এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
- সার সংক্ষেপ
- সংযুক্ত ও যৌগিক কোণের গুণফল, যোগফল ও বিয়োগফলের ত্রিকোণমিতিক অনুপাত
- \(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\)
- \(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\)
- \(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
- \(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
- \(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\)
- \(\tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\)
- \(\cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\)
- \(\cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\)
- \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
- \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
- \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
- \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
- অধ্যায় \(7C\)-এর উদাহরণসমুহ
- অধ্যায় \(7C\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
- অধ্যায় \(7C\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(7C\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(7C\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ

সার সংক্ষেপ
সংযুক্ত ও যৌগিক কোণের গুণফল, যোগফল ও বিয়োগফলের ত্রিকোণমিতিক অনুপাত
\(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\) \(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\) \(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\) \(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\) \(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\) \(\tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\) \(\cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\) \(\cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\) \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
সংযুক্ত ও যৌগিক কোণের গুণফল, যোগফল ও বিয়োগফলের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of product, addition and subtraction of combined and composite angles
এ অধ্যায়ের মূল আলোচ্য বিষয় সংযুক্ত ও যৌগিক কোণের ত্রিকোণমিতিক অনুপাতের গুণফল হতে যোগফল অথবা বিয়োগফলে রূপান্তর এবং যোগফল ও বিয়োগফলকে গুণফলে প্রকাশ করা।
যেমনঃ \(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B},\) \(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B},\) \(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}},\) \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}},\) \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}, ......\) ইত্যাদি।
যেমনঃ \(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B},\) \(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B},\) \(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}},\) \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}},\) \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}, ......\) ইত্যাদি।
প্রয়োজনীয় ও স্বরণীয় সূত্রসমূহ
Necessary and memorable formulas
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\) \(C\) ও \(D\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\frac{(C+D)}{2}\lt90^{o}\) ও \(C\gt D\)
\(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) \(C\) ও \(D\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\frac{(C+D)}{2}\lt90^{o}\) ও \(C\gt D\)
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) \(C\) ও \(D\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\frac{(C+D)}{2}\lt90^{o}\) ও \(C\gt D\)
\(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) \(C\) ও \(D\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\frac{(C+D)}{2}\lt90^{o}\) ও \(C\gt D\)
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) \(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\)
\(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B} ........(1)\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B} ........(2)\)
\((1)\) ও \((2)\) যোগ করে,
\(\sin{(A+B)}+\sin{(A-B)}=\sin{A}\cos{B}+\cos{A}\sin{B}+\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\therefore \sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\)
\(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B} ........(1)\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B} ........(2)\)
\((1)\) ও \((2)\) যোগ করে,
\(\sin{(A+B)}+\sin{(A-B)}=\sin{A}\cos{B}+\cos{A}\sin{B}+\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\therefore \sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\)
\(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B} ........(1)\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B} ........(2)\)
\((1)\) হতে \((2)\) বিয়োগ করে,
\(\sin{(A+B)}-\sin{(A-B)}=\sin{A}\cos{B}+\cos{A}\sin{B}-\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\therefore \sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\)
\(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\)
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B} ........(1)\)
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B} ........(2)\)
\((1)\) হতে \((2)\) বিয়োগ করে,
\(\sin{(A+B)}-\sin{(A-B)}=\sin{A}\cos{B}+\cos{A}\sin{B}-\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\therefore \sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\)
\(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)প্রমাণঃ
আমরা জানি,
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B} ........(1)\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B} ........(2)\)
\((1)\) ও \((2)\) যোগ করে,
\(\cos{(A+B)}+\cos{(A-B)}=\cos{A}\cos{B}-\sin{A}\sin{B}+\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\therefore \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B} ........(1)\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B} ........(2)\)
\((1)\) ও \((2)\) যোগ করে,
\(\cos{(A+B)}+\cos{(A-B)}=\cos{A}\cos{B}-\sin{A}\sin{B}+\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\therefore \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)প্রমাণঃ
আমরা জানি,
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B} ........(1)\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B} ........(2)\)
\((2)\) হতে \((1)\) বিয়োগ করে,
\(\cos{(A-B)}-\cos{(A+B)}=\cos{A}\cos{B}+\sin{A}\sin{B}-\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\therefore \cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
\(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B} ........(1)\)
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B} ........(2)\)
\((2)\) হতে \((1)\) বিয়োগ করে,
\(\cos{(A-B)}-\cos{(A+B)}=\cos{A}\cos{B}+\sin{A}\sin{B}-\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\therefore \cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
\(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\) প্রমাণঃ
লেখা যায়,
\(\tan{(A+B)}+\tan{(A-B)}=\frac{\sin{(A+B)}}{\cos{(A+B)}}+\frac{\sin{(A-B)}}{\cos{(A-B)}}\)
\(=\frac{\sin{(A+B)}\cos{(A-B)}+\cos{(A+B)}\sin{(A-B)}}{\cos{(A+B)}\cos{(A-B)}}\)
\(=\frac{\sin{(A+B+A-B)}}{\cos^2{A}-\sin^2{B}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=\frac{\sin{2A}}{\cos^2{A}-\sin^2{B}}\)
\(=\frac{2\sin{2A}}{2\cos^2{A}-2\sin^2{B}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\sin{2A}}{1+\cos{2A}-(1-\cos{2B})}\) ➜ \(\because 2\cos^2{P}=1+\cos{2P}\)
এবং \(2\sin^2{P}=1-\cos{2P}\)
\(=\frac{2\sin{2A}}{1+\cos{2A}-1+\cos{2B}}\)
\(=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\)
\(\therefore \tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\)
\(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\)
\(\tan{(A+B)}+\tan{(A-B)}=\frac{\sin{(A+B)}}{\cos{(A+B)}}+\frac{\sin{(A-B)}}{\cos{(A-B)}}\)
\(=\frac{\sin{(A+B)}\cos{(A-B)}+\cos{(A+B)}\sin{(A-B)}}{\cos{(A+B)}\cos{(A-B)}}\)
\(=\frac{\sin{(A+B+A-B)}}{\cos^2{A}-\sin^2{B}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=\frac{\sin{2A}}{\cos^2{A}-\sin^2{B}}\)
\(=\frac{2\sin{2A}}{2\cos^2{A}-2\sin^2{B}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\sin{2A}}{1+\cos{2A}-(1-\cos{2B})}\) ➜ \(\because 2\cos^2{P}=1+\cos{2P}\)
এবং \(2\sin^2{P}=1-\cos{2P}\)
\(=\frac{2\sin{2A}}{1+\cos{2A}-1+\cos{2B}}\)
\(=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\)
\(\therefore \tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\)
\(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\) প্রমাণঃ
লেখা যায়,
\(\tan{(A+B)}-\tan{(A-B)}=\frac{\sin{(A+B)}}{\cos{(A+B)}}-\frac{\sin{(A-B)}}{\cos{(A-B)}}\)
\(=\frac{\sin{(A+B)}\cos{(A-B)}-\cos{(A+B)}\sin{(A-B)}}{\cos{(A+B)}\cos{(A-B)}}\)
\(=\frac{\sin{(A+B-A+B)}}{\cos^2{A}-\sin^2{B}}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=\frac{\sin{2B}}{\cos^2{A}-\sin^2{B}}\)
\(=\frac{2\sin{2B}}{2\cos^2{A}-2\sin^2{B}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\sin{2B}}{1+\cos{2A}-(1-\cos{2B})}\) ➜ \(\because 2\cos^2{P}=1+\cos{2P}\)
এবং \(2\sin^2{P}=1-\cos{2P}\)
\(=\frac{2\sin{2B}}{1+\cos{2A}-1+\cos{2B}}\)
\(=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\)
\(\therefore \tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\)
\(\tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\)
\(\tan{(A+B)}-\tan{(A-B)}=\frac{\sin{(A+B)}}{\cos{(A+B)}}-\frac{\sin{(A-B)}}{\cos{(A-B)}}\)
\(=\frac{\sin{(A+B)}\cos{(A-B)}-\cos{(A+B)}\sin{(A-B)}}{\cos{(A+B)}\cos{(A-B)}}\)
\(=\frac{\sin{(A+B-A+B)}}{\cos^2{A}-\sin^2{B}}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=\frac{\sin{2B}}{\cos^2{A}-\sin^2{B}}\)
\(=\frac{2\sin{2B}}{2\cos^2{A}-2\sin^2{B}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\sin{2B}}{1+\cos{2A}-(1-\cos{2B})}\) ➜ \(\because 2\cos^2{P}=1+\cos{2P}\)
