}{a\sin{\alpha}-b\sin{\beta}}\)
\(\Rightarrow \cot{\theta}=\frac{-(a\cos{\alpha}-b\cos{\beta})}{-(b\sin{\beta}-a\sin{\alpha})}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\therefore \cot{\theta}=\frac{a\cos{\alpha}-b\cos{\beta}}{b\sin{\beta}-a\sin{\alpha}}\)
(প্রমাণিত)
\(a\sin{(\theta+\alpha)}=b\sin{(\theta+\beta)}\)
\(\Rightarrow a(\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha})=b(\sin{\theta}\cos{\beta}+\cos{\theta}\sin{\beta})\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow a\sin{\theta}\cos{\alpha}+a\cos{\theta}\sin{\alpha}=b\sin{\theta}\cos{\beta}+b\cos{\theta}\sin{\beta}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow a\cos{\theta}\sin{\alpha}-b\cos{\theta}\sin{\beta}=b\sin{\theta}\cos{\beta}-a\sin{\theta}\cos{\alpha}\)
\(\Rightarrow \cos{\theta}(a\sin{\alpha}-b\sin{\beta})=\sin{\theta}(b\cos{\beta}-a\cos{\alpha})\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}=\frac{b\cos{\beta}-a\cos{\alpha}}{a\sin{\alpha}-b\sin{\beta}}\)
\(\Rightarrow \cot{\theta}=\frac{-(a\cos{\alpha}-b\cos{\beta})}{-(b\sin{\beta}-a\sin{\alpha})}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\therefore \cot{\theta}=\frac{a\cos{\alpha}-b\cos{\beta}}{b\sin{\beta}-a\sin{\alpha}}\)
(প্রমাণিত)
\(Q.4.(x)\) যদি \(\theta+\phi=\alpha\) এবং \(\tan{\theta}=k\tan{\phi}\) হয়, তবে প্রমাণ কর যে, \(\sin{(\theta-\phi)}=\frac{k-1}{k+1}\sin{\alpha}\)
কুয়েটঃ২০০৩-২০০৪ ।
সমাধানঃ
দেওয়া আছে,
\(\theta+\phi=\alpha\) এবং \(\tan{\theta}=k\tan{\phi}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=k\frac{\sin{\phi}}{\cos{\phi}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \sin{\theta}\cos{\phi}=k\cos{\theta}\sin{\phi}\) ➜ আড় গুণ করে।
\(\Rightarrow \frac{\sin{\theta}\cos{\phi}}{\cos{\theta}\sin{\phi}}=k\)
\(\Rightarrow \frac{\sin{\theta}\cos{\phi}-\cos{\theta}\sin{\phi}}{\sin{\theta}\cos{\phi}+\cos{\theta}\sin{\phi}}=\frac{k-1}{k+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin{(\theta-\phi)}}{\sin{(\theta+\phi)}}=\frac{k-1}{k+1}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\therefore \sin{(\theta-\phi)}=\frac{k-1}{k+1}\sin{(\theta+\phi)}\)
(প্রমাণিত)
\(\theta+\phi=\alpha\) এবং \(\tan{\theta}=k\tan{\phi}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=k\frac{\sin{\phi}}{\cos{\phi}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \sin{\theta}\cos{\phi}=k\cos{\theta}\sin{\phi}\) ➜ আড় গুণ করে।
\(\Rightarrow \frac{\sin{\theta}\cos{\phi}}{\cos{\theta}\sin{\phi}}=k\)
\(\Rightarrow \frac{\sin{\theta}\cos{\phi}-\cos{\theta}\sin{\phi}}{\sin{\theta}\cos{\phi}+\cos{\theta}\sin{\phi}}=\frac{k-1}{k+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin{(\theta-\phi)}}{\sin{(\theta+\phi)}}=\frac{k-1}{k+1}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\therefore \sin{(\theta-\phi)}=\frac{k-1}{k+1}\sin{(\theta+\phi)}\)
(প্রমাণিত)
\(Q.4.(xi)\) যদি \(\tan{\beta}=\frac{n\sin{\alpha}\cos{\alpha}}{1-n\sin^2{\alpha}}\) হয়, তবে দেখাও যে, \(\tan{(\alpha-\beta)}=(1-n)\tan{\alpha}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\beta}=\frac{n\sin{\alpha}\cos{\alpha}}{1-n\sin^2{\alpha}}\)
\(=\frac{\frac{n\sin{\alpha}\cos{\alpha}}{\cos^2{\alpha}}}{\frac{1-n\sin^2{\alpha}}{\cos^2{\alpha}}}\) ➜ লব ও হরকে \(\cos^2{\alpha}\) দ্বারা ভাগ করে।
\(=\frac{\frac{n\sin{\alpha}}{\cos{\alpha}}}{\frac{1}{\cos^2{\alpha}}-\frac{n\sin^2{\alpha}}{\cos^2{\alpha}}}\)
\(=\frac{n\tan{\alpha}}{\sec^2{\alpha}-n\tan^2{\alpha}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\frac{1}{\cos{A}}=\sec{A}\)
\(=\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
\(\therefore \tan{\beta}=\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}\)
এখন, \(L.S=\tan{(\alpha-\beta)}\)
\(=\frac{\tan{\alpha}-\tan{\beta}}{1+\tan{\alpha}\tan{\beta}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{\tan{\alpha}-\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}}{1+\tan{\alpha}\times\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}}\) ➜ \(\because \tan{\beta}=\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}\)
\(=\frac{\tan{\alpha}-\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}}{1+\frac{n\tan^2{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}}\)
\(=\frac{\tan{\alpha}+\tan^3{\alpha}-n\tan^3{\alpha}-n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}+n\tan^2{\alpha}}\) ➜ লব ও হরকে \((1+\tan^2{\alpha}-n\tan^2{\alpha})\) দ্বারা গুণ করে।
\(=\frac{\tan{\alpha}(1+\tan^2{\alpha})-n\tan{\alpha}(1+\tan^2{\alpha})}{1+\tan^2{\alpha}}\)
\(=\frac{(1+\tan^2{\alpha})(\tan{\alpha}-n\tan{\alpha})}{1+\tan^2{\alpha}}\)
\(=\tan{\alpha}-n\tan{\alpha}\)
\(=(1-n)\tan{\alpha}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\tan{\beta}=\frac{n\sin{\alpha}\cos{\alpha}}{1-n\sin^2{\alpha}}\)
\(=\frac{\frac{n\sin{\alpha}\cos{\alpha}}{\cos^2{\alpha}}}{\frac{1-n\sin^2{\alpha}}{\cos^2{\alpha}}}\) ➜ লব ও হরকে \(\cos^2{\alpha}\) দ্বারা ভাগ করে।
\(=\frac{\frac{n\sin{\alpha}}{\cos{\alpha}}}{\frac{1}{\cos^2{\alpha}}-\frac{n\sin^2{\alpha}}{\cos^2{\alpha}}}\)
\(=\frac{n\tan{\alpha}}{\sec^2{\alpha}-n\tan^2{\alpha}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\frac{1}{\cos{A}}=\sec{A}\)
\(=\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
\(\therefore \tan{\beta}=\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}\)
এখন, \(L.S=\tan{(\alpha-\beta)}\)
\(=\frac{\tan{\alpha}-\tan{\beta}}{1+\tan{\alpha}\tan{\beta}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{\tan{\alpha}-\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}}{1+\tan{\alpha}\times\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}}\) ➜ \(\because \tan{\beta}=\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}\)
\(=\frac{\tan{\alpha}-\frac{n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}}{1+\frac{n\tan^2{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}}}\)
\(=\frac{\tan{\alpha}+\tan^3{\alpha}-n\tan^3{\alpha}-n\tan{\alpha}}{1+\tan^2{\alpha}-n\tan^2{\alpha}+n\tan^2{\alpha}}\) ➜ লব ও হরকে \((1+\tan^2{\alpha}-n\tan^2{\alpha})\) দ্বারা গুণ করে।
\(=\frac{\tan{\alpha}(1+\tan^2{\alpha})-n\tan{\alpha}(1+\tan^2{\alpha})}{1+\tan^2{\alpha}}\)
\(=\frac{(1+\tan^2{\alpha})(\tan{\alpha}-n\tan{\alpha})}{1+\tan^2{\alpha}}\)
\(=\tan{\alpha}-n\tan{\alpha}\)
\(=(1-n)\tan{\alpha}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(xii)\) \(\cot{\theta}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) হলে, দেখাও যে, \(\frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}\)
সমাধানঃ
দেওয়া আছে,
\(\cot{\theta}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(\Rightarrow a\sin{x}\cos{\theta}+b\cos{\theta}\sin{y}=a\sin{\theta}\cos{x}-b\sin{\theta}\cos{y}\) ➜ আড় গুণ করে।
\(\Rightarrow -a(\sin{\theta}\cos{x}-\sin{x}\cos{\theta})=-b(\sin{\theta}\cos{y}+\cos{\theta}\sin{y})\)
\(\Rightarrow a\sin{(\theta-x)}=b\sin{(\theta+y)}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\therefore \frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}\)
(প্রমাণিত)
\(\cot{\theta}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}=\frac{a\cos{x}-b\cos{y}}{a\sin{x}+b\sin{y}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(\Rightarrow a\sin{x}\cos{\theta}+b\cos{\theta}\sin{y}=a\sin{\theta}\cos{x}-b\sin{\theta}\cos{y}\) ➜ আড় গুণ করে।
\(\Rightarrow -a(\sin{\theta}\cos{x}-\sin{x}\cos{\theta})=-b(\sin{\theta}\cos{y}+\cos{\theta}\sin{y})\)
\(\Rightarrow a\sin{(\theta-x)}=b\sin{(\theta+y)}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\therefore \frac{\sin{(\theta-x)}}{\sin{(\theta+y)}}=\frac{b}{a}\)
(প্রমাণিত)
\(Q.4.(xiii)\) যদি \(\sin{\alpha}=\frac{m^2-n^2}{m^2+n^2}\) হয়, তবে দেখাও যে, \(\frac{\tan{(\alpha-\beta)}+\tan{\beta}}{1-\tan{(\alpha-\beta)}\tan{\beta}}=\frac{m^2-n^2}{2mn}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{\alpha}=\frac{m^2-n^2}{m^2+n^2}\)
এখানে, \(\text{বিপরীত}=m^2-n^2\) ➜ \(\because \sin{\theta}=\frac{\text{বিপরীত}}{\text{অতিভুজ }}\)
\(\text{অতিভুজ}=m^2+n^2\)
এখন, \((\text{বিপরীত})^2+(\text{সংলগ্ন})^2=(\text{অতিভুজ })^2\)
\(\Rightarrow (\text{সংলগ্ন})^2=(\text{অতিভুজ })^2-(\text{বিপরীত})^2\)
\(\therefore \text{সংলগ্ন}=\sqrt{(\text{অতিভুজ })^2-(\text{বিপরীত})^2}\)
\(=\sqrt{(m^2+n^2)^2-(m^2-n^2)^2}\)
\(=\sqrt{4m^2n^2}\) ➜ \(\because (a+b)^2-(a-b)^2=4ab\)
\(=2mn\)
\(\therefore \text{সংলগ্ন}=2mn\)
\(\therefore \tan{\alpha}=\frac{m^2-n^2}{2mn}\) ➜ \(\because \tan{\theta}=\frac{\text{বিপরীত}}{\text{সংলগ্ন}}\)
এখন, \(L.S=\frac{\tan{(\alpha-\beta)}+\tan{\beta}}{1-\tan{(\alpha-\beta)}\tan{\beta}}\)
\(=\tan{(\alpha-\beta+\beta)}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=\tan{\alpha}\)
\(=\frac{m^2-n^2}{2mn}\) ➜ \(\because \tan{\alpha}=\frac{m^2-n^2}{2mn}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\sin{\alpha}=\frac{m^2-n^2}{m^2+n^2}\)
এখানে, \(\text{বিপরীত}=m^2-n^2\) ➜ \(\because \sin{\theta}=\frac{\text{বিপরীত}}{\text{অতিভুজ }}\)
\(\text{অতিভুজ}=m^2+n^2\)
এখন, \((\text{বিপরীত})^2+(\text{সংলগ্ন})^2=(\text{অতিভুজ })^2\)
\(\Rightarrow (\text{সংলগ্ন})^2=(\text{অতিভুজ })^2-(\text{বিপরীত})^2\)
\(\therefore \text{সংলগ্ন}=\sqrt{(\text{অতিভুজ })^2-(\text{বিপরীত})^2}\)
\(=\sqrt{(m^2+n^2)^2-(m^2-n^2)^2}\)
\(=\sqrt{4m^2n^2}\) ➜ \(\because (a+b)^2-(a-b)^2=4ab\)
\(=2mn\)
\(\therefore \text{সংলগ্ন}=2mn\)
\(\therefore \tan{\alpha}=\frac{m^2-n^2}{2mn}\) ➜ \(\because \tan{\theta}=\frac{\text{বিপরীত}}{\text{সংলগ্ন}}\)
এখন, \(L.S=\frac{\tan{(\alpha-\beta)}+\tan{\beta}}{1-\tan{(\alpha-\beta)}\tan{\beta}}\)