এবং \(2\sin^2{P}=1-\cos{2P}\)
\(=\frac{2\sin{2B}}{1+\cos{2A}-1+\cos{2B}}\)
\(=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\)
\(\therefore \tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\)
\(\tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\) প্রমাণঃ
লেখা যায়,
\(\cot{(A+B)}+\cot{(A-B)}=\frac{\cos{(A+B)}}{\sin{(A+B)}}+\frac{\cos{(A-B)}}{\sin{(A-B)}}\)
\(=\frac{\sin{(A-B)}\cos{(A+B)}+\cos{(A-B)}\sin{(A+B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A+B)}\cos{(A-B)}+\cos{(A+B)}\sin{(A-B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A+B+A-B)}}{\sin^2{A}-\sin^2{B}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=\frac{\sin{2A}}{\sin^2{A}-\sin^2{B}}\)
\(=\frac{2\sin{2A}}{2\sin^2{A}-2\sin^2{B}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\sin{2A}}{1-\cos{2A}-(1-\cos{2B})}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{2\sin{2A}}{1-\cos{2A}-1+\cos{2B}}\)
\(=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\)
\(\therefore \cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\)
\(\cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\)
\(\cot{(A+B)}+\cot{(A-B)}=\frac{\cos{(A+B)}}{\sin{(A+B)}}+\frac{\cos{(A-B)}}{\sin{(A-B)}}\)
\(=\frac{\sin{(A-B)}\cos{(A+B)}+\cos{(A-B)}\sin{(A+B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A+B)}\cos{(A-B)}+\cos{(A+B)}\sin{(A-B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A+B+A-B)}}{\sin^2{A}-\sin^2{B}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=\frac{\sin{2A}}{\sin^2{A}-\sin^2{B}}\)
\(=\frac{2\sin{2A}}{2\sin^2{A}-2\sin^2{B}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\sin{2A}}{1-\cos{2A}-(1-\cos{2B})}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{2\sin{2A}}{1-\cos{2A}-1+\cos{2B}}\)
\(=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\)
\(\therefore \cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\)
\(\cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\)
\(A\) ও \(B\) ধনাত্মক সূক্ষ্ণকোণ এবং \((A+B)\lt90^{o}\) ও \(A\gt B\)
\(\cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\) প্রমাণঃ
লেখা যায়,
\(\cot{(A+B)}-\cot{(A-B)}=\frac{\cos{(A+B)}}{\sin{(A+B)}}-\frac{\cos{(A-B)}}{\sin{(A-B)}}\)
\(=\frac{\sin{(A-B)}\cos{(A+B)}-\cos{(A-B)}\sin{(A+B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A-B-A-B)}}{\sin^2{A}-\sin^2{B}}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=\frac{\sin{(-2B)}}{\sin^2{A}-\sin^2{B}}\)
\(=\frac{-\sin{(2B)}}{\sin^2{A}-\sin^2{B}}\) ➜ \(\because \sin{(-\theta)}=-\sin{\theta}\)
\(=\frac{-2\sin{2B}}{2\sin^2{A}-2\sin^2{B}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{-2\sin{2B}}{1-\cos{2A}-(1-\cos{2B})}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{-2\sin{2B}}{1-\cos{2A}-1+\cos{2B}}\)
\(=\frac{-2\sin{2B}}{-(\cos{2A}-\cos{2B})}\)
\(=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\)
\(\therefore \cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\)
\(\cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\)
\(\cot{(A+B)}-\cot{(A-B)}=\frac{\cos{(A+B)}}{\sin{(A+B)}}-\frac{\cos{(A-B)}}{\sin{(A-B)}}\)
\(=\frac{\sin{(A-B)}\cos{(A+B)}-\cos{(A-B)}\sin{(A+B)}}{\sin{(A+B)}\sin{(A-B)}}\)
\(=\frac{\sin{(A-B-A-B)}}{\sin^2{A}-\sin^2{B}}\) ➜ \(\because \sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
এবং \(\sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=\frac{\sin{(-2B)}}{\sin^2{A}-\sin^2{B}}\)
\(=\frac{-\sin{(2B)}}{\sin^2{A}-\sin^2{B}}\) ➜ \(\because \sin{(-\theta)}=-\sin{\theta}\)
\(=\frac{-2\sin{2B}}{2\sin^2{A}-2\sin^2{B}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{-2\sin{2B}}{1-\cos{2A}-(1-\cos{2B})}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{-2\sin{2B}}{1-\cos{2A}-1+\cos{2B}}\)
\(=\frac{-2\sin{2B}}{-(\cos{2A}-\cos{2B})}\)
\(=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\)
\(\therefore \cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\)
\(\cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\)
\(C\) ও \(D\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\frac{(C+D)}{2}\lt90^{o}\) ও \(C\gt D\)
\(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B} ......(1)\)
ধরি,
\(A+B=C ......(2)\)
\(A-B=D ......(3)\)
\((2)\) ও \((3)\) যোগ করে,
\(A+B+A-B=C+D\)
\(\Rightarrow 2A=C+D\)
\(\therefore A=\frac{C+D}{2}\)
আবার, \((2)\) হতে \((3)\) বিয়োগ করে,
\(A+B-A+B=C-D\)
\(\Rightarrow 2B=C-D\)
\(\therefore B=\frac{C-D}{2}\)
এখন, \((1)\) হতে,
\(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) ➜ \(\because A+B=C\)
\(A-B=D\)
\(A=\frac{C+D}{2}\)
এবং \(B=\frac{C-D}{2}\)
\(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B} ......(1)\)
ধরি,
\(A+B=C ......(2)\)
\(A-B=D ......(3)\)
\((2)\) ও \((3)\) যোগ করে,
\(A+B+A-B=C+D\)
\(\Rightarrow 2A=C+D\)
\(\therefore A=\frac{C+D}{2}\)
আবার, \((2)\) হতে \((3)\) বিয়োগ করে,
\(A+B-A+B=C-D\)
\(\Rightarrow 2B=C-D\)
\(\therefore B=\frac{C-D}{2}\)
এখন, \((1)\) হতে,
\(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) ➜ \(\because A+B=C\)
\(A-B=D\)
\(A=\frac{C+D}{2}\)
এবং \(B=\frac{C-D}{2}\)
\(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(C\) ও \(D\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\frac{(C+D)}{2}\lt90^{o}\) ও \(C\gt D\)
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) প্রমাণঃ
আমরা জানি,
\(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B} ......(1)\)
ধরি,
\(A+B=C ......(2)\)
\(A-B=D ......(3)\)
\((2)\) ও \((3)\) যোগ করে,
\(A+B+A-B=C+D\)
\(\Rightarrow 2A=C+D\)
\(\therefore A=\frac{C+D}{2}\)
আবার, \((2)\) হতে \((3)\) বিয়োগ করে,
\(A+B-A+B=C-D\)
\(\Rightarrow 2B=C-D\)
\(\therefore B=\frac{C-D}{2}\)
এখন, \((1)\) হতে,
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) ➜ \(\because A+B=C\)
\(A-B=D\)
\(A=\frac{C+D}{2}\)
এবং \(B=\frac{C-D}{2}\)
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B} ......(1)\)
ধরি,
\(A+B=C ......(2)\)
\(A-B=D ......(3)\)
\((2)\) ও \((3)\) যোগ করে,
\(A+B+A-B=C+D\)
\(\Rightarrow 2A=C+D\)
\(\therefore A=\frac{C+D}{2}\)
আবার, \((2)\) হতে \((3)\) বিয়োগ করে,
\(A+B-A+B=C-D\)
\(\Rightarrow 2B=C-D\)
\(\therefore B=\frac{C-D}{2}\)
এখন, \((1)\) হতে,
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) ➜ \(\because A+B=C\)
\(A-B=D\)
\(A=\frac{C+D}{2}\)
এবং \(B=\frac{C-D}{2}\)
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(C\) ও \(D\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\frac{(C+D)}{2}\lt90^{o}\) ও \(C\gt D\)
\(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) প্রমাণঃ
আমরা জানি,
\(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B} ......(1)\)
ধরি,
\(A+B=C ......(2)\)
\(A-B=D ......(3)\)
\((2)\) ও \((3)\) যোগ করে,
\(A+B+A-B=C+D\)
\(\Rightarrow 2A=C+D\)
\(\therefore A=\frac{C+D}{2}\)
আবার, \((2)\) হতে \((3)\) বিয়োগ করে,
\(A+B-A+B=C-D\)
\(\Rightarrow 2B=C-D\)
\(\therefore B=\frac{C-D}{2}\)
এখন, \((1)\) হতে,
\(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) ➜ \(\because A+B=C\)
\(A-B=D\)
\(A=\frac{C+D}{2}\)
এবং \(B=\frac{C-D}{2}\)
\(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B} ......(1)\)
ধরি,
\(A+B=C ......(2)\)
\(A-B=D ......(3)\)
\((2)\) ও \((3)\) যোগ করে,
\(A+B+A-B=C+D\)
\(\Rightarrow 2A=C+D\)
\(\therefore A=\frac{C+D}{2}\)
আবার, \((2)\) হতে \((3)\) বিয়োগ করে,
\(A+B-A+B=C-D\)
\(\Rightarrow 2B=C-D\)
\(\therefore B=\frac{C-D}{2}\)
এখন, \((1)\) হতে,
\(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) ➜ \(\because A+B=C\)
\(A-B=D\)
\(A=\frac{C+D}{2}\)
এবং \(B=\frac{C-D}{2}\)
\(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(C\) ও \(D\) ধনাত্মক সূক্ষ্ণকোণ এবং \(\frac{(C+D)}{2}\lt90^{o}\) ও \(C\gt D\)
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) প্রমাণঃ
আমরা জানি,
\(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B} ......(1)\)
ধরি,
\(A+B=C ......(2)\)
\(A-B=D ......(3)\)
\((2)\) ও \((3)\) যোগ করে,
\(A+B+A-B=C+D\)
\(\Rightarrow 2A=C+D\)
\(\therefore A=\frac{C+D}{2}\)
আবার, \((2)\) হতে \((3)\) বিয়োগ করে,
\(A+B-A+B=C-D\)
\(\Rightarrow 2B=C-D\)
\(\therefore B=\frac{C-D}{2}\)
এখন, \((1)\) হতে,
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) ➜ \(\because A+B=C\)
\(A-B=D\)
\(A=\frac{C+D}{2}\)
এবং \(B=\frac{C-D}{2}\)
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B} ......(1)\)
ধরি,
\(A+B=C ......(2)\)
\(A-B=D ......(3)\)
\((2)\) ও \((3)\) যোগ করে,
\(A+B+A-B=C+D\)
\(\Rightarrow 2A=C+D\)
\(\therefore A=\frac{C+D}{2}\)
আবার, \((2)\) হতে \((3)\) বিয়োগ করে,
\(A+B-A+B=C-D\)
\(\Rightarrow 2B=C-D\)
\(\therefore B=\frac{C-D}{2}\)
এখন, \((1)\) হতে,
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) ➜ \(\because A+B=C\)
\(A-B=D\)
\(A=\frac{C+D}{2}\)
এবং \(B=\frac{C-D}{2}\)
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
অধ্যায় \(7C\)-এর উদাহরণসমুহ
উদাহরণ \(1.\) প্রমাণ কর যে, \(\tan{20^{o}}\tan{40^{o}}\tan{80^{o}}=\sqrt{3}\)
উদাহরণ \(2.\) যদি \(a\cos{\alpha}+b\sin{\alpha}=a\cos{\beta}+b\sin{\beta}\) হয় তবে প্রমাণ কর যে, \(\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}=\frac{a^2-b^2}{a^2+b^2}\)
উদাহরণ \(3.\) \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হলে, প্রমাণ কর যে, \(\cos{(\alpha+\beta)}=\frac{b^2-a^2}{b^2+a^2}\)
উদাহরণ \(4.\) \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হলে, প্রমাণ কর যে, \(\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}=\frac{b^2-a^2}{b^2+a^2}\)