\(=\tan{(\alpha-\beta+\beta)}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=\tan{\alpha}\)
\(=\frac{m^2-n^2}{2mn}\) ➜ \(\because \tan{\alpha}=\frac{m^2-n^2}{2mn}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(xiv)\) যদি \(\tan{\alpha}=\frac{b}{a}\) হয়, তবে প্রমাণ কর যে, \(a\cos{\theta}+b\sin{\theta}=\sqrt{a^2+b^2}\cos{(\theta-\alpha)}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\alpha}=\frac{b}{a}\)
এখন, \(L.S=a\cos{\theta}+b\sin{\theta}\)
\(=a\left(\cos{\theta}+\frac{b}{a}\sin{\theta}\right)\)
\(=a\left(\cos{\theta}+\tan{\alpha}\sin{\theta}\right)\) ➜ \(\because \tan{\alpha}=\frac{b}{a}\)
\(=a\left(\cos{\theta}+\frac{\sin{\alpha}}{\cos{\alpha}}\sin{\theta}\right)\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=a\left(\cos{\theta}+\frac{\sin{\theta}\sin{\alpha}}{\cos{\alpha}}\right)\)
\(=a\frac{\cos{\theta}\cos{\alpha}+\sin{\theta}\sin{\alpha}}{\cos{\alpha}}\)
\(=a\frac{\cos{(\theta-\alpha)}}{\cos{\alpha}}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=a\frac{1}{\cos{\alpha}}\cos{(\theta-\alpha)}\)
\(=a\sec{\alpha}\cos{(\theta-\alpha)}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=a\sqrt{\sec^2{\alpha}}\cos{(\theta-\alpha)}\)
\(=a\sqrt{1+\tan^2{\alpha}}\cos{(\theta-\alpha)}\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
\(=a\sqrt{1+\left(\frac{b}{a}\right)^2}\cos{(\theta-\alpha)}\) ➜ \(\because \tan{\alpha}=\frac{b}{a}\)
\(=a\sqrt{1+\frac{b^2}{a^2}}\cos{(\theta-\alpha)}\)
\(=a\sqrt{\frac{a^2+b^2}{a^2}}\cos{(\theta-\alpha)}\)
\(=a\frac{\sqrt{a^2+b^2}}{a}\cos{(\theta-\alpha)}\)
\(=\sqrt{a^2+b^2}\cos{(\theta-\alpha)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\tan{\alpha}=\frac{b}{a}\)
এখন, \(L.S=a\cos{\theta}+b\sin{\theta}\)
\(=a\left(\cos{\theta}+\frac{b}{a}\sin{\theta}\right)\)
\(=a\left(\cos{\theta}+\tan{\alpha}\sin{\theta}\right)\) ➜ \(\because \tan{\alpha}=\frac{b}{a}\)
\(=a\left(\cos{\theta}+\frac{\sin{\alpha}}{\cos{\alpha}}\sin{\theta}\right)\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=a\left(\cos{\theta}+\frac{\sin{\theta}\sin{\alpha}}{\cos{\alpha}}\right)\)
\(=a\frac{\cos{\theta}\cos{\alpha}+\sin{\theta}\sin{\alpha}}{\cos{\alpha}}\)
\(=a\frac{\cos{(\theta-\alpha)}}{\cos{\alpha}}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=a\frac{1}{\cos{\alpha}}\cos{(\theta-\alpha)}\)
\(=a\sec{\alpha}\cos{(\theta-\alpha)}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=a\sqrt{\sec^2{\alpha}}\cos{(\theta-\alpha)}\)
\(=a\sqrt{1+\tan^2{\alpha}}\cos{(\theta-\alpha)}\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
\(=a\sqrt{1+\left(\frac{b}{a}\right)^2}\cos{(\theta-\alpha)}\) ➜ \(\because \tan{\alpha}=\frac{b}{a}\)
\(=a\sqrt{1+\frac{b^2}{a^2}}\cos{(\theta-\alpha)}\)
\(=a\sqrt{\frac{a^2+b^2}{a^2}}\cos{(\theta-\alpha)}\)
\(=a\frac{\sqrt{a^2+b^2}}{a}\cos{(\theta-\alpha)}\)
\(=\sqrt{a^2+b^2}\cos{(\theta-\alpha)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(xv)\) যদি \(\sqrt{2}\cos{A}=\cos{B}+\cos^3{B}\) এবং \(\sqrt{2}\sin{A}=\sin{B}-\sin^3{B}\) হয়, তবে প্রমাণ কর যে, \(cosec \ {(A-B)}=\pm{3}\)
সমাধানঃ
দেওয়া আছে,
\(\sqrt{2}\cos{A}=\cos{B}+\cos^3{B}\) এবং \(\sqrt{2}\sin{A}=\sin{B}-\sin^3{B}\)
ধরি, \(\sqrt{2}\cos{A}=\cos{B}+\cos^3{B} ......(1)\)
\(\sqrt{2}\sin{A}=\sin{B}-\sin^3{B} ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sqrt{2}\cos{A})^2+(\sqrt{2}\sin{A})^2=(\cos{B}+\cos^3{B})^2+(\sin{B}-\sin^3{B})^2\)
\(\Rightarrow 2\cos^2{A}+2\sin^2{A}=\cos^2{B}+2\cos{B}\cos^3{B}+\cos^6{B}+\sin^2{B}-2\sin{B}\sin^3{B}+\sin^6{B}\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
এবং \((a-b)^2=a^2-2ab+b^2\)
\(\Rightarrow 2(\sin^2{A}+\cos^2{A})=\sin^2{B}+\cos^2{B}+2\cos^4{B}-2\sin^4{B}+(\sin^2{B})^3+(\cos^2{B})^3\)
\(\Rightarrow 2\times1=1+2\{(\cos^2{B})^2-(\sin^2{B})^2\}+(\sin^2{B}+\cos^2{B})^3-3\sin^2{B}\cos^2{B}(\sin^2{B}+\cos^2{B})\) ➜ \(\because \sin^2{P}+\cos^2{P}=1\)
এবং \(a^3+b^3=(a+b)^3-3ab(a+b)\)
\(\Rightarrow 2=1+2(\cos^2{B}-\sin^2{B}).1+1^3-3\sin^2{B}\cos^2{B}.1\)
\(\Rightarrow 2=1+2(\cos^2{B}-\sin^2{B})+1-3\sin^2{B}\cos^2{B}\)
\(\Rightarrow 2=2+2(\cos^2{B}-1+\cos^2{B})-3(1-\cos^2{B})\cos^2{B}\) ➜ \(\because \sin^2{P}=1-\cos^2{P}\)
\(\Rightarrow 2-2=2(2\cos^2{B}-1)-3\cos^2{B}+3\cos^4{B}\)
\(\Rightarrow 0=4\cos^2{B}-2-3\cos^2{B}+3\cos^4{B}\)
\(\Rightarrow 3\cos^4{B}+\cos^2{B}-2=0\)
\(\Rightarrow 3\cos^4{B}+3\cos^2{B}-2\cos^2{B}-2=0\)
\(\Rightarrow 3\cos^2{B}(\cos^2{B}+1)-2(\cos^2{B}+1)=0\)
\(\Rightarrow (\cos^2{B}+1)(3\cos^2{B}-2)=0\)
\(\Rightarrow \cos^2{B}+1\ne{0}, 3\cos^2{B}-2=0\)
\(\Rightarrow 3\cos^2{B}=2\)
\(\Rightarrow \cos^2{B}=\frac{2}{3}\)
\(\therefore \cos{B}=\pm\sqrt{\frac{2}{3}}\)
আবার, \(\sin^2{B}=1-\cos^2{B}\)
\(=1-\frac{2}{3}\)
\(=\frac{3-2}{3}\)
\(=\frac{1}{3}\)
\(\therefore \sin^2{B}=\frac{1}{3}\)
\(\therefore \sin{B}=\pm\frac{1}{\sqrt{3}}\)
এখন, \((2)\times\cos{B}-(1)\times\sin{B}\) এর সাহায্যে
\(\sqrt{2}(\sin{A}\cos{B}-\cos{A}\sin{B})=\sin{B}\cos{B}-\sin^3{B}\cos{B}-\sin{B}\cos{B}-\sin{B}\cos^3{B}\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\sin^3{B}\cos{B}-\sin{B}\cos^3{B}\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\sin{B}\cos{B}(\sin^2{B}+\cos^2{B})\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\sin{B}\cos{B}.1\) ➜ \(\because \sin^2{P}+\cos^2{P}=1\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\left(\pm\frac{1}{\sqrt{3}}\right)\left(\pm\sqrt{\frac{2}{3}}\right)\) ➜ \(\because \sin{B}=\pm\frac{1}{\sqrt{3}}\)
এবং \(\cos{B}=\pm\sqrt{\frac{2}{3}}\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\left(\pm\frac{1}{\sqrt{3}}\right)\left(\pm\frac{\sqrt{2}}{\sqrt{3}}\right)\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=\pm\frac{\sqrt{2}}{3}\)
\(\Rightarrow \sin{(A-B)}=\pm\frac{1}{3}\)
\(\Rightarrow \frac{1}{\sin{(A-B)}}=\pm3\)
\(\therefore cosec \ {(A-B)}=\pm3\) ➜ \(\because \frac{1}{\sin{P}}=cosec \ {P}\)
(প্রমাণিত)
\(\sqrt{2}\cos{A}=\cos{B}+\cos^3{B}\) এবং \(\sqrt{2}\sin{A}=\sin{B}-\sin^3{B}\)
ধরি, \(\sqrt{2}\cos{A}=\cos{B}+\cos^3{B} ......(1)\)
\(\sqrt{2}\sin{A}=\sin{B}-\sin^3{B} ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sqrt{2}\cos{A})^2+(\sqrt{2}\sin{A})^2=(\cos{B}+\cos^3{B})^2+(\sin{B}-\sin^3{B})^2\)
\(\Rightarrow 2\cos^2{A}+2\sin^2{A}=\cos^2{B}+2\cos{B}\cos^3{B}+\cos^6{B}+\sin^2{B}-2\sin{B}\sin^3{B}+\sin^6{B}\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
এবং \((a-b)^2=a^2-2ab+b^2\)
\(\Rightarrow 2(\sin^2{A}+\cos^2{A})=\sin^2{B}+\cos^2{B}+2\cos^4{B}-2\sin^4{B}+(\sin^2{B})^3+(\cos^2{B})^3\)
\(\Rightarrow 2\times1=1+2\{(\cos^2{B})^2-(\sin^2{B})^2\}+(\sin^2{B}+\cos^2{B})^3-3\sin^2{B}\cos^2{B}(\sin^2{B}+\cos^2{B})\) ➜ \(\because \sin^2{P}+\cos^2{P}=1\)
এবং \(a^3+b^3=(a+b)^3-3ab(a+b)\)
\(\Rightarrow 2=1+2(\cos^2{B}-\sin^2{B}).1+1^3-3\sin^2{B}\cos^2{B}.1\)
\(\Rightarrow 2=1+2(\cos^2{B}-\sin^2{B})+1-3\sin^2{B}\cos^2{B}\)
\(\Rightarrow 2=2+2(\cos^2{B}-1+\cos^2{B})-3(1-\cos^2{B})\cos^2{B}\) ➜ \(\because \sin^2{P}=1-\cos^2{P}\)
\(\Rightarrow 2-2=2(2\cos^2{B}-1)-3\cos^2{B}+3\cos^4{B}\)
\(\Rightarrow 0=4\cos^2{B}-2-3\cos^2{B}+3\cos^4{B}\)
\(\Rightarrow 3\cos^4{B}+\cos^2{B}-2=0\)
\(\Rightarrow 3\cos^4{B}+3\cos^2{B}-2\cos^2{B}-2=0\)
\(\Rightarrow 3\cos^2{B}(\cos^2{B}+1)-2(\cos^2{B}+1)=0\)
\(\Rightarrow (\cos^2{B}+1)(3\cos^2{B}-2)=0\)
\(\Rightarrow \cos^2{B}+1\ne{0}, 3\cos^2{B}-2=0\)
\(\Rightarrow 3\cos^2{B}=2\)
\(\Rightarrow \cos^2{B}=\frac{2}{3}\)
\(\therefore \cos{B}=\pm\sqrt{\frac{2}{3}}\)
আবার, \(\sin^2{B}=1-\cos^2{B}\)
\(=1-\frac{2}{3}\)
\(=\frac{3-2}{3}\)
\(=\frac{1}{3}\)
\(\therefore \sin^2{B}=\frac{1}{3}\)
\(\therefore \sin{B}=\pm\frac{1}{\sqrt{3}}\)
এখন, \((2)\times\cos{B}-(1)\times\sin{B}\) এর সাহায্যে
\(\sqrt{2}(\sin{A}\cos{B}-\cos{A}\sin{B})=\sin{B}\cos{B}-\sin^3{B}\cos{B}-\sin{B}\cos{B}-\sin{B}\cos^3{B}\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\sin^3{B}\cos{B}-\sin{B}\cos^3{B}\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\sin{B}\cos{B}(\sin^2{B}+\cos^2{B})\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\sin{B}\cos{B}.1\) ➜ \(\because \sin^2{P}+\cos^2{P}=1\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\left(\pm\frac{1}{\sqrt{3}}\right)\left(\pm\sqrt{\frac{2}{3}}\right)\) ➜ \(\because \sin{B}=\pm\frac{1}{\sqrt{3}}\)
এবং \(\cos{B}=\pm\sqrt{\frac{2}{3}}\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=-\left(\pm\frac{1}{\sqrt{3}}\right)\left(\pm\frac{\sqrt{2}}{\sqrt{3}}\right)\)
\(\Rightarrow \sqrt{2}\sin{(A-B)}=\pm\frac{\sqrt{2}}{3}\)
\(\Rightarrow \sin{(A-B)}=\pm\frac{1}{3}\)
\(\Rightarrow \frac{1}{\sin{(A-B)}}=\pm3\)
\(\therefore cosec \ {(A-B)}=\pm3\) ➜ \(\because \frac{1}{\sin{P}}=cosec \ {P}\)
(প্রমাণিত)
\(Q.4.(xvi)\) \(\theta\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\tan{\alpha}:\tan{\beta}=x:y\) হয়, প্রমাণ কর যে, \(\sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{\theta}\)
সমাধানঃ
দেওয়া আছে,
\(\theta\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\tan{\alpha}:\tan{\beta}=x:y\)
\(\Rightarrow \frac{\tan{\alpha}}{\tan{\beta}}=\frac{x}{y}\)
\(\Rightarrow y\tan{\alpha}=x\tan{\beta}\)
\(\Rightarrow y\frac{\sin{\alpha}}{\cos{\alpha}}=x\frac{\sin{\beta}}{\cos{\beta}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow y\sin{\alpha}\cos{\beta}=x\sin{\beta}\cos{\alpha}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}}{\sin{\beta}\cos{\alpha}}=\frac{x}{y}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}-\sin{\beta}\cos{\alpha}}{\sin{\alpha}\cos{\beta}+\sin{\beta}\cos{\alpha}}=\frac{x-y}{x+y}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta}}{\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}}=\frac{x-y}{x+y}\)
\(\Rightarrow \frac{\sin{(\alpha-\beta)}}{\sin{(\alpha+\beta)}}=\frac{x-y}{x+y}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow \sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{(\alpha+\beta)}\)
\(\therefore \sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{\theta}\) ➜ \(\because \alpha+\beta=\theta\)
(প্রমাণিত)
\(\theta\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\tan{\alpha}:\tan{\beta}=x:y\)
\(\Rightarrow \frac{\tan{\alpha}}{\tan{\beta}}=\frac{x}{y}\)
\(\Rightarrow y\tan{\alpha}=x\tan{\beta}\)
\(\Rightarrow y\frac{\sin{\alpha}}{\cos{\alpha}}=x\frac{\sin{\beta}}{\cos{\beta}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow y\sin{\alpha}\cos{\beta}=x\sin{\beta}\cos{\alpha}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}}{\sin{\beta}\cos{\alpha}}=\frac{x}{y}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}-\sin{\beta}\cos{\alpha}}{\sin{\alpha}\cos{\beta}+\sin{\beta}\cos{\alpha}}=\frac{x-y}{x+y}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta}}{\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}}=\frac{x-y}{x+y}\)
\(\Rightarrow \frac{\sin{(\alpha-\beta)}}{\sin{(\alpha+\beta)}}=\frac{x-y}{x+y}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow \sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{(\alpha+\beta)}\)
\(\therefore \sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{\theta}\) ➜ \(\because \alpha+\beta=\theta\)
(প্রমাণিত)
\(Q.4.(xvii)\) \(\tan{\theta}=\frac{a\sin{x}+b\sin{y}}{a\cos{x}+b\cos{y}}\) হলে দেখাও যে, \(a\sin{(\theta-x)}+b\sin{(\theta-y)}=0\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\theta}=\frac{a\sin{x}+b\sin{y}}{a\cos{x}+b\cos{y}}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=\frac{a\sin{x}+b\sin{y}}{a\cos{x}+b\cos{y}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow a\sin{\theta}\cos{x}+b\sin{\theta}\cos{y}=a\cos{\theta}\sin{x}+b\cos{\theta}\sin{y}\)
\(\Rightarrow a\sin{\theta}\cos{x}-a\cos{\theta}\sin{x}=b\cos{\theta}\sin{y}-b\sin{\theta}\cos{y}\)
\(\Rightarrow a(\sin{\theta}\cos{x}-\cos{\theta}\sin{x})=-b(\sin{\theta}\cos{y}-\cos{\theta}\sin{y})\)
\(\Rightarrow a\sin{(\theta-x)}=-b\sin{(\theta-y)}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\therefore a\sin{(\theta-x)}+b\sin{(\theta-y)}=0\)
(দেখানো হলো)
\(\tan{\theta}=\frac{a\sin{x}+b\sin{y}}{a\cos{x}+b\cos{y}}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=\frac{a\sin{x}+b\sin{y}}{a\cos{x}+b\cos{y}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow a\sin{\theta}\cos{x}+b\sin{\theta}\cos{y}=a\cos{\theta}\sin{x}+b\cos{\theta}\sin{y}\)
\(\Rightarrow a\sin{\theta}\cos{x}-a\cos{\theta}\sin{x}=b\cos{\theta}\sin{y}-b\sin{\theta}\cos{y}\)
\(\Rightarrow a(\sin{\theta}\cos{x}-\cos{\theta}\sin{x})=-b(\sin{\theta}\cos{y}-\cos{\theta}\sin{y})\)
\(\Rightarrow a\sin{(\theta-x)}=-b\sin{(\theta-y)}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\therefore a\sin{(\theta-x)}+b\sin{(\theta-y)}=0\)
(দেখানো হলো)
\(Q.4.(xviii)\) \(\triangle{ABC}\)-এ \(\sec{B}=\sec{C}\sec{A}\) হলে দেখাও যে, \(\tan{A}=2\cot{C}\)
সমাধানঃ
দেওয়া আছে,
\(\triangle{ABC}\)-এ \(\sec{B}=\sec{C}\sec{A}\)
\(\Rightarrow A+B+C=\pi\)
\(\therefore B=\pi-(A+C)\)
এখন, \(\sec{B}=\sec{C}\sec{A}\)
\(\Rightarrow \frac{1}{\cos{B}}=\frac{1}{\cos{C}}\times\frac{1}{\cos{A}}\) ➜ \(\because \sec{P}=\frac{1}{\cos{P}}\)
\(\Rightarrow \cos{B}=\cos{C}\cos{A}\)
\(\Rightarrow \cos{\{\pi-(A+C)\}}=\cos{C}\cos{A}\)
\(\Rightarrow \cos{\left\{\frac{\pi}{2}\times2-(A+C)\right\}}=\cos{C}\cos{A}\)
\(\Rightarrow -\cos{(A+C)}=\cos{C}\cos{A}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের কোনো পরিবর্তন হয়নি।
\(\Rightarrow -(\cos{A}\cos{C}-\sin{A}\sin{C})=\cos{C}\cos{A}\) ➜
\(\because \cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(\Rightarrow -\cos{A}\cos{C}+\sin{A}\sin{C}=\cos{C}\cos{A}\)
\(\Rightarrow \sin{A}\sin{C}=\cos{C}\cos{A}+\cos{C}\cos{A}\)
\(\Rightarrow \sin{A}\sin{C}=2\cos{C}\cos{A}\)
\(\Rightarrow \frac{\sin{A}\sin{C}}{\cos{A}\sin{C}}=2\frac{\cos{C}\cos{A}}{\cos{A}\sin{C}}\) ➜ উভয় পার্শে \(\cos{A}\sin{C}\) ভাগ করে।
\(\Rightarrow \frac{\sin{A}}{\cos{A}}=2\frac{\cos{C}}{\sin{C}}\)
\(\therefore \tan{A}=2\cot{C}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
এবং \(\frac{\sin{P}}{\cos{P}}=\tan{P}\)
(দেখানো হলো)
\(\triangle{ABC}\)-এ \(\sec{B}=\sec{C}\sec{A}\)
\(\Rightarrow A+B+C=\pi\)
\(\therefore B=\pi-(A+C)\)
এখন, \(\sec{B}=\sec{C}\sec{A}\)
\(\Rightarrow \frac{1}{\cos{B}}=\frac{1}{\cos{C}}\times\frac{1}{\cos{A}}\) ➜ \(\because \sec{P}=\frac{1}{\cos{P}}\)
\(\Rightarrow \cos{B}=\cos{C}\cos{A}\)
\(\Rightarrow \cos{\{\pi-(A+C)\}}=\cos{C}\cos{A}\)
\(\Rightarrow \cos{\left\{\frac{\pi}{2}\times2-(A+C)\right\}}=\cos{C}\cos{A}\)
\(\Rightarrow -\cos{(A+C)}=\cos{C}\cos{A}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের কোনো পরিবর্তন হয়নি।
\(\Rightarrow -(\cos{A}\cos{C}-\sin{A}\sin{C})=\cos{C}\cos{A}\) ➜

\(\because \cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(\Rightarrow -\cos{A}\cos{C}+\sin{A}\sin{C}=\cos{C}\cos{A}\)
\(\Rightarrow \sin{A}\sin{C}=\cos{C}\cos{A}+\cos{C}\cos{A}\)
\(\Rightarrow \sin{A}\sin{C}=2\cos{C}\cos{A}\)
\(\Rightarrow \frac{\sin{A}\sin{C}}{\cos{A}\sin{C}}=2\frac{\cos{C}\cos{A}}{\cos{A}\sin{C}}\) ➜ উভয় পার্শে \(\cos{A}\sin{C}\) ভাগ করে।
\(\Rightarrow \frac{\sin{A}}{\cos{A}}=2\frac{\cos{C}}{\sin{C}}\)
\(\therefore \tan{A}=2\cot{C}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
এবং \(\frac{\sin{P}}{\cos{P}}=\tan{P}\)
(দেখানো হলো)
\(Q.4.(xix)\) যদি \(\tan{\alpha}-\tan{\beta}=x\) এবং \(\cot{\beta}-\cot{\alpha}=y\) হয়, তবে প্রমাণ কর যে, \(\cot{(\alpha-\beta)}=\frac{1}{x}+\frac{1}{y}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\alpha}-\tan{\beta}=x\) এবং \(\cot{\beta}-\cot{\alpha}=y\)
\(\Rightarrow \frac{1}{\cot{\alpha}}-\frac{1}{\cot{\beta}}=x\) ➜ \(\because \tan{A}=\frac{1}{\cot{A}}\)
\(\Rightarrow \frac{\cot{\beta}-\cot{\alpha}}{\cot{\alpha}\cot{\beta}}=x\)
\(\Rightarrow \frac{b}{\cot{\alpha}\cot{\beta}}=x\) ➜ \(\because \cot{\beta}-\cot{\alpha}=y\)
\(\Rightarrow x\cot{\alpha}\cot{\beta}=y\)
\(\therefore \cot{\alpha}\cot{\beta}=\frac{y}{x}\)
আবার,
\(\cot{(\alpha-\beta)}=\frac{\cot{\alpha}\cot{\beta}+1}{\cot{\beta}-\cot{\alpha}}\)
\(=\frac{\frac{y}{x}+1}{y}\) ➜ \(\because \cot{\alpha}\cot{\beta}=\frac{y}{x}\)
এবং \(\cot{\beta}-\cot{\alpha}=y\)
\(=\frac{y+x}{xy}\) ➜ লব ও হরের সহিত \(a\) গুণ করে।
\(=\frac{y}{xy}+\frac{x}{xy}\)
\(=\frac{1}{x}+\frac{1}{y}\)
\(\therefore \cot{(\alpha-\beta)}=\frac{1}{x}+\frac{1}{y}\)
(প্রমাণিত)
\(\tan{\alpha}-\tan{\beta}=x\) এবং \(\cot{\beta}-\cot{\alpha}=y\)
\(\Rightarrow \frac{1}{\cot{\alpha}}-\frac{1}{\cot{\beta}}=x\) ➜ \(\because \tan{A}=\frac{1}{\cot{A}}\)
\(\Rightarrow \frac{\cot{\beta}-\cot{\alpha}}{\cot{\alpha}\cot{\beta}}=x\)
\(\Rightarrow \frac{b}{\cot{\alpha}\cot{\beta}}=x\) ➜ \(\because \cot{\beta}-\cot{\alpha}=y\)
\(\Rightarrow x\cot{\alpha}\cot{\beta}=y\)
\(\therefore \cot{\alpha}\cot{\beta}=\frac{y}{x}\)
আবার,
\(\cot{(\alpha-\beta)}=\frac{\cot{\alpha}\cot{\beta}+1}{\cot{\beta}-\cot{\alpha}}\)
\(=\frac{\frac{y}{x}+1}{y}\) ➜ \(\because \cot{\alpha}\cot{\beta}=\frac{y}{x}\)
এবং \(\cot{\beta}-\cot{\alpha}=y\)
\(=\frac{y+x}{xy}\) ➜ লব ও হরের সহিত \(a\) গুণ করে।
\(=\frac{y}{xy}+\frac{x}{xy}\)
\(=\frac{1}{x}+\frac{1}{y}\)
\(\therefore \cot{(\alpha-\beta)}=\frac{1}{x}+\frac{1}{y}\)
(প্রমাণিত)
\(Q.4.(xx)\) \(\tan{\theta}=\frac{a\sin{\alpha}+b\sin{\beta}}{a\cos{\alpha}+b\cos{\beta}}\) হলে দেখাও যে, \(a\sin{(\theta-\alpha)}+b\sin{(\theta-\beta)}=0\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\theta}=\frac{a\sin{\alpha}+b\sin{\beta}}{a\cos{\alpha}+b\cos{\beta}}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=\frac{a\sin{\alpha}+b\sin{\beta}}{a\cos{\alpha}+b\cos{\beta}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow a\sin{\theta}\cos{\alpha}+b\sin{\theta}\cos{\beta}=a\cos{\theta}\sin{\alpha}+b\cos{\theta}\sin{\beta}\)
\(\Rightarrow a\sin{\theta}\cos{\alpha}-a\cos{\theta}\sin{\alpha}=b\cos{\theta}\sin{\beta}-b\sin{\theta}\cos{\beta}\)
\(\Rightarrow a(\sin{\theta}\cos{\alpha}-\cos{\theta}\sin{\alpha})=-b(\sin{\theta}\cos{\beta}-\cos{\theta}\sin{\beta})\)
\(\Rightarrow a\sin{(\theta-\alpha)}=-b\sin{(\theta-\beta)}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\therefore a\sin{(\theta-\alpha)}+b\sin{(\theta-\beta)}=0\)
(দেখানো হলো)
\(\tan{\theta}=\frac{a\sin{\alpha}+b\sin{\beta}}{a\cos{\alpha}+b\cos{\beta}}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=\frac{a\sin{\alpha}+b\sin{\beta}}{a\cos{\alpha}+b\cos{\beta}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow a\sin{\theta}\cos{\alpha}+b\sin{\theta}\cos{\beta}=a\cos{\theta}\sin{\alpha}+b\cos{\theta}\sin{\beta}\)
\(\Rightarrow a\sin{\theta}\cos{\alpha}-a\cos{\theta}\sin{\alpha}=b\cos{\theta}\sin{\beta}-b\sin{\theta}\cos{\beta}\)
\(\Rightarrow a(\sin{\theta}\cos{\alpha}-\cos{\theta}\sin{\alpha})=-b(\sin{\theta}\cos{\beta}-\cos{\theta}\sin{\beta})\)
\(\Rightarrow a\sin{(\theta-\alpha)}=-b\sin{(\theta-\beta)}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\therefore a\sin{(\theta-\alpha)}+b\sin{(\theta-\beta)}=0\)
(দেখানো হলো)