রাঃ ২০১০; কুঃ২০০৯; বঃ২০০৭; চঃ২০১৯,২০০৬; ঢাঃ২০১৭; বুটেক্সঃ২০১১-১২।
উদাহরণ \(2.\) যদি \(a\cos{\alpha}+b\sin{\alpha}=a\cos{\beta}+b\sin{\beta}\) হয় তবে প্রমাণ কর যে, \(\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}=\frac{a^2-b^2}{a^2+b^2}\)
কুঃ২০০৮; সিঃ২০০৩।
উদাহরণ \(3.\) \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হলে, প্রমাণ কর যে, \(\cos{(\alpha+\beta)}=\frac{b^2-a^2}{b^2+a^2}\)
সিঃ২০১৬,২০১১,২০০১; কুঃ২০১৪; রাঃ২০০৮,২০০৩; কুয়েটঃ২০১১-২০১২,২০০৯-২০১০।
উদাহরণ \(4.\) \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হলে, প্রমাণ কর যে, \(\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}=\frac{b^2-a^2}{b^2+a^2}\)
সিঃ২০০৩।
উদাহরণ \(5.\) \(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\) হলে, \(\cos{(x+y)}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{b^2-a^2}{b^2+a^2}\)
উদাহরণ \(6.\) যদি \(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\) হয়, তবে প্রমাণ কর যে, \(\sin{\frac{1}{2}(x-y)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
উদাহরণ \(7.\) যদি \(\alpha+\beta=\theta\) এবং \(\cos{\alpha}=k\cos{\beta}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(\alpha-\beta)}=\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\)
উদাহরণ \(8.\) প্রমাণ কর যে, \(\sin{10^{o}}\sin{50^{o}}\sin{70^{o}}=\frac{1}{8}\)
উত্তরঃ \(\frac{b^2-a^2}{b^2+a^2}\)
কুঃ২০১৭।
উদাহরণ \(6.\) যদি \(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\) হয়, তবে প্রমাণ কর যে, \(\sin{\frac{1}{2}(x-y)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
কুঃ২০১৯; বঃ২০১৭।
উদাহরণ \(7.\) যদি \(\alpha+\beta=\theta\) এবং \(\cos{\alpha}=k\cos{\beta}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(\alpha-\beta)}=\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\)
উদাহরণ \(8.\) প্রমাণ কর যে, \(\sin{10^{o}}\sin{50^{o}}\sin{70^{o}}=\frac{1}{8}\)
উদাহরণ \(1.\) প্রমাণ কর যে, \(\tan{20^{o}}\tan{40^{o}}\tan{80^{o}}=\sqrt{3}\)
রাঃ ২০১০; কুঃ২০০৯; বঃ২০০৭,২০০৩; চঃ২০১৯,২০০৬; ঢাঃ২০১৭; বুটেক্সঃ২০১১-১২।
সমাধানঃ
\(L.S=\tan{20^{o}}\tan{40^{o}}\tan{80^{o}}\)
\(=\tan{20^{o}}\tan{(60^{o}-20^{o})}\tan{(60^{o}+20^{o})}\) ➜ \(\because 40^{o}=60^{o}-20^{o}\)
এবং \(80^{o}=60^{o}+20^{o}\)
\(=\tan{20^{o}}\times\frac{\tan{60^{o}}-\tan{20^{o}}}{1+\tan{60^{o}}\tan{20^{o}}}\times\frac{\tan{60^{o}}+\tan{20^{o}}}{1-\tan{60^{o}}\tan{20^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
এবং \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\tan{20^{o}}\times\frac{\sqrt{3}-\tan{20^{o}}}{1+\sqrt{3}\tan{20^{o}}}\times\frac{\sqrt{3}+\tan{20^{o}}}{1-\sqrt{3}\tan{20^{o}}}\) ➜ \(\because \tan{60^{o}}=\sqrt{3}\)
\(=\tan{20^{o}}\times\frac{(\sqrt{3})^2-\tan^2{20^{o}}}{1^2-(\sqrt{3}\tan{20^{o}})^2}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(=\tan{20^{o}}\times\frac{3-\tan^2{20^{o}}}{1-3\tan^2{20^{o}}}\)
\(=\frac{3\tan{20^{o}}-\tan^3{20^{o}}}{1-3\tan^2{20^{o}}}\)
\(=\tan{(3\times20^{o})}\) ➜ \(\because \frac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}}=\tan{3A}\)
\(=\tan{60^{o}}\)
\(=\sqrt{3}\) ➜ \(\because \tan{60^{o}}=\sqrt{3}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{20^{o}}\tan{(60^{o}-20^{o})}\tan{(60^{o}+20^{o})}\) ➜ \(\because 40^{o}=60^{o}-20^{o}\)
এবং \(80^{o}=60^{o}+20^{o}\)
\(=\tan{20^{o}}\times\frac{\tan{60^{o}}-\tan{20^{o}}}{1+\tan{60^{o}}\tan{20^{o}}}\times\frac{\tan{60^{o}}+\tan{20^{o}}}{1-\tan{60^{o}}\tan{20^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
এবং \(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\tan{20^{o}}\times\frac{\sqrt{3}-\tan{20^{o}}}{1+\sqrt{3}\tan{20^{o}}}\times\frac{\sqrt{3}+\tan{20^{o}}}{1-\sqrt{3}\tan{20^{o}}}\) ➜ \(\because \tan{60^{o}}=\sqrt{3}\)
\(=\tan{20^{o}}\times\frac{(\sqrt{3})^2-\tan^2{20^{o}}}{1^2-(\sqrt{3}\tan{20^{o}})^2}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(=\tan{20^{o}}\times\frac{3-\tan^2{20^{o}}}{1-3\tan^2{20^{o}}}\)
\(=\frac{3\tan{20^{o}}-\tan^3{20^{o}}}{1-3\tan^2{20^{o}}}\)
\(=\tan{(3\times20^{o})}\) ➜ \(\because \frac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}}=\tan{3A}\)
\(=\tan{60^{o}}\)
\(=\sqrt{3}\) ➜ \(\because \tan{60^{o}}=\sqrt{3}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(2.\) যদি \(a\cos{\alpha}+b\sin{\alpha}=a\cos{\beta}+b\sin{\beta}\) হয় তবে প্রমাণ কর যে, \(\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}=\frac{a^2-b^2}{a^2+b^2}\)
কুঃ২০০৮; সিঃ২০০৩।
সমাধানঃ
দেওয়া আছে,
\(a\cos{\alpha}+b\sin{\alpha}=a\cos{\beta}+b\sin{\beta}\)
\(\Rightarrow a\cos{\alpha}-a\cos{\beta}=b\sin{\beta}-b\sin{\alpha}\)
\(\Rightarrow a(\cos{\alpha}-\cos{\beta})=b(\sin{\beta}-\sin{\alpha})\)
\(\Rightarrow a\times2\sin{\left(\frac{\alpha+\beta}{2}\right)}\sin{\left(\frac{\beta-\alpha}{2}\right)}=b\times2\cos{\left(\frac{\alpha+\beta}{2}\right)}\sin{\left(\frac{\beta-\alpha}{2}\right)}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow a\sin{\left(\frac{\alpha+\beta}{2}\right)}=b\cos{\left(\frac{\alpha+\beta}{2}\right)}\)
\(\Rightarrow \frac{a}{b}=\frac{\cos{\left(\frac{\alpha+\beta}{2}\right)}}{\sin{\left(\frac{\alpha+\beta}{2}\right)}}\)
\(\Rightarrow \frac{a^2}{b^2}=\frac{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}}{\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{a^2-b^2}{a^2+b^2}=\frac{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}+\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{a^2-b^2}{a^2+b^2}=\frac{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}{\sin^2{\left(\frac{\alpha+\beta}{2}\right)}+\cos^2{\left(\frac{\alpha+\beta}{2}\right)}}\)
\(\Rightarrow \frac{a^2-b^2}{a^2+b^2}=\frac{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}{1}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow \frac{a^2-b^2}{a^2+b^2}=\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}\)
\(\therefore \cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}=\frac{a^2-b^2}{a^2+b^2}\)
(প্রমাণিত)
\(a\cos{\alpha}+b\sin{\alpha}=a\cos{\beta}+b\sin{\beta}\)
\(\Rightarrow a\cos{\alpha}-a\cos{\beta}=b\sin{\beta}-b\sin{\alpha}\)
\(\Rightarrow a(\cos{\alpha}-\cos{\beta})=b(\sin{\beta}-\sin{\alpha})\)
\(\Rightarrow a\times2\sin{\left(\frac{\alpha+\beta}{2}\right)}\sin{\left(\frac{\beta-\alpha}{2}\right)}=b\times2\cos{\left(\frac{\alpha+\beta}{2}\right)}\sin{\left(\frac{\beta-\alpha}{2}\right)}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow a\sin{\left(\frac{\alpha+\beta}{2}\right)}=b\cos{\left(\frac{\alpha+\beta}{2}\right)}\)
\(\Rightarrow \frac{a}{b}=\frac{\cos{\left(\frac{\alpha+\beta}{2}\right)}}{\sin{\left(\frac{\alpha+\beta}{2}\right)}}\)
\(\Rightarrow \frac{a^2}{b^2}=\frac{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}}{\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{a^2-b^2}{a^2+b^2}=\frac{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}+\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{a^2-b^2}{a^2+b^2}=\frac{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}{\sin^2{\left(\frac{\alpha+\beta}{2}\right)}+\cos^2{\left(\frac{\alpha+\beta}{2}\right)}}\)
\(\Rightarrow \frac{a^2-b^2}{a^2+b^2}=\frac{\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}}{1}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow \frac{a^2-b^2}{a^2+b^2}=\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}\)
\(\therefore \cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}=\frac{a^2-b^2}{a^2+b^2}\)
(প্রমাণিত)
উদাহরণ \(3.\) \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হলে, প্রমাণ কর যে, \(\cos{(\alpha+\beta)}=\frac{b^2-a^2}{b^2+a^2}\)
সিঃ২০১৬,২০১১,২০০১; কুঃ২০১৪; রাঃ২০০৮,২০০৩; কুয়েটঃ২০১১-২০১২,২০০৯-২০১০।
সমাধানঃ
দেওয়া আছে,
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ........(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b .........(2)\)
\((1)\) কে \((2)\) দ্বারা ভাগ করে,
\(\frac{\sin{\alpha}+\sin{\beta}}{\cos{\alpha}+\cos{\beta}}=\frac{a}{b}\)
\(\Rightarrow \frac{2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}{2\cos{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}=\frac{a}{b}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{\alpha+\beta}{2}}}{\cos{\frac{\alpha+\beta}{2}}}=\frac{a}{b}\)
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}}{\cos^2{\frac{\alpha+\beta}{2}}}=\frac{a^2}{b^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}-\cos^2{\frac{\alpha+\beta}{2}}}{\sin^2{\frac{\alpha+\beta}{2}}+\cos^2{\frac{\alpha+\beta}{2}}}=\frac{a^2-b^2}{a^2+b^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}-\cos^2{\frac{\alpha+\beta}{2}}}{1}=\frac{a^2-b^2}{a^2+b^2}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow -\left(\cos^2{\frac{\alpha+\beta}{2}}-\sin^2{\frac{\alpha+\beta}{2}}\right)=-\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \cos{2\frac{\alpha+\beta}{2}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
\(\therefore \cos{(\alpha+\beta)}=\frac{b^2-a^2}{b^2+a^2}\)
(প্রমাণিত)
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ........(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b .........(2)\)
\((1)\) কে \((2)\) দ্বারা ভাগ করে,
\(\frac{\sin{\alpha}+\sin{\beta}}{\cos{\alpha}+\cos{\beta}}=\frac{a}{b}\)
\(\Rightarrow \frac{2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}{2\cos{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}=\frac{a}{b}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{\alpha+\beta}{2}}}{\cos{\frac{\alpha+\beta}{2}}}=\frac{a}{b}\)