\(Q.4.(xxi)\) \(A\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\frac{\tan{\alpha}}{x}=\frac{\tan{\beta}}{y}\) হয়, প্রমাণ কর যে, \(\sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{A}\)
সমাধানঃ
দেওয়া আছে,
\(A\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\frac{\tan{\alpha}}{x}=\frac{\tan{\beta}}{y}\)
\(\Rightarrow \frac{\tan{\alpha}}{\tan{\beta}}=\frac{x}{y}\)
\(\Rightarrow y\tan{\alpha}=x\tan{\beta}\)
\(\Rightarrow y\frac{\sin{\alpha}}{\cos{\alpha}}=x\frac{\sin{\beta}}{\cos{\beta}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow y\sin{\alpha}\cos{\beta}=x\sin{\beta}\cos{\alpha}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}}{\sin{\beta}\cos{\alpha}}=\frac{x}{y}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}-\sin{\beta}\cos{\alpha}}{\sin{\alpha}\cos{\beta}+\sin{\beta}\cos{\alpha}}=\frac{x-y}{x+y}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta}}{\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}}=\frac{x-y}{x+y}\)
\(\Rightarrow \frac{\sin{(\alpha-\beta)}}{\sin{(\alpha+\beta)}}=\frac{x-y}{x+y}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow \sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{(\alpha+\beta)}\)
\(\therefore \sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{A}\) ➜ \(\because \alpha+\beta=A\)
(প্রমাণিত)
\(A\) কোণকে \(\alpha\) ও \(\beta\) অংশে এমন ভাবে বিভক্ত করা হলো যেন \(\frac{\tan{\alpha}}{x}=\frac{\tan{\beta}}{y}\)
\(\Rightarrow \frac{\tan{\alpha}}{\tan{\beta}}=\frac{x}{y}\)
\(\Rightarrow y\tan{\alpha}=x\tan{\beta}\)
\(\Rightarrow y\frac{\sin{\alpha}}{\cos{\alpha}}=x\frac{\sin{\beta}}{\cos{\beta}}\) ➜ \(\because \tan{P}=\frac{\sin{P}}{\cos{P}}\)
\(\Rightarrow y\sin{\alpha}\cos{\beta}=x\sin{\beta}\cos{\alpha}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}}{\sin{\beta}\cos{\alpha}}=\frac{x}{y}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}-\sin{\beta}\cos{\alpha}}{\sin{\alpha}\cos{\beta}+\sin{\beta}\cos{\alpha}}=\frac{x-y}{x+y}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta}}{\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}}=\frac{x-y}{x+y}\)
\(\Rightarrow \frac{\sin{(\alpha-\beta)}}{\sin{(\alpha+\beta)}}=\frac{x-y}{x+y}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow \sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{(\alpha+\beta)}\)
\(\therefore \sin{(\alpha-\beta)}=\frac{x-y}{x+y}\sin{A}\) ➜ \(\because \alpha+\beta=A\)
(প্রমাণিত)
\(Q.4.(xxii)\) \(\sin{\theta}=k\cos{(\theta-\alpha)}\) হলে দেখাও যে, \(\cot{\theta}=\frac{1-k\sin{\alpha}}{k\cos{\alpha}}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{\theta}=k\cos{(\theta-\alpha)}\)
\(\Rightarrow \sin{\theta}=k(\cos{\theta}\cos{\alpha}+\sin{\theta}\sin{\alpha})\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow \sin{\theta}=k\cos{\theta}\cos{\alpha}+k\sin{\theta}\sin{\alpha}\)
\(\Rightarrow \sin{\theta}-k\sin{\theta}\sin{\alpha}=k\cos{\theta}\cos{\alpha}\)
\(\Rightarrow \sin{\theta}(1-k\sin{\alpha})=k\cos{\theta}\cos{\alpha}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=\frac{k\cos{\alpha}}{1-k\sin{\alpha}}\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}=\frac{1-k\sin{\alpha}}{k\cos{\alpha}}\)
\(\therefore \cot{\theta}=\frac{1-k\sin{\alpha}}{k\cos{\alpha}}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
(দেখানো হলো)
\(\sin{\theta}=k\cos{(\theta-\alpha)}\)
\(\Rightarrow \sin{\theta}=k(\cos{\theta}\cos{\alpha}+\sin{\theta}\sin{\alpha})\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow \sin{\theta}=k\cos{\theta}\cos{\alpha}+k\sin{\theta}\sin{\alpha}\)
\(\Rightarrow \sin{\theta}-k\sin{\theta}\sin{\alpha}=k\cos{\theta}\cos{\alpha}\)
\(\Rightarrow \sin{\theta}(1-k\sin{\alpha})=k\cos{\theta}\cos{\alpha}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=\frac{k\cos{\alpha}}{1-k\sin{\alpha}}\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}=\frac{1-k\sin{\alpha}}{k\cos{\alpha}}\)
\(\therefore \cot{\theta}=\frac{1-k\sin{\alpha}}{k\cos{\alpha}}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
(দেখানো হলো)
\(Q.4.(xxiii)\) \(\tan{\theta}+\sec{\theta}=\frac{x}{y}\) হলে দেখাও যে, \(\sin{\theta}=\frac{x^2-y^2}{x^2+y^2}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\theta}+\sec{\theta}=\frac{x}{y}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}+\frac{1}{\cos{\theta}}=\frac{x}{y}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
এবং \(\sec{A}=\frac{1}{\cos{A}}\)
\(\Rightarrow \frac{\sin{\theta}+1}{\cos{\theta}}=\frac{x}{y}\)
\(\Rightarrow \frac{(\sin{\theta}+1)^2}{\cos^2{\theta}}=\frac{x^2}{y^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{(\sin{\theta}+1)^2}{1-\sin^2{\theta}}=\frac{x^2}{y^2}\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow \frac{(\sin{\theta}+1)^2}{(1-\sin{\theta})(1+\sin{\theta})}=\frac{x^2}{y^2}\) ➜ \(\because a^2-b^2=(a-b)(a+b)\)
\(\Rightarrow \frac{\sin{\theta}+1}{1-\sin{\theta}}=\frac{x^2}{y^2}\) ➜ \(\because a^2-b^2=(a-b)(a+b)\)
\(\Rightarrow \frac{\sin{\theta}+1-1+\sin{\theta}}{\sin{\theta}+1+1-\sin{\theta}}=\frac{x^2-y^2}{x^2+y^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\sin{\theta}}{2}=\frac{x^2-y^2}{x^2+y^2}\)
\(\therefore \sin{\theta}=\frac{x^2-y^2}{x^2+y^2}\)
(দেখানো হলো)
\(\tan{\theta}+\sec{\theta}=\frac{x}{y}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}+\frac{1}{\cos{\theta}}=\frac{x}{y}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
এবং \(\sec{A}=\frac{1}{\cos{A}}\)
\(\Rightarrow \frac{\sin{\theta}+1}{\cos{\theta}}=\frac{x}{y}\)
\(\Rightarrow \frac{(\sin{\theta}+1)^2}{\cos^2{\theta}}=\frac{x^2}{y^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{(\sin{\theta}+1)^2}{1-\sin^2{\theta}}=\frac{x^2}{y^2}\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow \frac{(\sin{\theta}+1)^2}{(1-\sin{\theta})(1+\sin{\theta})}=\frac{x^2}{y^2}\) ➜ \(\because a^2-b^2=(a-b)(a+b)\)
\(\Rightarrow \frac{\sin{\theta}+1}{1-\sin{\theta}}=\frac{x^2}{y^2}\) ➜ \(\because a^2-b^2=(a-b)(a+b)\)
\(\Rightarrow \frac{\sin{\theta}+1-1+\sin{\theta}}{\sin{\theta}+1+1-\sin{\theta}}=\frac{x^2-y^2}{x^2+y^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\sin{\theta}}{2}=\frac{x^2-y^2}{x^2+y^2}\)
\(\therefore \sin{\theta}=\frac{x^2-y^2}{x^2+y^2}\)
(দেখানো হলো)
\(Q.4.(xxiv)\) যদি \(\cos{(\beta-\gamma)}+\cos{(\gamma-\alpha)}+\cos{(\alpha-\beta)}=-\frac{3}{2}\) হয়, তবে প্রমাণ কর যে, \(\sum{\sin{\alpha}}=0\) এবং \(\sum{\cos{\alpha}}=0\)
সমাধানঃ
দেওয়া আছে,
\(\cos{(\beta-\gamma)}+\cos{(\gamma-\alpha)}+\cos{(\alpha-\beta)}=-\frac{3}{2}\)
\(\Rightarrow \cos{\beta}\cos{\gamma}+\sin{\beta}\sin{\gamma}+\cos{\gamma}\cos{\alpha}+\sin{\gamma}\sin{\alpha}+\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta}=-\frac{3}{2}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow 2\cos{\beta}\cos{\gamma}+2\sin{\beta}\sin{\gamma}+2\cos{\gamma}\cos{\alpha}+2\sin{\gamma}\sin{\alpha}+2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}=-3\)
\(\Rightarrow 2\cos{\beta}\cos{\gamma}+2\sin{\beta}\sin{\gamma}+2\cos{\gamma}\cos{\alpha}+2\sin{\gamma}\sin{\alpha}+2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}+3=0\)
\(\Rightarrow 2\cos{\beta}\cos{\gamma}+2\sin{\beta}\sin{\gamma}+2\cos{\gamma}\cos{\alpha}+2\sin{\gamma}\sin{\alpha}+2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}+1+1+1=0\)
\(\Rightarrow 2\cos{\beta}\cos{\gamma}+2\sin{\beta}\sin{\gamma}+2\cos{\gamma}\cos{\alpha}+2\sin{\gamma}\sin{\alpha}+2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}+\sin^2{\alpha}+\cos^2{\alpha}+\sin^2{\beta}+\cos^2{\beta}+\sin^2{\gamma}+\cos^2{\gamma}=0\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow (\sin^2{\alpha}+\sin^2{\beta}+\sin^2{\gamma}+2\sin{\alpha}\sin{\beta}+2\sin{\beta}\sin{\gamma}+2\sin{\gamma}\sin{\alpha})+(\cos^2{\alpha}+\cos^2{\beta}+\cos^2{\gamma}+2\cos{\alpha}\cos{\beta}+2\cos{\beta}\cos{\gamma}+2\cos{\gamma}\cos{\alpha})=0\)
\(\Rightarrow (\sin{\alpha}+\sin{\beta}+\sin{\gamma})^2+(\cos{\alpha}+\cos{\beta}+\cos{\gamma})^2=0\) ➜ \(\because a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2\)
\(\Rightarrow (\sum{\sin{\alpha}})^2+(\sum{\cos{\alpha}})^2=0\) ➜ \(\because \sum{\sin{\alpha}}=\sin{\alpha}+\sin{\beta}+\sin{\gamma}\)
\(\sum{\cos{\alpha}}=\cos{\alpha}+\cos{\beta}+\cos{\gamma}\)
\(\therefore \sum{\sin{\alpha}}=0 \ \text{এবং} \ \sum{\cos{\alpha}}=0\) ➜ যেহেতু একাধিক রাশির বর্গের যোগফল শূন্য হলে, রাশিগুলি পৃথকভাবে শূন্য হয়।
(দেখানো হলো)
\(\cos{(\beta-\gamma)}+\cos{(\gamma-\alpha)}+\cos{(\alpha-\beta)}=-\frac{3}{2}\)
\(\Rightarrow \cos{\beta}\cos{\gamma}+\sin{\beta}\sin{\gamma}+\cos{\gamma}\cos{\alpha}+\sin{\gamma}\sin{\alpha}+\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta}=-\frac{3}{2}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow 2\cos{\beta}\cos{\gamma}+2\sin{\beta}\sin{\gamma}+2\cos{\gamma}\cos{\alpha}+2\sin{\gamma}\sin{\alpha}+2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}=-3\)
\(\Rightarrow 2\cos{\beta}\cos{\gamma}+2\sin{\beta}\sin{\gamma}+2\cos{\gamma}\cos{\alpha}+2\sin{\gamma}\sin{\alpha}+2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}+3=0\)
\(\Rightarrow 2\cos{\beta}\cos{\gamma}+2\sin{\beta}\sin{\gamma}+2\cos{\gamma}\cos{\alpha}+2\sin{\gamma}\sin{\alpha}+2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}+1+1+1=0\)
\(\Rightarrow 2\cos{\beta}\cos{\gamma}+2\sin{\beta}\sin{\gamma}+2\cos{\gamma}\cos{\alpha}+2\sin{\gamma}\sin{\alpha}+2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}+\sin^2{\alpha}+\cos^2{\alpha}+\sin^2{\beta}+\cos^2{\beta}+\sin^2{\gamma}+\cos^2{\gamma}=0\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow (\sin^2{\alpha}+\sin^2{\beta}+\sin^2{\gamma}+2\sin{\alpha}\sin{\beta}+2\sin{\beta}\sin{\gamma}+2\sin{\gamma}\sin{\alpha})+(\cos^2{\alpha}+\cos^2{\beta}+\cos^2{\gamma}+2\cos{\alpha}\cos{\beta}+2\cos{\beta}\cos{\gamma}+2\cos{\gamma}\cos{\alpha})=0\)
\(\Rightarrow (\sin{\alpha}+\sin{\beta}+\sin{\gamma})^2+(\cos{\alpha}+\cos{\beta}+\cos{\gamma})^2=0\) ➜ \(\because a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2\)
\(\Rightarrow (\sum{\sin{\alpha}})^2+(\sum{\cos{\alpha}})^2=0\) ➜ \(\because \sum{\sin{\alpha}}=\sin{\alpha}+\sin{\beta}+\sin{\gamma}\)
\(\sum{\cos{\alpha}}=\cos{\alpha}+\cos{\beta}+\cos{\gamma}\)
\(\therefore \sum{\sin{\alpha}}=0 \ \text{এবং} \ \sum{\cos{\alpha}}=0\) ➜ যেহেতু একাধিক রাশির বর্গের যোগফল শূন্য হলে, রাশিগুলি পৃথকভাবে শূন্য হয়।
(দেখানো হলো)
\(Q.4.(xxv)\) \(\sin{(A+B)}=n\sin{(A-B)}\) এবং \(n\ne{0}\) হলে দেখাও যে, \(\cot{A}=\frac{n-1}{n+1}\cot{B}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{(A+B)}=n\sin{(A-B)}\) এবং \(n\ne{0}\)
\(\Rightarrow \frac{\sin{(A+B)}}{\sin{(A-B)}}=n\)
\(\Rightarrow \frac{\sin{A}\cos{B}+\cos{A}\sin{B}}{\sin{A}\cos{B}-\cos{A}\sin{B}}=n\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{\sin{A}\cos{B}+\cos{A}\sin{B}-\sin{A}\cos{B}+\cos{A}\sin{B}}{\sin{A}\cos{B}+\cos{A}\sin{B}+\sin{A}\cos{B}-\cos{A}\sin{B}}=\frac{n-1}{n+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{A}\sin{B}}{2\sin{A}\cos{B}}=\frac{n-1}{n+1}\)
\(\Rightarrow \frac{\cos{A}\sin{B}}{\sin{A}\cos{B}}=\frac{n-1}{n+1}\)
\(\Rightarrow \cot{A}\tan{B}=\frac{n-1}{n+1}\) ➜ \(\because \frac{cos{P}}{sin{P}}=\cot{P}\)
এবং \(\frac{sin{P}}{cos{P}}=\tan{P}\)
\(\Rightarrow \cot{A}=\frac{n-1}{n+1}\frac{1}{\tan{B}}\)
\(\therefore \cot{A}=\frac{n-1}{n+1}\cot{B}\) ➜ \(\because \frac{1}{\tan{P}}=\cot{P}\)
(দেখানো হলো)
\(\sin{(A+B)}=n\sin{(A-B)}\) এবং \(n\ne{0}\)
\(\Rightarrow \frac{\sin{(A+B)}}{\sin{(A-B)}}=n\)
\(\Rightarrow \frac{\sin{A}\cos{B}+\cos{A}\sin{B}}{\sin{A}\cos{B}-\cos{A}\sin{B}}=n\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{\sin{A}\cos{B}+\cos{A}\sin{B}-\sin{A}\cos{B}+\cos{A}\sin{B}}{\sin{A}\cos{B}+\cos{A}\sin{B}+\sin{A}\cos{B}-\cos{A}\sin{B}}=\frac{n-1}{n+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{A}\sin{B}}{2\sin{A}\cos{B}}=\frac{n-1}{n+1}\)
\(\Rightarrow \frac{\cos{A}\sin{B}}{\sin{A}\cos{B}}=\frac{n-1}{n+1}\)
\(\Rightarrow \cot{A}\tan{B}=\frac{n-1}{n+1}\) ➜ \(\because \frac{cos{P}}{sin{P}}=\cot{P}\)
এবং \(\frac{sin{P}}{cos{P}}=\tan{P}\)
\(\Rightarrow \cot{A}=\frac{n-1}{n+1}\frac{1}{\tan{B}}\)
\(\therefore \cot{A}=\frac{n-1}{n+1}\cot{B}\) ➜ \(\because \frac{1}{\tan{P}}=\cot{P}\)
(দেখানো হলো)
\(Q.4.(xxvi)\) \(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\) হলে দেখাও যে, \((a-b)\tan{\theta}=ab\)
ঢাঃ২০১১; রাঃ২০১৫; দিঃ২০১৬; চঃ২০১৬,২০১২; বঃ২০০৮; কুয়েটঃ২০১২-২০১৩ ।
সমাধানঃ
দেওয়া আছে,
\(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\)
\(\Rightarrow \frac{1}{\tan{\alpha}}+\frac{1}{\tan{\beta}}=a\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \frac{\tan{\beta}+\tan{\alpha}}{\tan{\alpha}\tan{\beta}}=a\)
\(\Rightarrow \frac{\tan{\alpha}+\tan{\beta}}{\tan{\alpha}\tan{\beta}}=a\)
\(\Rightarrow \frac{b}{\tan{\alpha}\tan{\beta}}=a\) ➜ \(\because \tan{\alpha}+\tan{\beta}=b\)
\(\Rightarrow a\tan{\alpha}\tan{\beta}=b\)
\(\therefore \tan{\alpha}\tan{\beta}=\frac{b}{a}\)
আবার,
\(\alpha+\beta=\theta\)
\(\Rightarrow \tan{(\alpha+\beta)}=\tan{\theta}\) ➜ উভয় পার্শে ট্যানজেন্ট অনুপাত নিয়ে।
\(\Rightarrow \frac{\tan{\alpha}+\tan{\beta}}{1-\tan{\alpha}\tan{\beta}}=\tan{\theta}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \frac{b}{1-\frac{b}{a}}=\tan{\theta}\) ➜ \(\because \tan{\alpha}+\tan{\beta}=b\)
এবং \(\tan{\alpha}\tan{\beta}=\frac{b}{a}\)
\(\Rightarrow \frac{ab}{a-b}=\tan{\theta}\) ➜ লব ও হরের সহিত \(a\) গুণ করে।
\(\Rightarrow \tan{\theta}=\frac{ab}{a-b}\)
\(\therefore (a-b)\tan{\theta}=ab\)
(প্রমাণিত)
\(\cot{\alpha}+\cot{\beta}=a, \ \tan{\alpha}+\tan{\beta}=b\) এবং \(\alpha+\beta=\theta\)
\(\Rightarrow \frac{1}{\tan{\alpha}}+\frac{1}{\tan{\beta}}=a\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \frac{\tan{\beta}+\tan{\alpha}}{\tan{\alpha}\tan{\beta}}=a\)
\(\Rightarrow \frac{\tan{\alpha}+\tan{\beta}}{\tan{\alpha}\tan{\beta}}=a\)
\(\Rightarrow \frac{b}{\tan{\alpha}\tan{\beta}}=a\) ➜ \(\because \tan{\alpha}+\tan{\beta}=b\)
\(\Rightarrow a\tan{\alpha}\tan{\beta}=b\)
\(\therefore \tan{\alpha}\tan{\beta}=\frac{b}{a}\)
আবার,
\(\alpha+\beta=\theta\)
\(\Rightarrow \tan{(\alpha+\beta)}=\tan{\theta}\) ➜ উভয় পার্শে ট্যানজেন্ট অনুপাত নিয়ে।
\(\Rightarrow \frac{\tan{\alpha}+\tan{\beta}}{1-\tan{\alpha}\tan{\beta}}=\tan{\theta}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \frac{b}{1-\frac{b}{a}}=\tan{\theta}\) ➜ \(\because \tan{\alpha}+\tan{\beta}=b\)
এবং \(\tan{\alpha}\tan{\beta}=\frac{b}{a}\)
\(\Rightarrow \frac{ab}{a-b}=\tan{\theta}\) ➜ লব ও হরের সহিত \(a\) গুণ করে।
\(\Rightarrow \tan{\theta}=\frac{ab}{a-b}\)
\(\therefore (a-b)\tan{\theta}=ab\)
(প্রমাণিত)
\(Q.4.(xxvii)\) \(\frac{\sin{(\alpha+\theta)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\theta)}}{\sin{\beta}}\) হলে দেখাও যে, \(\cot{\alpha}-\cot{\theta}=2\cot{\beta}\)
কুঃ২০১২ ।
সমাধানঃ
দেওয়া আছে,
\(\frac{\sin{(\alpha+\theta)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\theta)}}{\sin{\beta}}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\theta}+\cos{\alpha}\sin{\theta}}{\sin{\alpha}}=\frac{2(\sin{\beta}\cos{\theta}+\cos{\beta}\sin{\theta})}}{\sin{\beta}}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\theta}+\cos{\alpha}\sin{\theta}}{\sin{\alpha}}=\frac{2\sin{\beta}\cos{\theta}+2\cos{\beta}\sin{\theta}}}{\sin{\beta}}\)
\(\Rightarrow \sin{\alpha}\sin{\beta}\cos{\theta}+\cos{\alpha}\sin{\beta}\sin{\theta}=2\sin{\alpha}\sin{\beta}\cos{\theta}+2\sin{\alpha}\cos{\beta}\sin{\theta}\) ➜ আড় গুণ করে।
\(\Rightarrow \sin{\alpha}\sin{\beta}\cos{\theta}+\cos{\alpha}\sin{\beta}\sin{\theta}-2\sin{\alpha}\sin{\beta}\cos{\theta}=2\sin{\alpha}\cos{\beta}\sin{\theta}\)
\(\Rightarrow \cos{\alpha}\sin{\beta}\sin{\theta}-\sin{\alpha}\sin{\beta}\cos{\theta}=2\sin{\alpha}\cos{\beta}\sin{\theta}\)
\(\Rightarrow \frac{\cos{\alpha}\sin{\beta}\sin{\theta}}{\sin{\alpha}\sin{\beta}\sin{\theta}}-\frac{\sin{\alpha}\sin{\beta}\cos{\theta}}{\sin{\alpha}\sin{\beta}\sin{\theta}}=2\frac{\sin{\alpha}\cos{\beta}\sin{\theta}}{\sin{\alpha}\sin{\beta}\sin{\theta}}\) ➜ উভয় পার্শে \(\sin{\alpha}\sin{\beta}\sin{\theta}\) দ্বারা ভাগ করে।
\(\Rightarrow \frac{\cos{\alpha}}{\sin{\alpha}}-\frac{\cos{\theta}}{\sin{\theta}}=2\frac{\cos{\beta}}{\sin{\beta}}\)
\(\therefore \cot{\alpha}-\cot{\theta}=2\cot{\beta}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
(প্রমাণিত)
\(\frac{\sin{(\alpha+\theta)}}{\sin{\alpha}}=\frac{2\sin{(\beta+\theta)}}{\sin{\beta}}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\theta}+\cos{\alpha}\sin{\theta}}{\sin{\alpha}}=\frac{2(\sin{\beta}\cos{\theta}+\cos{\beta}\sin{\theta})}}{\sin{\beta}}\)
\(\Rightarrow \frac{\sin{\alpha}\cos{\theta}+\cos{\alpha}\sin{\theta}}{\sin{\alpha}}=\frac{2\sin{\beta}\cos{\theta}+2\cos{\beta}\sin{\theta}}}{\sin{\beta}}\)
\(\Rightarrow \sin{\alpha}\sin{\beta}\cos{\theta}+\cos{\alpha}\sin{\beta}\sin{\theta}=2\sin{\alpha}\sin{\beta}\cos{\theta}+2\sin{\alpha}\cos{\beta}\sin{\theta}\) ➜ আড় গুণ করে।
\(\Rightarrow \sin{\alpha}\sin{\beta}\cos{\theta}+\cos{\alpha}\sin{\beta}\sin{\theta}-2\sin{\alpha}\sin{\beta}\cos{\theta}=2\sin{\alpha}\cos{\beta}\sin{\theta}\)
\(\Rightarrow \cos{\alpha}\sin{\beta}\sin{\theta}-\sin{\alpha}\sin{\beta}\cos{\theta}=2\sin{\alpha}\cos{\beta}\sin{\theta}\)
\(\Rightarrow \frac{\cos{\alpha}\sin{\beta}\sin{\theta}}{\sin{\alpha}\sin{\beta}\sin{\theta}}-\frac{\sin{\alpha}\sin{\beta}\cos{\theta}}{\sin{\alpha}\sin{\beta}\sin{\theta}}=2\frac{\sin{\alpha}\cos{\beta}\sin{\theta}}{\sin{\alpha}\sin{\beta}\sin{\theta}}\) ➜ উভয় পার্শে \(\sin{\alpha}\sin{\beta}\sin{\theta}\) দ্বারা ভাগ করে।
\(\Rightarrow \frac{\cos{\alpha}}{\sin{\alpha}}-\frac{\cos{\theta}}{\sin{\theta}}=2\frac{\cos{\beta}}{\sin{\beta}}\)
\(\therefore \cot{\alpha}-\cot{\theta}=2\cot{\beta}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
(প্রমাণিত)
\(Q.4.(xxviii)\) \(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\) হলে দেখাও যে, \(\frac{1}{\tan{\alpha}}+\frac{1}{\tan{\gamma}}=\frac{2}{\tan{\beta}}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\)
\(\Rightarrow \frac{1}{\tan{\beta}}=\frac{\sin{(\alpha+\gamma)}}{2\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow \cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{2\sin{\alpha}\sin{\gamma}}\) ➜ \(\because \frac{1}{\tan{A}}=\cot{A}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow 2\cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow 2\cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}}{\sin{\alpha}\sin{\gamma}}+\frac{\cos{\alpha}\sin{\gamma}}{\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow 2\cot{\beta}=\frac{\cos{\gamma}}{\sin{\gamma}}+\frac{\cos{\alpha}}{\sin{\alpha}}\)
\(\Rightarrow 2\cot{\beta}=\cot{\gamma}+\cot{\alpha}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\Rightarrow \cot{\alpha}+\cot{\gamma}=2\cot{\beta}\)
\(\therefore \frac{1}{\tan{\alpha}}+\frac{1}{\tan{\gamma}}=\frac{2}{\tan{\beta}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