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}}{\cos^2{\frac{\alpha+\beta}{2}}}=\frac{a^2}{b^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}-\cos^2{\frac{\alpha+\beta}{2}}}{\sin^2{\frac{\alpha+\beta}{2}}+\cos^2{\frac{\alpha+\beta}{2}}}=\frac{a^2-b^2}{a^2+b^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}-\cos^2{\frac{\alpha+\beta}{2}}}{1}=\frac{a^2-b^2}{a^2+b^2}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow -\left(\cos^2{\frac{\alpha+\beta}{2}}-\sin^2{\frac{\alpha+\beta}{2}}\right)=-\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \cos{2\frac{\alpha+\beta}{2}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
\(\therefore \cos{(\alpha+\beta)}=\frac{b^2-a^2}{b^2+a^2}\)
(প্রমাণিত)
উদাহরণ \(4.\) \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হলে, প্রমাণ কর যে, \(\cos^2{\left(\frac{\alpha+\beta}{2}\right)}-\sin^2{\left(\frac{\alpha+\beta}{2}\right)}=\frac{b^2-a^2}{b^2+a^2}\)
সিঃ২০০৩।
সমাধানঃ
দেওয়া আছে,
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ........(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b .........(2)\)
\((1)\) কে \((2)\) দ্বারা ভাগ করে,
\(\frac{\sin{\alpha}+\sin{\beta}}{\cos{\alpha}+\cos{\beta}}=\frac{a}{b}\)
\(\Rightarrow \frac{2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}{2\cos{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}=\frac{a}{b}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{\alpha+\beta}{2}}}{\cos{\frac{\alpha+\beta}{2}}}=\frac{a}{b}\)
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}}{\cos^2{\frac{\alpha+\beta}{2}}}=\frac{a^2}{b^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}-\cos^2{\frac{\alpha+\beta}{2}}}{\sin^2{\frac{\alpha+\beta}{2}}+\cos^2{\frac{\alpha+\beta}{2}}}=\frac{a^2-b^2}{a^2+b^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}-\cos^2{\frac{\alpha+\beta}{2}}}{1}=\frac{a^2-b^2}{a^2+b^2}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow -\left(\cos^2{\frac{\alpha+\beta}{2}}-\sin^2{\frac{\alpha+\beta}{2}}\right)=-\frac{b^2-a^2}{b^2+a^2}\)
\(\therefore \cos^2{\frac{\alpha+\beta}{2}}-\sin^2{\frac{\alpha+\beta}{2}}=\frac{b^2-a^2}{b^2+a^2}\)
(প্রমাণিত)
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ........(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b .........(2)\)
\((1)\) কে \((2)\) দ্বারা ভাগ করে,
\(\frac{\sin{\alpha}+\sin{\beta}}{\cos{\alpha}+\cos{\beta}}=\frac{a}{b}\)
\(\Rightarrow \frac{2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}{2\cos{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}=\frac{a}{b}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{\alpha+\beta}{2}}}{\cos{\frac{\alpha+\beta}{2}}}=\frac{a}{b}\)
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}}{\cos^2{\frac{\alpha+\beta}{2}}}=\frac{a^2}{b^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}-\cos^2{\frac{\alpha+\beta}{2}}}{\sin^2{\frac{\alpha+\beta}{2}}+\cos^2{\frac{\alpha+\beta}{2}}}=\frac{a^2-b^2}{a^2+b^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin^2{\frac{\alpha+\beta}{2}}-\cos^2{\frac{\alpha+\beta}{2}}}{1}=\frac{a^2-b^2}{a^2+b^2}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow -\left(\cos^2{\frac{\alpha+\beta}{2}}-\sin^2{\frac{\alpha+\beta}{2}}\right)=-\frac{b^2-a^2}{b^2+a^2}\)
\(\therefore \cos^2{\frac{\alpha+\beta}{2}}-\sin^2{\frac{\alpha+\beta}{2}}=\frac{b^2-a^2}{b^2+a^2}\)
(প্রমাণিত)
উদাহরণ \(5.\) \(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\) হলে, \(\cos{(x+y)}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{b^2-a^2}{b^2+a^2}\)
উত্তরঃ \(\frac{b^2-a^2}{b^2+a^2}\)
কুঃ২০১৭।
সমাধানঃ
দেওয়া আছে,
\(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\)
ধরি,
\(\sin{x}+\sin{y}=a ........(1)\)
এবং \(\cos{x}+\cos{y}=b .........(2)\)
\((1)\) কে \((2)\) দ্বারা ভাগ করে,
\(\frac{\sin{x}+\sin{y}}{\cos{x}+\cos{y}}=\frac{a}{b}\)
\(\Rightarrow \frac{2\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}{2\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}=\frac{a}{b}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{x+y}{2}}}{\cos{\frac{x+y}{2}}}=\frac{a}{b}\)
\(\Rightarrow \frac{\sin^2{\frac{x+y}{2}}}{\cos^2{\frac{x+y}{2}}}=\frac{a^2}{b^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\sin^2{\frac{x+y}{2}}-\cos^2{\frac{x+y}{2}}}{\sin^2{\frac{x+y}{2}}+\cos^2{\frac{x+y}{2}}}=\frac{a^2-b^2}{a^2+b^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin^2{\frac{x+y}{2}}-\cos^2{\frac{x+y}{2}}}{1}=\frac{a^2-b^2}{a^2+b^2}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow -\left(\cos^2{\frac{x+y}{2}}-\sin^2{\frac{x+y}{2}}\right)=-\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \cos^2{\frac{x+y}{2}}-\sin^2{\frac{x+y}{2}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \cos{2\frac{x+y}{2}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
\(\therefore \cos{(x+y)}=\frac{b^2-a^2}{b^2+a^2}\)
\(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\)
ধরি,
\(\sin{x}+\sin{y}=a ........(1)\)
এবং \(\cos{x}+\cos{y}=b .........(2)\)
\((1)\) কে \((2)\) দ্বারা ভাগ করে,
\(\frac{\sin{x}+\sin{y}}{\cos{x}+\cos{y}}=\frac{a}{b}\)
\(\Rightarrow \frac{2\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}{2\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}=\frac{a}{b}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{x+y}{2}}}{\cos{\frac{x+y}{2}}}=\frac{a}{b}\)
\(\Rightarrow \frac{\sin^2{\frac{x+y}{2}}}{\cos^2{\frac{x+y}{2}}}=\frac{a^2}{b^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\sin^2{\frac{x+y}{2}}-\cos^2{\frac{x+y}{2}}}{\sin^2{\frac{x+y}{2}}+\cos^2{\frac{x+y}{2}}}=\frac{a^2-b^2}{a^2+b^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\sin^2{\frac{x+y}{2}}-\cos^2{\frac{x+y}{2}}}{1}=\frac{a^2-b^2}{a^2+b^2}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow -\left(\cos^2{\frac{x+y}{2}}-\sin^2{\frac{x+y}{2}}\right)=-\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \cos^2{\frac{x+y}{2}}-\sin^2{\frac{x+y}{2}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \cos{2\frac{x+y}{2}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
\(\therefore \cos{(x+y)}=\frac{b^2-a^2}{b^2+a^2}\)
উদাহরণ \(6.\) যদি \(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\) হয়, তবে প্রমাণ কর যে, \(\sin{\frac{1}{2}(x-y)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
কুঃ২০১৯; বঃ২০১৭।
সমাধানঃ
দেওয়া আছে,
\(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\)
ধরি,
\(\sin{x}+\sin{y}=a ........(1)\)
এবং \(\cos{x}+\cos{y}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{x}+\sin{y})^2+(\cos{x}+\cos{y})^2=a^2+b^2\)
\(\Rightarrow \sin^2{x}+\sin^2{y}+2\sin{x}\sin{y}+\cos^2{x}+\cos^2{y}+2\cos{x}\cos{y}=a^2+b^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{x}+\cos^2{x})+(\sin^2{y}+\cos^2{y})+2(\cos{x}\cos{y}+\sin{x}\sin{y})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(x-y)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(x-y)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{x-y}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{x-y}{2}\right)}=a^2+b^2\)
\(\Rightarrow 4\left\{1-\sin^2{\left(\frac{x-y}{2}\right)}\right\}=a^2+b^2\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 4-4\sin^2{\left(\frac{x-y}{2}\right)}=a^2+b^2\)
\(\Rightarrow 4-a^2-b^2=4\sin^2{\left(\frac{x-y}{2}\right)}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 4\sin^2{\left(\frac{x-y}{2}\right)}=4-a^2-b^2\) ➜ পক্ষান্তর করে।
\(\Rightarrow \sin^2{\left(\frac{x-y}{2}\right)}=\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin{\left(\frac{x-y}{2}\right)}=\pm\sqrt{\frac{1}{4}(4-a^2-b^2)}\)
\(\therefore \sin{\frac{1}{2}(x-y)}=\pm\frac{1}{2}\sqrt{(4-a^2-b^2)}\)
(প্রমাণিত)
\(\sin{x}+\sin{y}=a\) এবং \(\cos{x}+\cos{y}=b\)
ধরি,
\(\sin{x}+\sin{y}=a ........(1)\)
এবং \(\cos{x}+\cos{y}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{x}+\sin{y})^2+(\cos{x}+\cos{y})^2=a^2+b^2\)
\(\Rightarrow \sin^2{x}+\sin^2{y}+2\sin{x}\sin{y}+\cos^2{x}+\cos^2{y}+2\cos{x}\cos{y}=a^2+b^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{x}+\cos^2{x})+(\sin^2{y}+\cos^2{y})+2(\cos{x}\cos{y}+\sin{x}\sin{y})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(x-y)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(x-y)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{x-y}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{x-y}{2}\right)}=a^2+b^2\)
\(\Rightarrow 4\left\{1-\sin^2{\left(\frac{x-y}{2}\right)}\right\}=a^2+b^2\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 4-4\sin^2{\left(\frac{x-y}{2}\right)}=a^2+b^2\)
\(\Rightarrow 4-a^2-b^2=4\sin^2{\left(\frac{x-y}{2}\right)}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 4\sin^2{\left(\frac{x-y}{2}\right)}=4-a^2-b^2\) ➜ পক্ষান্তর করে।
\(\Rightarrow \sin^2{\left(\frac{x-y}{2}\right)}=\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin{\left(\frac{x-y}{2}\right)}=\pm\sqrt{\frac{1}{4}(4-a^2-b^2)}\)
\(\therefore \sin{\frac{1}{2}(x-y)}=\pm\frac{1}{2}\sqrt{(4-a^2-b^2)}\)
(প্রমাণিত)
উদাহরণ \(7.\) যদি \(\alpha+\beta=\theta\) এবং \(\cos{\alpha}=k\cos{\beta}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(\alpha-\beta)}=\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\)
সমাধানঃ
দেওয়া আছে,
\(\alpha+\beta=\theta\) এবং \(\cos{\alpha}=m\cos{\beta}\)
\(\Rightarrow \frac{\cos{\alpha}}{\cos{\beta}}=k\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\cos{\alpha}-\cos{\beta}}{\cos{\alpha}+\cos{\beta}}=\frac{k-1}{k+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\beta-\alpha}{2}}}{2\cos{\frac{\beta-\alpha}{2}}\cos{\frac{\beta-\alpha}{2}}}=\frac{k-1}{k+1}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{\beta-\alpha}{2}}}{\cos{\frac{\beta-\alpha}{2}}}=\frac{k-1}{k+1}\frac{\cos{\frac{\alpha+\beta}{2}}}{\sin{\frac{\alpha+\beta}{2}}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{\frac{\beta-\alpha}{2}}=\frac{k-1}{k+1}\cot{\frac{\alpha+\beta}{2}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\Rightarrow \tan{\left\{-\left(\frac{\alpha-\beta}{2}\right)\right\}}=-\frac{1-k}{1+k}\cot{\frac{\alpha+\beta}{2}}\)
\(\Rightarrow -\tan{\frac{\alpha-\beta}{2}}=-\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\) ➜ \(\because \tan{(-P)}=-\tan{P}\)
এবং \(\alpha+\beta=\theta\)
\(\Rightarrow \tan{\frac{\alpha-\beta}{2}}=\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\)
\(\therefore \tan{\frac{1}{2}(\alpha-\beta)}=\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\)
(প্রমাণিত)
\(\alpha+\beta=\theta\) এবং \(\cos{\alpha}=m\cos{\beta}\)
\(\Rightarrow \frac{\cos{\alpha}}{\cos{\beta}}=k\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\cos{\alpha}-\cos{\beta}}{\cos{\alpha}+\cos{\beta}}=\frac{k-1}{k+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\beta-\alpha}{2}}}{2\cos{\frac{\beta-\alpha}{2}}\cos{\frac{\beta-\alpha}{2}}}=\frac{k-1}{k+1}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{\beta-\alpha}{2}}}{\cos{\frac{\beta-\alpha}{2}}}=\frac{k-1}{k+1}\frac{\cos{\frac{\alpha+\beta}{2}}}{\sin{\frac{\alpha+\beta}{2}}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{\frac{\beta-\alpha}{2}}=\frac{k-1}{k+1}\cot{\frac{\alpha+\beta}{2}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\Rightarrow \tan{\left\{-\left(\frac{\alpha-\beta}{2}\right)\right\}}=-\frac{1-k}{1+k}\cot{\frac{\alpha+\beta}{2}}\)
\(\Rightarrow -\tan{\frac{\alpha-\beta}{2}}=-\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\) ➜ \(\because \tan{(-P)}=-\tan{P}\)
এবং \(\alpha+\beta=\theta\)
\(\Rightarrow \tan{\frac{\alpha-\beta}{2}}=\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\)
\(\therefore \tan{\frac{1}{2}(\alpha-\beta)}=\frac{1-k}{1+k}\cot{\frac{\theta}{2}}\)
(প্রমাণিত)
উদাহরণ \(8.\) প্রমাণ কর যে, \(\sin{10^{o}}\sin{50^{o}}\sin{70^{o}}=\frac{1}{8}\)
সমাধানঃ
\(L.S=\sin{10^{o}}\sin{50^{o}}\sin{70^{o}}=\frac{1}{8}\)
\(=\frac{1}{2}\sin{10^{o}}(2\sin{70^{o}}\sin{50^{o}})\)
\(=\frac{1}{2}\sin{10^{o}}\{\cos{(70^{o}-50^{o})}-\cos{(70^{o}+50^{o})}\}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{1}{2}\sin{10^{o}}\{\cos{20^{o}}-\cos{120^{o}}\}\)
\(=\frac{1}{2}\sin{10^{o}}\left\{\cos{20^{o}}+\frac{1}{2}\right\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{1}{2}\sin{10^{o}}\cos{20^{o}}+\frac{1}{4}\sin{10^{o}}\)
\(=\frac{1}{4}(2\cos{20^{o}}\sin{10^{o}})+\frac{1}{4}\sin{10^{o}}\)
\(=\frac{1}{4}\{\sin{(20^{o}+10^{o})}-\sin{(20^{o}-10^{o})}\}+\frac{1}{4}\sin{10^{o}}\) ➜ \(\because 2\cos{A}\sin{B}=\sin{(A+B)}-\sin{(A-B)}\)
\(=\frac{1}{4}\{\sin{30^{o}}-\sin{10^{o}}\}+\frac{1}{4}\sin{10^{o}}\)
\(=\frac{1}{4}\left\{\frac{1}{2}-\sin{10^{o}}\right\}+\frac{1}{4}\sin{10^{o}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{8}-\frac{1}{4}\sin{10^{o}}+\frac{1}{4}\sin{10^{o}}\)
\(=\frac{1}{8}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\sin{10^{o}}(2\sin{70^{o}}\sin{50^{o}})\)
\(=\frac{1}{2}\sin{10^{o}}\{\cos{(70^{o}-50^{o})}-\cos{(70^{o}+50^{o})}\}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{1}{2}\sin{10^{o}}\{\cos{20^{o}}-\cos{120^{o}}\}\)
\(=\frac{1}{2}\sin{10^{o}}\left\{\cos{20^{o}}+\frac{1}{2}\right\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{1}{2}\sin{10^{o}}\cos{20^{o}}+\frac{1}{4}\sin{10^{o}}\)
\(=\frac{1}{4}(2\cos{20^{o}}\sin{10^{o}})+\frac{1}{4}\sin{10^{o}}\)
\(=\frac{1}{4}\{\sin{(20^{o}+10^{o})}-\sin{(20^{o}-10^{o})}\}+\frac{1}{4}\sin{10^{o}}\) ➜ \(\because 2\cos{A}\sin{B}=\sin{(A+B)}-\sin{(A-B)}\)
\(=\frac{1}{4}\{\sin{30^{o}}-\sin{10^{o}}\}+\frac{1}{4}\sin{10^{o}}\)
\(=\frac{1}{4}\left\{\frac{1}{2}-\sin{10^{o}}\right\}+\frac{1}{4}\sin{10^{o}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{8}-\frac{1}{4}\sin{10^{o}}+\frac{1}{4}\sin{10^{o}}\)
\(=\frac{1}{8}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7C\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.1.(i)\) \(\cos{40^{o}}+\cos{80^{o}}+\cos{160^{o}}=0\)\(Q.1.(ii)\) \(\sin{50^{o}}-\sin{70^{o}}+\sin{10^{o}}=0\)
\(Q.1.(iii)\) \(\cos{(60^{o}-\theta)}+\cos{(60^{o}+\theta)}-\cos{\theta}=0\)
\(Q.1.(iv)\) \(\sin{\theta}+\sin{(120^{o}+\theta)}+\sin{(240^{o}+\theta)}=0\)
ঢাঃ২০১২ ।
\(Q.1.(v)\) \(\cos{20^{o}}+\cos{100^{o}}+\cos{140^{o}}=0\)
\(Q.1.(vi)\) \(\sin{5^{o}}+\sin{125^{o}}+\sin{245^{o}}=0\)
\(Q.1.(vii)\) \(\cos{70^{o}}-\cos{10^{o}}+\sin{40^{o}}=0\)
\(Q.1.(viii)\) \(\cos{\theta}+\cos{(120^{o}-\theta)}+\cos{(120^{o}+\theta)}=0\)
প্রমাণ করঃ
\(Q.1.(ix)\) \(\cos{(120^{o}+\theta)}+\cos{(240^{o}+\theta)}+\cos{\theta}=0\)\(Q.1.(x)\) \(\sin{A}+\sin{(A+120^{o})}+\sin{(A-120^{o})}=0\)
\(Q.1.(xi)\) \(\cos{A}+\cos{(120^{o}-A)}+\cos{(120^{o}+A)}=0\)
\(Q.1.(xii)\) \(\sin{(60^{o}-\theta)}-\sin{(60^{o}+\theta)}+\sin{\theta}=0\)
\(Q.1.(xiii)\) \(\sin{10^{o}}+\sin{50^{o}}+\sin{250^{o}}=0\)
\(Q.1.(xiv)\) \(\cos{(36^{o}-\theta)}\cos{(36^{o}+\theta)}+\cos{(54^{o}+\theta)}\cos{(54^{o}-\theta)}=\cos{2\theta}\)
\(Q.1.(xv)\) \(\frac{\cos{A}+\cos{B}}{\cos{A}-\cos{B}}=\cot{\frac{1}{2}(A+B)}\cot{\frac{1}{2}(B-A)}\)
\(Q.1.(xvi)\) \(\sin{(\alpha+\beta+\gamma)}+\sin{(\alpha-\beta-\gamma)}+\sin{(\alpha+\beta-\gamma)}+\)\(\sin{(\alpha-\beta+\gamma)}=4\sin{\alpha}\cos{\beta}\cos{\gamma}\)
প্রমাণ করঃ
\(Q.1.(i)\) \(\cos{40^{o}}+\cos{80^{o}}+\cos{160^{o}}=0\)সমাধানঃ
\(L.S=\cos{40^{o}}+\cos{80^{o}}+\cos{160^{o}}\)
\(=\cos{40^{o}}+(\cos{80^{o}}+\cos{160^{o}})\)
\(=\cos{40^{o}}+2\cos{\frac{160^{o}+80^{o}}{2}}\cos{\frac{160^{o}-80^{o}}{2}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\cos{40^{o}}+2\cos{\frac{240^{o}}{2}}\cos{\frac{80^{o}}{2}}\)
\(=\cos{40^{o}}+2\cos{120^{o}}\cos{40^{o}}\)
\(=\cos{40^{o}}+2\times-\frac{1}{2}\cos{40^{o}}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\cos{40^{o}}-\cos{40^{o}}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{40^{o}}+(\cos{80^{o}}+\cos{160^{o}})\)
\(=\cos{40^{o}}+2\cos{\frac{160^{o}+80^{o}}{2}}\cos{\frac{160^{o}-80^{o}}{2}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\cos{40^{o}}+2\cos{\frac{240^{o}}{2}}\cos{\frac{80^{o}}{2}}\)
\(=\cos{40^{o}}+2\cos{120^{o}}\cos{40^{o}}\)
\(=\cos{40^{o}}+2\times-\frac{1}{2}\cos{40^{o}}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\cos{40^{o}}-\cos{40^{o}}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(ii)\) \(\sin{50^{o}}-\sin{70^{o}}+\sin{10^{o}}=0\)সমাধানঃ
\(L.S=\sin{50^{o}}-\sin{70^{o}}+\sin{10^{o}}\)
\(=-(\sin{70^{o}}-\sin{50^{o}})+\sin{10^{o}}\)
\(=-2\cos{\frac{70^{o}+50^{o}}{2}}\sin{\frac{70^{o}-50^{o}}{2}}+\sin{10^{o}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=-2\cos{\frac{120^{o}}{2}}\sin{\frac{20^{o}}{2}}+\sin{10^{o}}\)
\(=-2\cos{60^{o}}\sin{10^{o}}+\sin{10^{o}}\)
\(=-2\times\frac{1}{2}\sin{10^{o}}+\sin{10^{o}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=-\sin{10^{o}}+\sin{10^{o}}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=-(\sin{70^{o}}-\sin{50^{o}})+\sin{10^{o}}\)
\(=-2\cos{\frac{70^{o}+50^{o}}{2}}\sin{\frac{70^{o}-50^{o}}{2}}+\sin{10^{o}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=-2\cos{\frac{120^{o}}{2}}\sin{\frac{20^{o}}{2}}+\sin{10^{o}}\)
\(=-2\cos{60^{o}}\sin{10^{o}}+\sin{10^{o}}\)
\(=-2\times\frac{1}{2}\sin{10^{o}}+\sin{10^{o}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=-\sin{10^{o}}+\sin{10^{o}}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(iii)\) \(\cos{(60^{o}-\theta)}+\cos{(60^{o}+\theta)}-\cos{\theta}=0\)সমাধানঃ
\(L.S=\cos{(60^{o}-\theta)}+\cos{(60^{o}+\theta)}-\cos{\theta}\)
\(=2\cos{60^{o}}\cos{\theta}-\cos{\theta}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=2\times\frac{1}{2}\cos{\theta}-\cos{\theta}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\cos{\theta}-\cos{\theta}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\cos{60^{o}}\cos{\theta}-\cos{\theta}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=2\times\frac{1}{2}\cos{\theta}-\cos{\theta}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\cos{\theta}-\cos{\theta}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(iv)\) \(\sin{\theta}+\sin{(120^{o}+\theta)}+\sin{(240^{o}+\theta)}=0\)ঢাঃ২০১২ ।
সমাধানঃ
\(L.S=\sin{\theta}+\sin{(120^{o}+\theta)}+\sin{(240^{o}+\theta)}\)
\(=\{\sin{(240^{o}+\theta)}+\sin{\theta}\}+\sin{(120^{o}+\theta)}\)
\(=2\sin{\frac{240^{o}+\theta+\theta}{2}}\cos{\frac{240^{o}+\theta-\theta}{2}}+\sin{(120^{o}+\theta)}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\sin{\frac{240^{o}+2\theta}{2}}\cos{\frac{240^{o}}{2}}+\sin{(120^{o}+\theta)}\)
\(=2\sin{\frac{2(120^{o}+\theta)}{2}}\cos{120^{o}}+\sin{(120^{o}+\theta)}\)
\(=2\sin{(120^{o}+\theta)}\times-\frac{1}{2}+\sin{(120^{o}+\theta)}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=-\sin{(120^{o}+\theta)}+\sin{(120^{o}+\theta)}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\{\sin{(240^{o}+\theta)}+\sin{\theta}\}+\sin{(120^{o}+\theta)}\)