(প্রমাণিত)
\(\tan{\beta}=\frac{2\sin{\alpha}\sin{\gamma}}{\sin{(\alpha+\gamma)}}\)
\(\Rightarrow \frac{1}{\tan{\beta}}=\frac{\sin{(\alpha+\gamma)}}{2\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow \cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{2\sin{\alpha}\sin{\gamma}}\) ➜ \(\because \frac{1}{\tan{A}}=\cot{A}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow 2\cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}+\cos{\alpha}\sin{\gamma}}{\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow 2\cot{\beta}=\frac{\sin{\alpha}\cos{\gamma}}{\sin{\alpha}\sin{\gamma}}+\frac{\cos{\alpha}\sin{\gamma}}{\sin{\alpha}\sin{\gamma}}\)
\(\Rightarrow 2\cot{\beta}=\frac{\cos{\gamma}}{\sin{\gamma}}+\frac{\cos{\alpha}}{\sin{\alpha}}\)
\(\Rightarrow 2\cot{\beta}=\cot{\gamma}+\cot{\alpha}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\Rightarrow \cot{\alpha}+\cot{\gamma}=2\cot{\beta}\)
\(\therefore \frac{1}{\tan{\alpha}}+\frac{1}{\tan{\gamma}}=\frac{2}{\tan{\beta}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
(প্রমাণিত)
\(Q.4.(xxix)\) \(\tan{\theta}=\frac{x\sin{\phi}}{1-x\cos{\phi}}\) এবং \(\tan{\phi}=\frac{y\sin{\theta}}{1-y\cos{\\theta}}\) হলে দেখাও যে, \(\frac{\sin{\theta}}{\sin{\phi}}=\frac{x}{y}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\theta}=\frac{x\sin{\phi}}{1-x\cos{\phi}}\) এবং \(\tan{\phi}=\frac{y\sin{\theta}}{1-y\cos{\\theta}}\)
ধরি,
\(\tan{\theta}=\frac{x\sin{\phi}}{1-x\cos{\phi}} ......(1)\)
এবং \(\tan{\phi}=\frac{y\sin{\theta}}{1-y\cos{\\theta}} ......(2)\)
\((1)\) হতে,
\(\frac{\sin{\theta}}{\cos{\theta}}=\frac{x\sin{\phi}}{1-x\cos{\phi}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \sin{\theta}-x\sin{\theta}\cos{\phi}=x\cos{\theta}\sin{\phi}\) ➜ আড় গুণ করে।
\(\Rightarrow \sin{\theta}=x\sin{\theta}\cos{\phi}+x\cos{\theta}\sin{\phi}\)
\(\Rightarrow \sin{\theta}=x(\sin{\theta}\cos{\phi}+\cos{\theta}\sin{\phi})\)
\(\therefore \sin{\theta}=x\sin{(\theta+\phi)} .....(3)\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\((2)\) হতে,
\(\frac{\sin{\phi}}{\cos{\phi}}=\frac{y\sin{\theta}}{1-y\cos{\theta}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \sin{\phi}-y\sin{\phi}\cos{\theta}=y\cos{\phi}\sin{\theta}\) ➜ আড় গুণ করে।
\(\Rightarrow \sin{\phi}=y\sin{\phi}\cos{\theta}+y\cos{\phi}\sin{\theta}\)
\(\Rightarrow \sin{\phi}=y(\sin{\phi}\cos{\theta}+\cos{\phi}\sin{\theta})\)
\(\Rightarrow \sin{\phi}=y\sin{(\phi+\theta)}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\therefore \sin{\phi}=y\sin{(\theta+\phi)} .....(4)\)
\((3)\div(4)\) এর সাহায্যে
\(\frac{\sin{\theta}}{\sin{\phi}}=\frac{x\sin{(\theta+\phi)}}{y\sin{(\theta+\phi)}}\)
\(\therefore \frac{\sin{\theta}}{\sin{\phi}}=\frac{x}{y}\)
(দেখানো হলো)
\(\tan{\theta}=\frac{x\sin{\phi}}{1-x\cos{\phi}}\) এবং \(\tan{\phi}=\frac{y\sin{\theta}}{1-y\cos{\\theta}}\)
ধরি,
\(\tan{\theta}=\frac{x\sin{\phi}}{1-x\cos{\phi}} ......(1)\)
এবং \(\tan{\phi}=\frac{y\sin{\theta}}{1-y\cos{\\theta}} ......(2)\)
\((1)\) হতে,
\(\frac{\sin{\theta}}{\cos{\theta}}=\frac{x\sin{\phi}}{1-x\cos{\phi}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \sin{\theta}-x\sin{\theta}\cos{\phi}=x\cos{\theta}\sin{\phi}\) ➜ আড় গুণ করে।
\(\Rightarrow \sin{\theta}=x\sin{\theta}\cos{\phi}+x\cos{\theta}\sin{\phi}\)
\(\Rightarrow \sin{\theta}=x(\sin{\theta}\cos{\phi}+\cos{\theta}\sin{\phi})\)
\(\therefore \sin{\theta}=x\sin{(\theta+\phi)} .....(3)\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\((2)\) হতে,
\(\frac{\sin{\phi}}{\cos{\phi}}=\frac{y\sin{\theta}}{1-y\cos{\theta}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \sin{\phi}-y\sin{\phi}\cos{\theta}=y\cos{\phi}\sin{\theta}\) ➜ আড় গুণ করে।
\(\Rightarrow \sin{\phi}=y\sin{\phi}\cos{\theta}+y\cos{\phi}\sin{\theta}\)
\(\Rightarrow \sin{\phi}=y(\sin{\phi}\cos{\theta}+\cos{\phi}\sin{\theta})\)
\(\Rightarrow \sin{\phi}=y\sin{(\phi+\theta)}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\therefore \sin{\phi}=y\sin{(\theta+\phi)} .....(4)\)
\((3)\div(4)\) এর সাহায্যে
\(\frac{\sin{\theta}}{\sin{\phi}}=\frac{x\sin{(\theta+\phi)}}{y\sin{(\theta+\phi)}}\)
\(\therefore \frac{\sin{\theta}}{\sin{\phi}}=\frac{x}{y}\)
(দেখানো হলো)
\(Q.4.(xxx)\) \(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\) হলে প্রমাণ কর যে, \(\sin{\frac{1}{2}(x-y)}=\pm{\frac{1}{2}\sqrt{4-a^2-b^2}}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\)
ধরি,
\(\sin{x}+\sin{y}=a ......(1)\)
এবং \(\cos{x}+\cos{y}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{x}+\sin{y})^2+(\cos{x}+\cos{y})^2=a^2+b^2\)
\(\Rightarrow \sin^2{x}+\sin^2{y}+2\sin{x}\sin{y}+\cos^2{x}+\cos^2{y}+2\cos{x}\cos{y}=a^2+b^2\) ➜ \(\because (P+Q)^2=P^2+Q^2+2PQ\)
\(\Rightarrow (\sin^2{x}+\cos^2{x})+(\sin^2{y}+\cos^2{y})+2(\cos{x}\cos{y}+\sin{x}\sin{y})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(x-y)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(x-y)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(x-y)}\}=a^2+b^2\)
\(\Rightarrow 2\times2\cos^2{\frac{(x-y)}{2}}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\frac{(x-y)}{2}}=a^2+b^2\)
\(\Rightarrow 4\left\{1-\sin^2{\frac{(x-y)}{2}}\right\}=a^2+b^2\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 4-4\sin^2{\frac{(x-y)}{2}}=a^2+b^2\)
\(\Rightarrow 4-a^2-b^2=4\sin^2{\frac{(x-y)}{2}}\)
\(\Rightarrow 4\sin^2{\frac{(x-y)}{2}}=4-a^2-b^2\)
\(\Rightarrow \sin^2{\frac{(x-y)}{2}}=\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin{\frac{(x-y)}{2}}=\pm\sqrt{\frac{1}{4}(4-a^2-b^2)}\)
\(\therefore \sin{\frac{1}{2}(x-y)}=\pm\frac{1}{2}\sqrt{(4-a^2-b^2)}\)
(প্রমাণিত)
\(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\)
ধরি,
\(\sin{x}+\sin{y}=a ......(1)\)
এবং \(\cos{x}+\cos{y}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{x}+\sin{y})^2+(\cos{x}+\cos{y})^2=a^2+b^2\)
\(\Rightarrow \sin^2{x}+\sin^2{y}+2\sin{x}\sin{y}+\cos^2{x}+\cos^2{y}+2\cos{x}\cos{y}=a^2+b^2\) ➜ \(\because (P+Q)^2=P^2+Q^2+2PQ\)
\(\Rightarrow (\sin^2{x}+\cos^2{x})+(\sin^2{y}+\cos^2{y})+2(\cos{x}\cos{y}+\sin{x}\sin{y})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(x-y)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(x-y)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(x-y)}\}=a^2+b^2\)
\(\Rightarrow 2\times2\cos^2{\frac{(x-y)}{2}}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\frac{(x-y)}{2}}=a^2+b^2\)
\(\Rightarrow 4\left\{1-\sin^2{\frac{(x-y)}{2}}\right\}=a^2+b^2\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 4-4\sin^2{\frac{(x-y)}{2}}=a^2+b^2\)
\(\Rightarrow 4-a^2-b^2=4\sin^2{\frac{(x-y)}{2}}\)
\(\Rightarrow 4\sin^2{\frac{(x-y)}{2}}=4-a^2-b^2\)
\(\Rightarrow \sin^2{\frac{(x-y)}{2}}=\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin{\frac{(x-y)}{2}}=\pm\sqrt{\frac{1}{4}(4-a^2-b^2)}\)
\(\therefore \sin{\frac{1}{2}(x-y)}=\pm\frac{1}{2}\sqrt{(4-a^2-b^2)}\)
(প্রমাণিত)
\(Q.4.(xxxi)\) \(\cos{(\alpha-\beta)}\cos{\gamma}=\cos{(\alpha-\gamma+\beta)}\) হলে দেখাও যে, \(\cot{\alpha}, \cot{\gamma}\) এবং \(\cot{\beta}\) সমান্তর প্রগমন ভুক্ত।
সমাধানঃ
দেওয়া আছে,
\(\cos{(\alpha-\beta)}\cos{\gamma}=\cos{(\alpha-\gamma+\beta)}\)
\(\Rightarrow \cos{(\alpha-\beta)}\cos{\gamma}=\cos{\{(\alpha+\beta)-\gamma\}}\)
\(\Rightarrow \cos{(\alpha-\beta)}\cos{\gamma}=\cos{(\alpha+\beta)}\cos{\gamma}+\sin{(\alpha+\beta)}\sin{\gamma}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow \cos{(\alpha-\beta)}\cos{\gamma}-\cos{(\alpha+\beta)}\cos{\gamma}=\sin{(\alpha+\beta)}\sin{\gamma}\)
\(\Rightarrow \{\cos{(\alpha-\beta)}-\cos{(\alpha+\beta)}\}\cos{\gamma}=\sin{(\alpha+\beta)}\sin{\gamma}\)
\(\Rightarrow (\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta}-\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})\cos{\gamma}=\sin{(\alpha+\beta)}\sin{\gamma}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\Rightarrow (2\sin{\alpha}\sin{\beta})\cos{\gamma}=(\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta})\sin{\gamma}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow 2\sin{\alpha}\sin{\beta}\cos{\gamma}=\sin{\alpha}\cos{\beta}\sin{\gamma}+\cos{\alpha}\sin{\beta}\sin{\gamma}\)
\(\Rightarrow 2\sin{\alpha}\sin{\beta}\cos{\gamma}=\sin{\alpha}\cos{\beta}\sin{\gamma}+\cos{\alpha}\sin{\beta}\sin{\gamma}\)
\(\Rightarrow 2\frac{\sin{\alpha}\sin{\beta}\cos{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}=\frac{\sin{\alpha}\cos{\beta}\sin{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}+\frac{\cos{\alpha}\sin{\beta}\sin{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}\) ➜ লব ও হরকে \(\sin{\alpha}\sin{\beta}\sin{\gamma}\) দ্বারা ভাগ করে।
\(\Rightarrow 2\frac{\cos{\gamma}}{\sin{\gamma}}=\frac{\cos{\beta}}{\sin{\beta}}+\frac{\cos{\alpha}}{\sin{\alpha}}\)
\(\Rightarrow 2\cot{\gamma}=\cot{\beta}+\cot{\alpha}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\Rightarrow \cot{\gamma}+\cot{\gamma}=\cot{\beta}+\cot{\alpha}\)
\(\Rightarrow \cot{\gamma}-\cot{\beta}=\cot{\alpha}-\cot{\gamma}\)
\(\Rightarrow \cot{\alpha}-\cot{\gamma}=\cot{\gamma}-\cot{\beta}\)
\(\therefore \cot{\alpha}, \cot{\gamma}\) এবং \(\cot{\beta}\) সমান্তর প্রগমন ভুক্ত।
(দেখানো হলো)
\(\cos{(\alpha-\beta)}\cos{\gamma}=\cos{(\alpha-\gamma+\beta)}\)
\(\Rightarrow \cos{(\alpha-\beta)}\cos{\gamma}=\cos{\{(\alpha+\beta)-\gamma\}}\)