\(=2\sin{\frac{240^{o}+\theta+\theta}{2}}\cos{\frac{240^{o}+\theta-\theta}{2}}+\sin{(120^{o}+\theta)}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\sin{\frac{240^{o}+2\theta}{2}}\cos{\frac{240^{o}}{2}}+\sin{(120^{o}+\theta)}\)
\(=2\sin{\frac{2(120^{o}+\theta)}{2}}\cos{120^{o}}+\sin{(120^{o}+\theta)}\)
\(=2\sin{(120^{o}+\theta)}\times-\frac{1}{2}+\sin{(120^{o}+\theta)}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=-\sin{(120^{o}+\theta)}+\sin{(120^{o}+\theta)}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(v)\) \(\cos{20^{o}}+\cos{100^{o}}+\cos{140^{o}}=0\)সমাধানঃ
\(L.S=\cos{20^{o}}+\cos{100^{o}}+\cos{140^{o}}\)
\(=\cos{100^{o}}+(\cos{20^{o}}+\cos{140^{o}})\)
\(=\cos{100^{o}}+2\cos{\frac{140^{o}+20^{o}}{2}}\cos{\frac{140^{o}-20^{o}}{2}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\cos{100^{o}}+2\cos{\frac{160^{o}}{2}}\cos{\frac{120^{o}}{2}}\)
\(=\cos{100^{o}}+2\cos{80^{o}}\cos{60^{o}}\)
\(=\cos{(90^{o}\times2-80^{o})}+2\times\frac{1}{2}\cos{80^{o}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
এবং \(100^{o}=90^{o}\times2-80^{o}\)
\(=-\cos{80^{o}}+\cos{80^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{100^{o}}+(\cos{20^{o}}+\cos{140^{o}})\)
\(=\cos{100^{o}}+2\cos{\frac{140^{o}+20^{o}}{2}}\cos{\frac{140^{o}-20^{o}}{2}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\cos{100^{o}}+2\cos{\frac{160^{o}}{2}}\cos{\frac{120^{o}}{2}}\)
\(=\cos{100^{o}}+2\cos{80^{o}}\cos{60^{o}}\)
\(=\cos{(90^{o}\times2-80^{o})}+2\times\frac{1}{2}\cos{80^{o}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
এবং \(100^{o}=90^{o}\times2-80^{o}\)
\(=-\cos{80^{o}}+\cos{80^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(vi)\) \(\sin{5^{o}}+\sin{125^{o}}+\sin{245^{o}}=0\)সমাধানঃ
\(L.S=\sin{5^{o}}+\sin{125^{o}}+\sin{245^{o}}\)
\(=\sin{125^{o}}+(\sin{245^{o}}+\sin{5^{o}})\)
\(=\sin{125^{o}}+2\sin{\frac{245^{o}+5^{o}}{2}}\cos{\frac{245^{o}-5^{o}}{2}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\sin{125^{o}}+2\sin{\frac{250^{o}}{2}}\cos{\frac{240^{o}}{2}}\)
\(=\sin{125^{o}}+2\sin{125^{o}}\cos{120^{o}}\)
\(=\sin{125^{o}}+2\sin{125^{o}}\times-\frac{1}{2}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\sin{125^{o}}-\sin{125^{o}}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{125^{o}}+(\sin{245^{o}}+\sin{5^{o}})\)
\(=\sin{125^{o}}+2\sin{\frac{245^{o}+5^{o}}{2}}\cos{\frac{245^{o}-5^{o}}{2}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\sin{125^{o}}+2\sin{\frac{250^{o}}{2}}\cos{\frac{240^{o}}{2}}\)
\(=\sin{125^{o}}+2\sin{125^{o}}\cos{120^{o}}\)
\(=\sin{125^{o}}+2\sin{125^{o}}\times-\frac{1}{2}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\sin{125^{o}}-\sin{125^{o}}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(vii)\) \(\cos{70^{o}}-\cos{10^{o}}+\sin{40^{o}}=0\)সমাধানঃ
\(L.S=\cos{70^{o}}-\cos{10^{o}}+\sin{40^{o}}\)
\(=-(\cos{10^{o}}-\cos{70^{o}})+\sin{40^{o}}\)
\(=-2\sin{\frac{70^{o}+10^{o}}{2}}\sin{\frac{70^{o}-10^{o}}{2}}+\sin{40^{o}}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=-2\sin{\frac{80^{o}}{2}}\sin{\frac{60^{o}}{2}}+\sin{40^{o}}\)
\(=-2\sin{40^{o}}\sin{30^{o}}+\sin{40^{o}}\)
\(=-2\sin{40^{o}}\times\frac{1}{2}+\sin{40^{o}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=-\sin{40^{o}}+\sin{40^{o}}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=-(\cos{10^{o}}-\cos{70^{o}})+\sin{40^{o}}\)
\(=-2\sin{\frac{70^{o}+10^{o}}{2}}\sin{\frac{70^{o}-10^{o}}{2}}+\sin{40^{o}}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=-2\sin{\frac{80^{o}}{2}}\sin{\frac{60^{o}}{2}}+\sin{40^{o}}\)
\(=-2\sin{40^{o}}\sin{30^{o}}+\sin{40^{o}}\)
\(=-2\sin{40^{o}}\times\frac{1}{2}+\sin{40^{o}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=-\sin{40^{o}}+\sin{40^{o}}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(viii)\) \(\cos{\theta}+\cos{(120^{o}-\theta)}+\cos{(120^{o}+\theta)}=0\)সমাধানঃ
\(L.S=\cos{\theta}+\cos{(120^{o}-\theta)}+\cos{(120^{o}+\theta)}\)
\(=\cos{\theta}+2\cos{120^{o}}\cos{\theta}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=\cos{\theta}+2\times-\frac{1}{2}\cos{\theta}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\cos{\theta}-\cos{\theta}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\theta}+2\cos{120^{o}}\cos{\theta}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=\cos{\theta}+2\times-\frac{1}{2}\cos{\theta}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\cos{\theta}-\cos{\theta}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(ix)\) \(\cos{(120^{o}+\theta)}+\cos{(240^{o}+\theta)}+\cos{\theta}=0\)সমাধানঃ
\(L.S=\cos{(120^{o}+\theta)}+\cos{(240^{o}+\theta)}+\cos{\theta}\)
\(=2\cos{\frac{240^{o}+\theta+120^{o}+\theta}{2}}\cos{\frac{240^{o}+\theta-120^{o}-\theta}{2}}+\cos{\theta}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\cos{\frac{360^{o}+2\theta}{2}}\cos{\frac{120^{o}}{2}}+\cos{\theta}\)
\(=2\cos{\frac{2(180^{o}+\theta)}{2}}\cos{60^{o}}+\cos{\theta}\)
\(=2\cos{(180^{o}+\theta)}\times\frac{1}{2}+\cos{\theta}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\cos{(90^{o}\times2+\theta)}+\cos{\theta}\)
\(=-\cos{\theta}+\cos{\theta}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি তৃতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\cos{\frac{240^{o}+\theta+120^{o}+\theta}{2}}\cos{\frac{240^{o}+\theta-120^{o}-\theta}{2}}+\cos{\theta}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\cos{\frac{360^{o}+2\theta}{2}}\cos{\frac{120^{o}}{2}}+\cos{\theta}\)
\(=2\cos{\frac{2(180^{o}+\theta)}{2}}\cos{60^{o}}+\cos{\theta}\)
\(=2\cos{(180^{o}+\theta)}\times\frac{1}{2}+\cos{\theta}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\cos{(90^{o}\times2+\theta)}+\cos{\theta}\)
\(=-\cos{\theta}+\cos{\theta}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি তৃতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(x)\) \(\sin{A}+\sin{(A+120^{o})}+\sin{(A-120^{o})}=0\)সমাধানঃ
\(L.S=\sin{A}+\sin{(A+120^{o})}+\sin{(A-120^{o})}\)
\(=\sin{A}+2\sin{A}\cos{120^{o}}\) ➜ \(\because \sin{(P+Q)}+\sin{(P-Q)}=2\sin{P}\cos{Q}\)
\(=\sin{A}+2\sin{A}\times-\frac{1}{2}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\sin{A}-\sin{A}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{A}+2\sin{A}\cos{120^{o}}\) ➜ \(\because \sin{(P+Q)}+\sin{(P-Q)}=2\sin{P}\cos{Q}\)
\(=\sin{A}+2\sin{A}\times-\frac{1}{2}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\sin{A}-\sin{A}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xi)\) \(\cos{A}+\cos{(120^{o}-A)}+\cos{(120^{o}+A)}=0\)সমাধানঃ
\(L.S=\cos{A}+\cos{(120^{o}-A)}+\cos{(120^{o}+A)}\)
\(=\cos{A}+2\cos{120^{o}}\cos{A}\) ➜ \(\because \cos{(P-Q)}+\cos{(P+Q)}=2\cos{P}\cos{Q}\)
\(=\cos{A}+2\times-\frac{1}{2}\cos{A}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\cos{A}-\cos{A}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{A}+2\cos{120^{o}}\cos{A}\) ➜ \(\because \cos{(P-Q)}+\cos{(P+Q)}=2\cos{P}\cos{Q}\)
\(=\cos{A}+2\times-\frac{1}{2}\cos{A}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\cos{A}-\cos{A}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xii)\) \(\sin{(60^{o}-\theta)}-\sin{(60^{o}+\theta)}+\sin{\theta}=0\)সমাধানঃ
\(L.S=\sin{(60^{o}-\theta)}-\sin{(60^{o}+\theta)}+\sin{\theta}\)
\(=-\{\sin{(60^{o}+\theta)}-\sin{(60^{o}-\theta)}\}+\sin{\theta}\)
\(=-2\cos{60^{o}}\sin{\theta}+\sin{\theta}\) ➜ \(\because \sin{(P+Q)}-\sin{(P-Q)}=2\cos{P}\sin{Q}\)
\(=-2\times\frac{1}{2}\sin{\theta}+\sin{\theta}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=-\sin{\theta}+\sin{\theta}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=-\{\sin{(60^{o}+\theta)}-\sin{(60^{o}-\theta)}\}+\sin{\theta}\)
\(=-2\cos{60^{o}}\sin{\theta}+\sin{\theta}\) ➜ \(\because \sin{(P+Q)}-\sin{(P-Q)}=2\cos{P}\sin{Q}\)
\(=-2\times\frac{1}{2}\sin{\theta}+\sin{\theta}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=-\sin{\theta}+\sin{\theta}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xiii)\) \(\sin{10^{o}}+\sin{50^{o}}+\sin{250^{o}}=0\)সমাধানঃ
\(L.S=\sin{10^{o}}+\sin{50^{o}}+\sin{250^{o}}\)
\(=(\sin{250^{o}}+\sin{10^{o}})+\sin{50^{o}}\)
\(=2\sin{\frac{250^{o}+10^{o}}{2}}\cos{\frac{250^{o}-10^{o}}{2}}+\sin{50^{o}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\sin{\frac{260^{o}}{2}}\cos{\frac{240^{o}}{2}}+\sin{50^{o}}\)
\(=2\sin{130^{o}}\cos{120^{o}}+\sin{50^{o}}\)
\(=2\sin{130^{o}}\times-\frac{1}{2}+\sin{50^{o}}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=-\sin{130^{o}}+\sin{50^{o}}\)
\(=-\sin{(90^{o}\times2-50^{o})}+\sin{50^{o}}\)➜ \(\because 130^{o}=90^{o}\times2-50^{o}\)
\(=-\sin{50^{o}}+\sin{50^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=(\sin{250^{o}}+\sin{10^{o}})+\sin{50^{o}}\)
\(=2\sin{\frac{250^{o}+10^{o}}{2}}\cos{\frac{250^{o}-10^{o}}{2}}+\sin{50^{o}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\sin{\frac{260^{o}}{2}}\cos{\frac{240^{o}}{2}}+\sin{50^{o}}\)
\(=2\sin{130^{o}}\cos{120^{o}}+\sin{50^{o}}\)
\(=2\sin{130^{o}}\times-\frac{1}{2}+\sin{50^{o}}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=-\sin{130^{o}}+\sin{50^{o}}\)
\(=-\sin{(90^{o}\times2-50^{o})}+\sin{50^{o}}\)➜ \(\because 130^{o}=90^{o}\times2-50^{o}\)
\(=-\sin{50^{o}}+\sin{50^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xiv)\) \(\cos{(36^{o}-\theta)}\cos{(36^{o}+\theta)}+\cos{(54^{o}+\theta)}\cos{(54^{o}-\theta)}=\cos{2\theta}\)সমাধানঃ
\(L.S=\cos{(36^{o}-\theta)}\cos{(36^{o}+\theta)}+\cos{(54^{o}+\theta)}\cos{(54^{o}-\theta)}\)
\(=\cos{(36^{o}-\theta)}\cos{(36^{o}+\theta)}+\cos{\{90^{o}\times1-(36^{o}-\theta)\}}\cos{\{90^{o}\times1-(36^{o}+\theta)\}}\) ➜ \(\because 54^{o}+\theta=90^{o}\times1-(36^{o}-\theta)\)
এবং \(54^{o}-\theta=90^{o}\times1-(36^{o}+\theta)\)
\(=\cos{(36^{o}-\theta)}\cos{(36^{o}+\theta)}+\sin{(36^{o}-\theta)}\sin{(36^{o}+\theta)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\cos{(36^{o}+\theta)}\cos{(36^{o}-\theta)}+\sin{(36^{o}+\theta)}\sin{(36^{o}-\theta)}\)
\(=\cos{(36^{o}+\theta-36^{o}+\theta)}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\cos{2\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{(36^{o}-\theta)}\cos{(36^{o}+\theta)}+\cos{\{90^{o}\times1-(36^{o}-\theta)\}}\cos{\{90^{o}\times1-(36^{o}+\theta)\}}\) ➜ \(\because 54^{o}+\theta=90^{o}\times1-(36^{o}-\theta)\)
এবং \(54^{o}-\theta=90^{o}\times1-(36^{o}+\theta)\)
\(=\cos{(36^{o}-\theta)}\cos{(36^{o}+\theta)}+\sin{(36^{o}-\theta)}\sin{(36^{o}+\theta)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\cos{(36^{o}+\theta)}\cos{(36^{o}-\theta)}+\sin{(36^{o}+\theta)}\sin{(36^{o}-\theta)}\)
\(=\cos{(36^{o}+\theta-36^{o}+\theta)}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\cos{2\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xv)\) \(\frac{\cos{A}+\cos{B}}{\cos{A}-\cos{B}}=\cot{\frac{1}{2}(A+B)}\cot{\frac{1}{2}(B-A)}\)সমাধানঃ
\(L.S=\frac{\cos{A}+\cos{B}}{\cos{A}-\cos{B}}\)
\(=\frac{2\cos{\frac{B+A}{2}}\cos{\frac{B-A}{2}}}{2\sin{\frac{B+A}{2}}\sin{\frac{B-A}{2}}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=\frac{\cos{\frac{A+B}{2}}\cos{\frac{B-A}{2}}}{\sin{\frac{A+B}{2}}\sin{\frac{B-A}{2}}}\)
\(=\cot{\frac{1}{2}(A+B)}\cot{\frac{1}{2}(B-A)}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{2\cos{\frac{B+A}{2}}\cos{\frac{B-A}{2}}}{2\sin{\frac{B+A}{2}}\sin{\frac{B-A}{2}}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=\frac{\cos{\frac{A+B}{2}}\cos{\frac{B-A}{2}}}{\sin{\frac{A+B}{2}}\sin{\frac{B-A}{2}}}\)
\(=\cot{\frac{1}{2}(A+B)}\cot{\frac{1}{2}(B-A)}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xvi)\) \(\sin{(\alpha+\beta+\gamma)}+\sin{(\alpha-\beta-\gamma)}+\sin{(\alpha+\beta-\gamma)}+\)\(\sin{(\alpha-\beta+\gamma)}=4\sin{\alpha}\cos{\beta}\cos{\gamma}\)সমাধানঃ
\(L.S=\sin{(\alpha+\beta+\gamma)}+\sin{(\alpha-\beta-\gamma)}+\sin{(\alpha+\beta-\gamma)}+\)\(\sin{(\alpha-\beta+\gamma)}\)
\(=\sin{\{\alpha+(\beta+\gamma)\}}+\sin{\{\alpha-(\beta+\gamma)\}}+\sin{\{\alpha+(\beta-\gamma)\}}+\sin{\{\alpha-(\beta-\gamma)\}}\)
\(=2\sin{\alpha}\cos{(\beta+\gamma)}+2\sin{\alpha}\cos{(\beta-\gamma)}\) ➜ \(\because \sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\)
\(=2\sin{\alpha}\{\cos{(\beta-\gamma)}+\cos{(\beta+\gamma)}\}\)
\(=2\sin{\alpha}\{2\cos{\beta}\cos{\gamma}\}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=4\sin{\alpha}\cos{\beta}\cos{\gamma}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\{\alpha+(\beta+\gamma)\}}+\sin{\{\alpha-(\beta+\gamma)\}}+\sin{\{\alpha+(\beta-\gamma)\}}+\sin{\{\alpha-(\beta-\gamma)\}}\)
\(=2\sin{\alpha}\cos{(\beta+\gamma)}+2\sin{\alpha}\cos{(\beta-\gamma)}\) ➜ \(\because \sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\)
\(=2\sin{\alpha}\{\cos{(\beta-\gamma)}+\cos{(\beta+\gamma)}\}\)
\(=2\sin{\alpha}\{2\cos{\beta}\cos{\gamma}\}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=4\sin{\alpha}\cos{\beta}\cos{\gamma}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7C\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.2.(i)\) \(\sin{\theta}\sin{(60^{o}-\theta)}\sin{(60^{o}+\theta)}=\frac{1}{4}\sin{3\theta}\)\(Q.2.(ii)\) \(\cos{10^{o}}\cos{30^{o}}\cos{50^{o}}\cos{70^{o}}=\frac{3}{16}\)
\(Q.2.(iii)\) \(\sin{20^{o}}\sin{40^{o}}\sin{60^{o}}\sin{80^{o}}=\frac{3}{16}\)
\(Q.2.(iv)\) \(\cos{20^{o}}\cos{40^{o}}\cos{60^{o}}\cos{80^{o}}=\frac{1}{16}\)
\(Q.2.(v)\) \(2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+\cos{\frac{3\pi}{13}}+\cos{\frac{5\pi}{13}}=0\)
\(Q.2.(vi)\) \(\tan{\frac{45^{o}+\theta}{2}}\tan{\frac{45^{o}-\theta}{2}}=\frac{\sqrt{2}\cos{\theta}-1}{\sqrt{2}\cos{\theta}+1}\)
ঢাঃ২০১৬,২০০৮; রাঃ২০১৬; বঃ২০০৯; যঃ২০১১; কুঃ২০০৮ ।
\(Q.2.(vii)\) \(\cot{\frac{60^{o}+\theta}{2}}\cot{\frac{60^{o}-\theta}{2}}=\frac{2\cos{\theta}+1}{2\cos{\theta}-1}\)
\(Q.2.(viii)\) \(\sec{\left(\frac{\pi}{4}+\theta\right)}\sec{\left(\frac{\pi}{4}-\theta\right)}=2\sec{2\theta}\)
\(Q.2.(ix)\) \(4\cos{A}\cos{(120^{o}+A)}\cos{(240^{o}+A)}=\cos{3A}\)
\(Q.2.(x)\) \(\sec{\left(45^{o}+\theta\right)}\sec{\left(45^{o}-\theta\right)}=2\sec{2\theta}\)
\(Q.2.(xi)\) \(\cos{10^{o}}\cos{50^{o}}\cos{70^{o}}=\frac{\sqrt{3}}{8}\)
প্রমাণ করঃ
\(Q.2.(xii)\) \(\sin{10^{o}}\sin{30^{o}}\sin{50^{o}}\sin{70^{o}}=\frac{1}{16}\)\(Q.2.(xiii)\) \(\tan{70^{o}}=\tan{20^{o}}+2\tan{50^{o}}\)
রাঃ,কুঃ,চঃ,বঃ ২০১৮; ঢাঃ২০১৫,২০১০; বঃ২০০৬; চঃ২০০৫; বুয়েটঃ২০০৩-২০০৪ ।
\(Q.2.(xiv)\) \(\tan{54^{o}}=\tan{36^{o}}+2\tan{18^{o}}\)
\(Q.2.(xv)\) \(16\cos{\frac{2\pi}{15}}\cos{\frac{4\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}=1\)
যঃ২০১৪; বঃ২০১৫,২০১৩; সিঃ২০১৪,২০১১; দিঃ২০১২; বুয়েটঃ২০০০-২০০১ ।
\(Q.2.(xvi)\) \(\cos{\theta}\cos{(60^{o}-\theta)}\cos{(60^{o}+\theta)}=\frac{1}{4}\cos{3\theta}\)
\(Q.2.(xvii)\) \(\sin{\left(45^{o}+A\right)}\sin{\left(45^{o}-A\right)}=\frac{1}{2}\cos{2A}\)
\(Q.2.(xviii)\) \(4\cos{\theta}\cos{\left(\frac{2\pi}{3}+A\right)}\cos{\left(\frac{4\pi}{3}+A\right)}=\cos{3\theta}\)
\(Q.2.(xix)\) \(2\sin{\left(\theta+\frac{\pi}{4}\right)}\sin{\left(\theta-\frac{\pi}{4}\right)}=\sin^2{\theta}-\cos^2{\theta}\)
\(Q.2.(xx)\) \(\sin{\frac{\pi}{16}}\sin{\frac{3\pi}{16}}\sin{\frac{5\pi}{16}}\sin{\frac{7\pi}{16}}=\frac{\sqrt{2}}{16}\)
\(Q.2.(xxi)\) \((\cos{\alpha}+\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2=4\cos^2{\frac{1}{2}(\alpha+\beta)}\)
যঃ২০১২ ।
প্রমাণ করঃ
\(Q.2.(i)\) \(\sin{\theta}\sin{(60^{o}-\theta)}\sin{(60^{o}+\theta)}=\frac{1}{4}\sin{3\theta}\)সমাধানঃ
\(L.S=\sin{\theta}\sin{(60^{o}-\theta)}\sin{(60^{o}+\theta)}\)
\(=\sin{\theta}\{\sin{(60^{o}+\theta)}\sin{(60^{o}-\theta)}\}\)
\(=\sin{\theta}(\sin^2{60^{o}}-\sin^2{\theta})\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=\sin{\theta}\left\{\left(\frac{\sqrt{3}}{2}\right)^2-\sin^2{\theta}\right\}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
\(=\sin{\theta}\left\{\frac{3}{4}-\sin^2{\theta}\right\}\)
\(=\frac{3}{4}\sin{\theta}-\sin^3{\theta}\)
\(=\frac{1}{4}(3\sin{\theta}-4\sin^3{\theta})\)
\(=\frac{1}{4}\sin{3\theta}\) ➜ \(\because 3\sin{A}-4\sin^3{A}=\sin{3A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\theta}\{\sin{(60^{o}+\theta)}\sin{(60^{o}-\theta)}\}\)
\(=\sin{\theta}(\sin^2{60^{o}}-\sin^2{\theta})\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=\sin{\theta}\left\{\left(\frac{\sqrt{3}}{2}\right)^2-\sin^2{\theta}\right\}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
\(=\sin{\theta}\left\{\frac{3}{4}-\sin^2{\theta}\right\}\)
\(=\frac{3}{4}\sin{\theta}-\sin^3{\theta}\)
\(=\frac{1}{4}(3\sin{\theta}-4\sin^3{\theta})\)
\(=\frac{1}{4}\sin{3\theta}\) ➜ \(\because 3\sin{A}-4\sin^3{A}=\sin{3A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(ii)\) \(\cos{10^{o}}\cos{30^{o}}\cos{50^{o}}\cos{70^{o}}=\frac{3}{16}\)সমাধানঃ
\(L.S=\cos{10^{o}}\cos{30^{o}}\cos{50^{o}}\cos{70^{o}}\)
\(=\cos{10^{o}}\times\frac{\sqrt{3}}{2}\cos{50^{o}}\cos{70^{o}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{2}\cos{10^{o}}\cos{50^{o}}\cos{70^{o}}\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}(2\cos{70^{o}}\cos{50^{o}})\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}\{\cos{(70^{o}-50^{o})}+\cos{(70^{o}+50^{o})}\}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}\{\cos{20^{o}}+\cos{120^{o}}\}\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}\left\{\cos{20^{o}}-\frac{1}{2}\right\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}\cos{20^{o}}-\frac{\sqrt{3}}{8}\cos{10^{o}}\)
\(=\frac{\sqrt{3}}{8}(2\cos{20^{o}}\cos{10^{o}})-\frac{\sqrt{3}}{8}\cos{10^{o}}\)
\(=\frac{\sqrt{3}}{8}\{\cos{(20^{o}-10^{o})}+\cos{(20^{o}+10^{o})}\}-\frac{\sqrt{3}}{8}\cos{10^{o}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{\sqrt{3}}{8}\{\cos{10^{o}}+\cos{30^{o}}\}-\frac{\sqrt{3}}{8}\cos{10^{o}}\)
\(=\frac{\sqrt{3}}{8}\left\{\cos{10^{o}}+\frac{\sqrt{3}}{2}\right\}-\frac{\sqrt{3}}{8}\cos{10^{o}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{8}\cos{10^{o}}+\frac{3}{16}-\frac{\sqrt{3}}{8}\cos{10^{o}}\)
\(=\frac{3}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{10^{o}}\times\frac{\sqrt{3}}{2}\cos{50^{o}}\cos{70^{o}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{2}\cos{10^{o}}\cos{50^{o}}\cos{70^{o}}\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}(2\cos{70^{o}}\cos{50^{o}})\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}\{\cos{(70^{o}-50^{o})}+\cos{(70^{o}+50^{o})}\}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}\{\cos{20^{o}}+\cos{120^{o}}\}\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}\left\{\cos{20^{o}}-\frac{1}{2}\right\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{\sqrt{3}}{4}\cos{10^{o}}\cos{20^{o}}-\frac{\sqrt{3}}{8}\cos{10^{o}}\)