\(\Rightarrow \cos{(\alpha-\beta)}\cos{\gamma}=\cos{(\alpha+\beta)}\cos{\gamma}+\sin{(\alpha+\beta)}\sin{\gamma}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow \cos{(\alpha-\beta)}\cos{\gamma}-\cos{(\alpha+\beta)}\cos{\gamma}=\sin{(\alpha+\beta)}\sin{\gamma}\)
\(\Rightarrow \{\cos{(\alpha-\beta)}-\cos{(\alpha+\beta)}\}\cos{\gamma}=\sin{(\alpha+\beta)}\sin{\gamma}\)
\(\Rightarrow (\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta}-\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})\cos{\gamma}=\sin{(\alpha+\beta)}\sin{\gamma}\) ➜ \(\because \cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\Rightarrow (2\sin{\alpha}\sin{\beta})\cos{\gamma}=(\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta})\sin{\gamma}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow 2\sin{\alpha}\sin{\beta}\cos{\gamma}=\sin{\alpha}\cos{\beta}\sin{\gamma}+\cos{\alpha}\sin{\beta}\sin{\gamma}\)
\(\Rightarrow 2\sin{\alpha}\sin{\beta}\cos{\gamma}=\sin{\alpha}\cos{\beta}\sin{\gamma}+\cos{\alpha}\sin{\beta}\sin{\gamma}\)
\(\Rightarrow 2\frac{\sin{\alpha}\sin{\beta}\cos{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}=\frac{\sin{\alpha}\cos{\beta}\sin{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}+\frac{\cos{\alpha}\sin{\beta}\sin{\gamma}}{\sin{\alpha}\sin{\beta}\sin{\gamma}}\) ➜ লব ও হরকে \(\sin{\alpha}\sin{\beta}\sin{\gamma}\) দ্বারা ভাগ করে।
\(\Rightarrow 2\frac{\cos{\gamma}}{\sin{\gamma}}=\frac{\cos{\beta}}{\sin{\beta}}+\frac{\cos{\alpha}}{\sin{\alpha}}\)
\(\Rightarrow 2\cot{\gamma}=\cot{\beta}+\cot{\alpha}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\Rightarrow \cot{\gamma}+\cot{\gamma}=\cot{\beta}+\cot{\alpha}\)
\(\Rightarrow \cot{\gamma}-\cot{\beta}=\cot{\alpha}-\cot{\gamma}\)
\(\Rightarrow \cot{\alpha}-\cot{\gamma}=\cot{\gamma}-\cot{\beta}\)
\(\therefore \cot{\alpha}, \cot{\gamma}\) এবং \(\cot{\beta}\) সমান্তর প্রগমন ভুক্ত।
(দেখানো হলো)
\(Q.4.(xxxii)\) \(\sin{\alpha}=k\sin{(\alpha+\beta)}\) হলে দেখাও যে, \(\tan{(\alpha+\beta)}=\frac{\sin{\beta}}{\cos{\beta}-k}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{\alpha}=k\sin{(\alpha+\beta)}\)
\(\Rightarrow \sin{\alpha}=k(\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta})\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow \sin{\alpha}=k\sin{\alpha}\cos{\beta}+k\cos{\alpha}\sin{\beta}\)
\(\Rightarrow \sin{\alpha}-k\sin{\alpha}\cos{\beta}=k\cos{\alpha}\sin{\beta}\)
\(\Rightarrow \sin{\alpha}(1-k\cos{\beta})=k\cos{\alpha}\sin{\beta}\)
\(\Rightarrow \frac{\sin{\alpha}}{\cos{\alpha}}=\frac{k\sin{\beta}}{1-k\cos{\beta}}\)
\(\therefore \tan{\alph}=\frac{k\sin{\beta}}{1-k\cos{\beta}}\)
এখন, \(\tan{(\alpha+\beta)}=\frac{\tan{\alph}+\tan{\beta}}{1-\tan{\alph}\tan{\beta}}\)
\(=\frac{\frac{k\sin{\beta}}{1-k\cos{\beta}}+\tan{\beta}}{1-\frac{k\sin{\beta}}{1-k\cos{\beta}}\times\tan{\beta}}\) ➜ \(\because \tan{\alph}=\frac{k\sin{\beta}}{1-k\cos{\beta}}\)
\(=\frac{\frac{k\sin{\beta}}{1-k\cos{\beta}}+\frac{\sin{\beta}}{\cos{\beta}}}{1-\frac{k\sin{\beta}}{1-k\cos{\beta}}\times\frac{\sin{\beta}}{\cos{\beta}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{k\sin{\beta}}{1-k\cos{\beta}}+\frac{\sin{\beta}}{\cos{\beta}}}{1-\frac{k\sin^2{\beta}}{(1-k\cos{\beta})\cos{\beta}}}\)
\(=\frac{k\sin{\beta}\cos{\beta}+\sin{\beta}-k\sin{\beta}\cos{\beta}}{\cos{\beta}-k\cos^2{\beta}-k\sin^2{\beta}}\)
\(=\frac{\sin{\beta}}{\cos{\beta}-k(\sin^2{\beta}+\cos^2{\beta})}\)
\(=\frac{\sin{\beta}}{\cos{\beta}-k.1}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\therefore \tan{(\alpha+\beta)}=\frac{\sin{\beta}}{\cos{\beta}-k}\)
(দেখানো হলো)
\(\sin{\alpha}=k\sin{(\alpha+\beta)}\)
\(\Rightarrow \sin{\alpha}=k(\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta})\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow \sin{\alpha}=k\sin{\alpha}\cos{\beta}+k\cos{\alpha}\sin{\beta}\)
\(\Rightarrow \sin{\alpha}-k\sin{\alpha}\cos{\beta}=k\cos{\alpha}\sin{\beta}\)
\(\Rightarrow \sin{\alpha}(1-k\cos{\beta})=k\cos{\alpha}\sin{\beta}\)
\(\Rightarrow \frac{\sin{\alpha}}{\cos{\alpha}}=\frac{k\sin{\beta}}{1-k\cos{\beta}}\)
\(\therefore \tan{\alph}=\frac{k\sin{\beta}}{1-k\cos{\beta}}\)
এখন, \(\tan{(\alpha+\beta)}=\frac{\tan{\alph}+\tan{\beta}}{1-\tan{\alph}\tan{\beta}}\)
\(=\frac{\frac{k\sin{\beta}}{1-k\cos{\beta}}+\tan{\beta}}{1-\frac{k\sin{\beta}}{1-k\cos{\beta}}\times\tan{\beta}}\) ➜ \(\because \tan{\alph}=\frac{k\sin{\beta}}{1-k\cos{\beta}}\)
\(=\frac{\frac{k\sin{\beta}}{1-k\cos{\beta}}+\frac{\sin{\beta}}{\cos{\beta}}}{1-\frac{k\sin{\beta}}{1-k\cos{\beta}}\times\frac{\sin{\beta}}{\cos{\beta}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{k\sin{\beta}}{1-k\cos{\beta}}+\frac{\sin{\beta}}{\cos{\beta}}}{1-\frac{k\sin^2{\beta}}{(1-k\cos{\beta})\cos{\beta}}}\)
\(=\frac{k\sin{\beta}\cos{\beta}+\sin{\beta}-k\sin{\beta}\cos{\beta}}{\cos{\beta}-k\cos^2{\beta}-k\sin^2{\beta}}\)
\(=\frac{\sin{\beta}}{\cos{\beta}-k(\sin^2{\beta}+\cos^2{\beta})}\)
\(=\frac{\sin{\beta}}{\cos{\beta}-k.1}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\therefore \tan{(\alpha+\beta)}=\frac{\sin{\beta}}{\cos{\beta}-k}\)
(দেখানো হলো)
\(Q.4.(xxxiii)\) \(\cos{\alpha}+\cos{\beta}=a\) এবং \(\sin{\alpha}+\sin{\beta}=b\) হলে দেখাও যে, \(\cos{(\alpha-\beta)}=\frac{1}{2}(a^2+b^2-2)\)
সমাধানঃ
দেওয়া আছে,
\(\cos{\alpha}+\cos{\beta}=a\) এবং \(\sin{\alpha}+\sin{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ......(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\alpha}+\sin{\beta})^2+(\cos{\alpha}+\cos{\beta})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\alpha}+\sin^2{\beta}+2\sin{\alpha}\sin{\beta}+\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}=a^2+b^2\) ➜ \(\because (P+Q)^2=P^2+Q^2+2PQ\)
\(\Rightarrow (\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\alpha-\beta)}=a^2+b^2\)
\(\Rightarrow 2\cos{(\alpha-\beta)}=a^2+b^2-2\)
\(\therefore \cos{(\alpha-\beta)}=\frac{1}{2}(a^2+b^2-2)\)
(দেখানো হলো)
\(\cos{\alpha}+\cos{\beta}=a\) এবং \(\sin{\alpha}+\sin{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ......(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\alpha}+\sin{\beta})^2+(\cos{\alpha}+\cos{\beta})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\alpha}+\sin^2{\beta}+2\sin{\alpha}\sin{\beta}+\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}=a^2+b^2\) ➜ \(\because (P+Q)^2=P^2+Q^2+2PQ\)
\(\Rightarrow (\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\alpha-\beta)}=a^2+b^2\)
\(\Rightarrow 2\cos{(\alpha-\beta)}=a^2+b^2-2\)
\(\therefore \cos{(\alpha-\beta)}=\frac{1}{2}(a^2+b^2-2)\)
(দেখানো হলো)
\(Q.4.(xxxiv)\) \(\tan{\beta}=\frac{\sin{2\alpha}}{5+\cos{2\alpha}}\) হলে দেখাও যে, \(3\tan{(\alpha-\beta)}=2\tan{\alpha}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\beta}=\frac{\sin{2\alpha}}{5+\cos{2\alpha}}\)
\(=\frac{\frac{2\tan{\alpha}}{1+\tan^2{\alpha}}}{5+\frac{1-\tan^2{\alpha}}{1+\tan^2{\alpha}}}\) ➜ \(\because \sin{2A}=\frac{2\tan{A}}{1+\tan^2{A}}\)
এবং \(\cos{2A}=\frac{1-\tan^2{A}}{1+\tan^2{A}}\)
\(=\frac{2\tan{\alpha}}{5+5\tan^2{\alpha}+1-\tan^2{\alpha}}\) ➜ লব ও হরকে \(1+\tan^2{\alpha}\) দ্বারা গুণ করে।
\(=\frac{2\tan{\alpha}}{6+4\tan^2{\alpha}}\)
\(=\frac{2\tan{\alpha}}{2(3+2\tan^2{\alpha})}\)
\(\therefore \tan{\beta}=\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}\)
এখন, \(L.S=3\tan{(\alpha-\beta)}\)
\(=3\frac{\tan{\alpha}-\tan{\beta}}{1+\tan{\alpha}\tan{\beta}}\)
\(=3\frac{\tan{\alpha}-\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}}{1+\tan{\alpha}\times\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}}\) ➜ \(\because \tan{\beta}=\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}\)
\(=3\frac{\tan{\alpha}-\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}}{1+\frac{\tan^2{\alpha}}{3+2\tan^2{\alpha}}}\)
\(=3\frac{3\tan{\alpha}+2\tan^3{\alpha}-\tan{\alpha}}{3+2\tan^2{\alpha}+\tan^2{\alpha}}\) ➜ লব ও হরকে \(3+2\tan^2{\alpha}\) দ্বারা গুণ করে।
\(=3\frac{2\tan{\alpha}+2\tan^3{\alpha}}{3+3\tan^2{\alpha}}\)
\(=3\frac{2\tan{\alpha}(1+\tan^2{\alpha})}{3(1+\tan^2{\alpha})}\)
\(=2\tan{\alpha}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(\tan{\beta}=\frac{\sin{2\alpha}}{5+\cos{2\alpha}}\)
\(=\frac{\frac{2\tan{\alpha}}{1+\tan^2{\alpha}}}{5+\frac{1-\tan^2{\alpha}}{1+\tan^2{\alpha}}}\) ➜ \(\because \sin{2A}=\frac{2\tan{A}}{1+\tan^2{A}}\)
এবং \(\cos{2A}=\frac{1-\tan^2{A}}{1+\tan^2{A}}\)
\(=\frac{2\tan{\alpha}}{5+5\tan^2{\alpha}+1-\tan^2{\alpha}}\) ➜ লব ও হরকে \(1+\tan^2{\alpha}\) দ্বারা গুণ করে।
\(=\frac{2\tan{\alpha}}{6+4\tan^2{\alpha}}\)
\(=\frac{2\tan{\alpha}}{2(3+2\tan^2{\alpha})}\)
\(\therefore \tan{\beta}=\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}\)
এখন, \(L.S=3\tan{(\alpha-\beta)}\)
\(=3\frac{\tan{\alpha}-\tan{\beta}}{1+\tan{\alpha}\tan{\beta}}\)
\(=3\frac{\tan{\alpha}-\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}}{1+\tan{\alpha}\times\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}}\) ➜ \(\because \tan{\beta}=\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}\)
\(=3\frac{\tan{\alpha}-\frac{\tan{\alpha}}{3+2\tan^2{\alpha}}}{1+\frac{\tan^2{\alpha}}{3+2\tan^2{\alpha}}}\)
\(=3\frac{3\tan{\alpha}+2\tan^3{\alpha}-\tan{\alpha}}{3+2\tan^2{\alpha}+\tan^2{\alpha}}\) ➜ লব ও হরকে \(3+2\tan^2{\alpha}\) দ্বারা গুণ করে।
\(=3\frac{2\tan{\alpha}+2\tan^3{\alpha}}{3+3\tan^2{\alpha}}\)
\(=3\frac{2\tan{\alpha}(1+\tan^2{\alpha})}{3(1+\tan^2{\alpha})}\)
\(=2\tan{\alpha}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(Q.4.(xxxv)\) \(\cos{(\alpha+\beta)}\sin{(\gamma+\theta)}=\cos{(\alpha-\beta)}\sin{(\gamma-\theta)}\) হলে দেখাও যে, \(\tan{\theta}=\tan{\alpha}\tan{\beta}\tan{\gamma}\)
সমাধানঃ
দেওয়া আছে,
\(\cos{(\alpha+\beta)}\sin{(\gamma+\theta)}=\cos{(\alpha-\beta)}\sin{(\gamma-\theta)}\)
\(\Rightarrow \frac{\cos{(\alpha+\beta)}}{\cos{(\alpha-\beta)}}=\frac{\sin{(\gamma-\theta)}}{\sin{(\gamma+\theta)}}\)
\(\Rightarrow \frac{\cos{(\alpha+\beta)}+\cos{(\alpha-\beta)}}{\cos{(\alpha+\beta)}-\cos{(\alpha-\beta)}}=\frac{\sin{(\gamma-\theta)}+\sin{(\gamma+\theta)}}{\sin{(\gamma-\theta)}-\sin{(\gamma+\theta)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}+\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta}}{\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}-\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}}=\frac{\sin{\gamma}\cos{\theta}-\cos{\gamma}\sin{\theta}+\sin{\gamma}\cos{\theta}+\cos{\gamma}\sin{\theta}}{\sin{\gamma}\cos{\theta}-\cos{\gamma}\sin{\theta}-\sin{\gamma}\cos{\theta}-\cos{\gamma}\sin{\theta}}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{2\cos{\alpha}\cos{\beta}}{-2\sin{\alpha}\sin{\beta}}=\frac{2\sin{\gamma}\cos{\theta}}{-2\cos{\gamma}\sin{\theta}}\)
\(\Rightarrow \frac{\cos{\alpha}\cos{\beta}}{\sin{\alpha}\sin{\beta}}=\frac{\sin{\gamma}\cos{\theta}}{\cos{\gamma}\sin{\theta}}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=\frac{\sin{\alpha}\sin{\beta}\sin{\gamma}}{\cos{\alpha}\cos{\beta}\cos{\gamma}}\)
\(\therefore \tan{\theta}=\tan{\alpha}\tan{\beta}\tan{\gamma}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
(দেখানো হলো)
\(\cos{(\alpha+\beta)}\sin{(\gamma+\theta)}=\cos{(\alpha-\beta)}\sin{(\gamma-\theta)}\)
\(\Rightarrow \frac{\cos{(\alpha+\beta)}}{\cos{(\alpha-\beta)}}=\frac{\sin{(\gamma-\theta)}}{\sin{(\gamma+\theta)}}\)
\(\Rightarrow \frac{\cos{(\alpha+\beta)}+\cos{(\alpha-\beta)}}{\cos{(\alpha+\beta)}-\cos{(\alpha-\beta)}}=\frac{\sin{(\gamma-\theta)}+\sin{(\gamma+\theta)}}{\sin{(\gamma-\theta)}-\sin{(\gamma+\theta)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}+\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta}}{\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}-\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}}=\frac{\sin{\gamma}\cos{\theta}-\cos{\gamma}\sin{\theta}+\sin{\gamma}\cos{\theta}+\cos{\gamma}\sin{\theta}}{\sin{\gamma}\cos{\theta}-\cos{\gamma}\sin{\theta}-\sin{\gamma}\cos{\theta}-\cos{\gamma}\sin{\theta}}\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{2\cos{\alpha}\cos{\beta}}{-2\sin{\alpha}\sin{\beta}}=\frac{2\sin{\gamma}\cos{\theta}}{-2\cos{\gamma}\sin{\theta}}\)
\(\Rightarrow \frac{\cos{\alpha}\cos{\beta}}{\sin{\alpha}\sin{\beta}}=\frac{\sin{\gamma}\cos{\theta}}{\cos{\gamma}\sin{\theta}}\)
\(\Rightarrow \frac{\sin{\theta}}{\cos{\theta}}=\frac{\sin{\alpha}\sin{\beta}\sin{\gamma}}{\cos{\alpha}\cos{\beta}\cos{\gamma}}\)
\(\therefore \tan{\theta}=\tan{\alpha}\tan{\beta}\tan{\gamma}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
(দেখানো হলো)
\(Q.4.(xxxvi)\) \(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\) হলে দেখাও যে, \((m-n)\tan{\theta}=(m+n)\tan{\alpha}\)
সমাধানঃ
দেওয়া আছে,
\(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\)
\(\Rightarrow \frac{m}{n}=\frac{\sin{(\theta+\alpha)}}{\sin{(\theta-\alpha)}}\)
\(\Rightarrow \frac{m+n}{m-n}=\frac{\sin{(\theta+\alpha)}+\sin{(\theta-\alpha)}}{\sin{(\theta+\alpha)}-\sin{(\theta-\alpha)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{m+n}{m-n}=\frac{\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha}+\sin{\theta}\cos{\alpha}-\cos{\theta}\sin{\alpha}}{\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha}-\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{m+n}{m-n}=\frac{2\sin{\theta}\cos{\alpha}}{2\cos{\theta}\sin{\alpha}}\)
\(\Rightarrow \frac{m+n}{m-n}=\frac{\sin{\theta}\cos{\alpha}}{\cos{\theta}\sin{\alpha}}\)
\(\Rightarrow (m+n)\cos{\theta}\sin{\alpha}=(m-n)\sin{\theta}\cos{\alpha}\) ➜ আড় গুণ করে।
\(\Rightarrow (m+n)\frac{\sin{\alpha}}{\cos{\alpha}}=(m-n)\frac{\sin{\theta}}{\cos{\theta}}\)
\(\Rightarrow (m+n)\tan{\alpha}=(m-n)\tan{\theta}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\therefore (m-n)\tan{\theta}=(m+n)\tan{\alpha}=0\)
(প্রমাণিত)
\(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\)
\(\Rightarrow \frac{m}{n}=\frac{\sin{(\theta+\alpha)}}{\sin{(\theta-\alpha)}}\)
\(\Rightarrow \frac{m+n}{m-n}=\frac{\sin{(\theta+\alpha)}+\sin{(\theta-\alpha)}}{\sin{(\theta+\alpha)}-\sin{(\theta-\alpha)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{m+n}{m-n}=\frac{\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha}+\sin{\theta}\cos{\alpha}-\cos{\theta}\sin{\alpha}}{\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha}-\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
এবং \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{m+n}{m-n}=\frac{2\sin{\theta}\cos{\alpha}}{2\cos{\theta}\sin{\alpha}}\)
\(\Rightarrow \frac{m+n}{m-n}=\frac{\sin{\theta}\cos{\alpha}}{\cos{\theta}\sin{\alpha}}\)
\(\Rightarrow (m+n)\cos{\theta}\sin{\alpha}=(m-n)\sin{\theta}\cos{\alpha}\) ➜ আড় গুণ করে।
\(\Rightarrow (m+n)\frac{\sin{\alpha}}{\cos{\alpha}}=(m-n)\frac{\sin{\theta}}{\cos{\theta}}\)
\(\Rightarrow (m+n)\tan{\alpha}=(m-n)\tan{\theta}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\therefore (m-n)\tan{\theta}=(m+n)\tan{\alpha}=0\)
(প্রমাণিত)
\(Q.4.(xxxvii)\) \(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\) হলে দেখাও যে, \(\cot{A}\cot{B}\cot{C}=\cot{D}\)
সমাধানঃ
দেওয়া আছে,
\(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\)
\(\Rightarrow \frac{\cos{(A+B)}}{\cos{(A-B)}}=\frac{\sin{(C-D)}}{\sin{(C+D)}}\)
\(\Rightarrow \frac{\cos{(A+B)}+\cos{(A-B)}}{\cos{(A+B)}-\cos{(A-B)}}=\frac{\sin{(C-D)}+\sin{(C+D)}}{\sin{(C-D)}-\sin{(C+D)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{\cos{A}\cos{B}-\sin{A}\sin{B}+\cos{A}\cos{B}+\sin{A}\sin{B}}{\cos{A}\cos{B}-\sin{A}\sin{B}-\cos{A}\cos{B}-\sin{A}\sin{B}}=\frac{\sin{C}\cos{D}-\cos{C}\sin{D}+\sin{C}\cos{D}+\cos{C}\sin{D}}{\sin{C}\cos{D}-\cos{C}\sin{D}-\sin{C}\cos{D}-\cos{C}\sin{D}}\) ➜ \(\because \cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(\cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
\(\sin{(P+Q)}=\sin{P}\cos{Q}+\cos{P}\sin{Q}\)
এবং \(\sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(\Rightarrow \frac{2\cos{A}\cos{B}}{-2\sin{A}\sin{B}}=\frac{2\sin{C}\cos{D}}{-2\cos{C}\sin{D}}\)
\(\Rightarrow \frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}=\frac{\sin{C}\cos{D}}{\cos{C}\sin{D}}\)
\(\Rightarrow \frac{\cos{A}\cos{B}\cos{C}}{\sin{A}\sin{B}\sin{C}}=\frac{\cos{D}}{\sin{D}}\)
\(\therefore \cot{A}\cot{B}\cot{C}=\cot{D}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
(দেখানো হলো)
\(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\)
\(\Rightarrow \frac{\cos{(A+B)}}{\cos{(A-B)}}=\frac{\sin{(C-D)}}{\sin{(C+D)}}\)
\(\Rightarrow \frac{\cos{(A+B)}+\cos{(A-B)}}{\cos{(A+B)}-\cos{(A-B)}}=\frac{\sin{(C-D)}+\sin{(C+D)}}{\sin{(C-D)}-\sin{(C+D)}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{\cos{A}\cos{B}-\sin{A}\sin{B}+\cos{A}\cos{B}+\sin{A}\sin{B}}{\cos{A}\cos{B}-\sin{A}\sin{B}-\cos{A}\cos{B}-\sin{A}\sin{B}}=\frac{\sin{C}\cos{D}-\cos{C}\sin{D}+\sin{C}\cos{D}+\cos{C}\sin{D}}{\sin{C}\cos{D}-\cos{C}\sin{D}-\sin{C}\cos{D}-\cos{C}\sin{D}}\) ➜ \(\because \cos{(P+Q)}=\cos{P}\cos{Q}-\sin{P}\sin{Q}\)
\(\cos{(P-Q)}=\cos{P}\cos{Q}+\sin{P}\sin{Q}\)
\(\sin{(P+Q)}=\sin{P}\cos{Q}+\cos{P}\sin{Q}\)
এবং \(\sin{(P-Q)}=\sin{P}\cos{Q}-\cos{P}\sin{Q}\)
\(\Rightarrow \frac{2\cos{A}\cos{B}}{-2\sin{A}\sin{B}}=\frac{2\sin{C}\cos{D}}{-2\cos{C}\sin{D}}\)
\(\Rightarrow \frac{\cos{A}\cos{B}}{\sin{A}\sin{B}}=\frac{\sin{C}\cos{D}}{\cos{C}\sin{D}}\)
\(\Rightarrow \frac{\cos{A}\cos{B}\cos{C}}{\sin{A}\sin{B}\sin{C}}=\frac{\cos{D}}{\sin{D}}\)
\(\therefore \cot{A}\cot{B}\cot{C}=\cot{D}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
(দেখানো হলো)
যৌগিক কোণের ত্রিকোণমিতিক অনুপাত \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\) \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\) \(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\) \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\) \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\) \(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\) \(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\) \(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}=\cos^2{B}-\cos^2{A}\)\(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}=\cos^2{B}-\sin^2{A}\) \(\tan{(A+B)}\tan{(A-B)}=\frac{\tan^2{A}-\tan^2{B}}{1-\tan^2{A}\tan^2{B}}\) \(\cot{(A+B)}\cot{(A-B)}=\frac{\cot^2{A}\cot^2{B}-1}{\cot^2{B}-\cot^2{A}}\) \(\sin{(A+B+C)}=\cos{A}\cos{B}\cos{C}(\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C})\)\(\cos{(A+B+C)}=\cos{A}\cos{B}\cos{C}(1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A})\) \(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{A}\tan{B}-\tan{B}\tan{C}-\tan{C}\tan{A}}\) \(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\) অধ্যায় \(7B\)-এর উদাহরণসমুহ অধ্যায় \(7B\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ অধ্যায় \(7B\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ অধ্যায় \(7B\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ অধ্যায় \(7B\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
Email: Golzarrahman1966@gmail.com
Visitors online: 000010