\(=\frac{\sqrt{3}}{8}(2\cos{20^{o}}\cos{10^{o}})-\frac{\sqrt{3}}{8}\cos{10^{o}}\)
\(=\frac{\sqrt{3}}{8}\{\cos{(20^{o}-10^{o})}+\cos{(20^{o}+10^{o})}\}-\frac{\sqrt{3}}{8}\cos{10^{o}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{\sqrt{3}}{8}\{\cos{10^{o}}+\cos{30^{o}}\}-\frac{\sqrt{3}}{8}\cos{10^{o}}\)
\(=\frac{\sqrt{3}}{8}\left\{\cos{10^{o}}+\frac{\sqrt{3}}{2}\right\}-\frac{\sqrt{3}}{8}\cos{10^{o}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{8}\cos{10^{o}}+\frac{3}{16}-\frac{\sqrt{3}}{8}\cos{10^{o}}\)
\(=\frac{3}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(iii)\) \(\sin{20^{o}}\sin{40^{o}}\sin{60^{o}}\sin{80^{o}}=\frac{3}{16}\)সমাধানঃ
\(L.S=\sin{20^{o}}\sin{40^{o}}\sin{60^{o}}\sin{80^{o}}\)
\(=\sin{20^{o}}\sin{40^{o}}\times\frac{\sqrt{3}}{2}\sin{80^{o}}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{2}\sin{20^{o}}\sin{40^{o}}\sin{80^{o}}\)
\(=\frac{\sqrt{3}}{4}(2\sin{80^{o}}\sin{40^{o}})\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{4}\{\cos{(80^{o}-40^{o})}-\cos{(80^{o}+40^{o})}\}\sin{20^{o}}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{\sqrt{3}}{4}\{\cos{40^{o}}-\cos{120^{o}}\}\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{4}\left\{\cos{40^{o}}+\frac{1}{2}\right\}\sin{20^{o}}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{\sqrt{3}}{4}\cos{40^{o}}\sin{20^{o}}+\frac{\sqrt{3}}{8}\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{8}(2\cos{40^{o}}\sin{20^{o}})+\frac{\sqrt{3}}{8}\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{8}\{\sin{(40^{o}+20^{o})}-\sin{(40^{o}-20^{o})}\}+\frac{\sqrt{3}}{8}\sin{20^{o}}\) ➜ \(\because 2\cos{A}\sin{B}=\sin{(A+B)}-\sin{(A-B)}\)
\(=\frac{\sqrt{3}}{8}\{\sin{60^{o}}-\sin{20^{o}}\}+\frac{\sqrt{3}}{8}\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{8}\left\{\frac{\sqrt{3}}{2}-\sin{20^{o}}\right\}+\frac{\sqrt{3}}{8}\sin{20^{o}}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{3}{16}-\frac{\sqrt{3}}{8}\sin{20^{o}}+\frac{\sqrt{3}}{8}\sin{20^{o}}\)
\(=\frac{3}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{20^{o}}\sin{40^{o}}\times\frac{\sqrt{3}}{2}\sin{80^{o}}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{2}\sin{20^{o}}\sin{40^{o}}\sin{80^{o}}\)
\(=\frac{\sqrt{3}}{4}(2\sin{80^{o}}\sin{40^{o}})\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{4}\{\cos{(80^{o}-40^{o})}-\cos{(80^{o}+40^{o})}\}\sin{20^{o}}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{\sqrt{3}}{4}\{\cos{40^{o}}-\cos{120^{o}}\}\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{4}\left\{\cos{40^{o}}+\frac{1}{2}\right\}\sin{20^{o}}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{\sqrt{3}}{4}\cos{40^{o}}\sin{20^{o}}+\frac{\sqrt{3}}{8}\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{8}(2\cos{40^{o}}\sin{20^{o}})+\frac{\sqrt{3}}{8}\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{8}\{\sin{(40^{o}+20^{o})}-\sin{(40^{o}-20^{o})}\}+\frac{\sqrt{3}}{8}\sin{20^{o}}\) ➜ \(\because 2\cos{A}\sin{B}=\sin{(A+B)}-\sin{(A-B)}\)
\(=\frac{\sqrt{3}}{8}\{\sin{60^{o}}-\sin{20^{o}}\}+\frac{\sqrt{3}}{8}\sin{20^{o}}\)
\(=\frac{\sqrt{3}}{8}\left\{\frac{\sqrt{3}}{2}-\sin{20^{o}}\right\}+\frac{\sqrt{3}}{8}\sin{20^{o}}\) ➜ \(\because \sin{60^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{3}{16}-\frac{\sqrt{3}}{8}\sin{20^{o}}+\frac{\sqrt{3}}{8}\sin{20^{o}}\)
\(=\frac{3}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(iv)\) \(\cos{20^{o}}\cos{40^{o}}\cos{60^{o}}\cos{80^{o}}=\frac{1}{16}\)সমাধানঃ
\(L.S=\cos{20^{o}}\cos{40^{o}}\cos{60^{o}}\cos{80^{o}}\)
\(=\cos{20^{o}}\cos{40^{o}}\times\frac{1}{2}\cos{80^{o}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{1}{2}\cos{20^{o}}\cos{40^{o}}\cos{80^{o}}\)
\(=\frac{1}{4}(2\cos{80^{o}}\cos{40^{o}})\cos{20^{o}}\)
\(=\frac{1}{4}\{\cos{(80^{o}-40^{o})}+\cos{(80^{o}+40^{o})}\}\cos{20^{o}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{1}{4}\{\cos{40^{o}}+\cos{120^{o}}\}\cos{20^{o}}\)
\(=\frac{1}{4}\left\{\cos{40^{o}}-\frac{1}{2}\right\}\cos{20^{o}}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{1}{4}\cos{40^{o}}\cos{20^{o}}-\frac{1}{8}\cos{20^{o}}\)
\(=\frac{1}{8}(2\cos{40^{o}}\cos{20^{o}})-\frac{1}{8}\cos{20^{o}}\)
\(=\frac{1}{8}\{\cos{(40^{o}-20^{o})}+\cos{(40^{o}+20^{o})}\}-\frac{1}{8}\cos{20^{o}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A-B)}\)
\(=\frac{1}{8}\{\cos{20^{o}}+\cos{60^{o}}\}-\frac{1}{8}\cos{20^{o}}\)
\(=\frac{1}{8}\left\{\cos{20^{o}}+\frac{1}{2}\right\}-\frac{1}{8}\cos{20^{o}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{1}{8}\cos{20^{o}}+\frac{1}{16}-\frac{1}{8}\cos{20^{o}}\)
\(=\frac{3}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{20^{o}}\cos{40^{o}}\times\frac{1}{2}\cos{80^{o}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{1}{2}\cos{20^{o}}\cos{40^{o}}\cos{80^{o}}\)
\(=\frac{1}{4}(2\cos{80^{o}}\cos{40^{o}})\cos{20^{o}}\)
\(=\frac{1}{4}\{\cos{(80^{o}-40^{o})}+\cos{(80^{o}+40^{o})}\}\cos{20^{o}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{1}{4}\{\cos{40^{o}}+\cos{120^{o}}\}\cos{20^{o}}\)
\(=\frac{1}{4}\left\{\cos{40^{o}}-\frac{1}{2}\right\}\cos{20^{o}}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{1}{4}\cos{40^{o}}\cos{20^{o}}-\frac{1}{8}\cos{20^{o}}\)
\(=\frac{1}{8}(2\cos{40^{o}}\cos{20^{o}})-\frac{1}{8}\cos{20^{o}}\)
\(=\frac{1}{8}\{\cos{(40^{o}-20^{o})}+\cos{(40^{o}+20^{o})}\}-\frac{1}{8}\cos{20^{o}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A-B)}\)
\(=\frac{1}{8}\{\cos{20^{o}}+\cos{60^{o}}\}-\frac{1}{8}\cos{20^{o}}\)
\(=\frac{1}{8}\left\{\cos{20^{o}}+\frac{1}{2}\right\}-\frac{1}{8}\cos{20^{o}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{1}{8}\cos{20^{o}}+\frac{1}{16}-\frac{1}{8}\cos{20^{o}}\)
\(=\frac{3}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(v)\) \(2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+\cos{\frac{3\pi}{13}}+\cos{\frac{5\pi}{13}}=0\)সমাধানঃ
\(L.S=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+\cos{\frac{3\pi}{13}}+\cos{\frac{5\pi}{13}}\)
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+\left(\cos{\frac{3\pi}{13}}+\cos{\frac{5\pi}{13}}\right)\)
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+2\cos{\left(\frac{\frac{5\pi}{13}+\frac{3\pi}{13}}{2}\right)}\cos{\left(\frac{\frac{5\pi}{13}-\frac{3\pi}{13}}{2}\right)}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+2\cos{\left(\frac{5\pi+3\pi}{26}\right)}\cos{\left(\frac{5\pi-3\pi}{26}\right)}\) ➜ লব ও হরকে \(13\) দ্বারা গুণ করে।
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+2\cos{\left(\frac{8\pi}{26}\right)}\cos{\left(\frac{2\pi}{26}\right)}\)
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+2\cos{\frac{4\pi}{13}}\cos{\frac{\pi}{13}}\)
\(=2\cos{\frac{\pi}{13}}\left(\cos{\frac{4\pi}{13}}+\cos{\frac{9\pi}{13}}\right)\)
\(=2\cos{\frac{\pi}{13}}\left\{2\cos{\left(\frac{\frac{9\pi}{13}+\frac{4\pi}{13}}{2}\right)}\cos{\left(\frac{\frac{9\pi}{13}-\frac{4\pi}{13}}{2}\right)}\right\}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=4\cos{\frac{\pi}{13}}\cos{\left(\frac{9\pi+4\pi}{26}\right)}\cos{\left(\frac{9\pi-4\pi}{26}\right)}\) ➜ লব ও হরকে \(13\) দ্বারা গুণ করে।
\(=4\cos{\frac{\pi}{13}}\cos{\left(\frac{13\pi}{26}\right)}\cos{\left(\frac{5\pi}{26}\right)}\)
\(=4\cos{\frac{\pi}{13}}\cos{\frac{\pi}{2}}\cos{\frac{5\pi}{26}}\)
\(=4\cos{\frac{\pi}{13}}\times0\times\cos{\frac{5\pi}{26}}\) ➜ \(\because \cos{\frac{\pi}{2}}=0\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+\left(\cos{\frac{3\pi}{13}}+\cos{\frac{5\pi}{13}}\right)\)
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+2\cos{\left(\frac{\frac{5\pi}{13}+\frac{3\pi}{13}}{2}\right)}\cos{\left(\frac{\frac{5\pi}{13}-\frac{3\pi}{13}}{2}\right)}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+2\cos{\left(\frac{5\pi+3\pi}{26}\right)}\cos{\left(\frac{5\pi-3\pi}{26}\right)}\) ➜ লব ও হরকে \(13\) দ্বারা গুণ করে।
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+2\cos{\left(\frac{8\pi}{26}\right)}\cos{\left(\frac{2\pi}{26}\right)}\)
\(=2\cos{\frac{\pi}{13}}\cos{\frac{9\pi}{13}}+2\cos{\frac{4\pi}{13}}\cos{\frac{\pi}{13}}\)
\(=2\cos{\frac{\pi}{13}}\left(\cos{\frac{4\pi}{13}}+\cos{\frac{9\pi}{13}}\right)\)
\(=2\cos{\frac{\pi}{13}}\left\{2\cos{\left(\frac{\frac{9\pi}{13}+\frac{4\pi}{13}}{2}\right)}\cos{\left(\frac{\frac{9\pi}{13}-\frac{4\pi}{13}}{2}\right)}\right\}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=4\cos{\frac{\pi}{13}}\cos{\left(\frac{9\pi+4\pi}{26}\right)}\cos{\left(\frac{9\pi-4\pi}{26}\right)}\) ➜ লব ও হরকে \(13\) দ্বারা গুণ করে।
\(=4\cos{\frac{\pi}{13}}\cos{\left(\frac{13\pi}{26}\right)}\cos{\left(\frac{5\pi}{26}\right)}\)
\(=4\cos{\frac{\pi}{13}}\cos{\frac{\pi}{2}}\cos{\frac{5\pi}{26}}\)
\(=4\cos{\frac{\pi}{13}}\times0\times\cos{\frac{5\pi}{26}}\) ➜ \(\because \cos{\frac{\pi}{2}}=0\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(vi)\) \(\tan{\frac{45^{o}+\theta}{2}}\tan{\frac{45^{o}-\theta}{2}}=\frac{\sqrt{2}\cos{\theta}-1}{\sqrt{2}\cos{\theta}+1}\)ঢাঃ২০১৬,২০০৮; রাঃ২০১৬; বঃ২০০৯; যঃ২০১১; কুঃ২০০৮ ।
সমাধানঃ
\(L.S=\tan{\frac{45^{o}+\theta}{2}}\tan{\frac{45^{o}-\theta}{2}}\)
\(=\frac{\sin{\frac{45^{o}+\theta}{2}}\sin{\frac{45^{o}-\theta}{2}}}{\cos{\frac{45^{o}+\theta}{2}}\cos{\frac{45^{o}-\theta}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{2\sin{\frac{45^{o}+\theta}{2}}\sin{\frac{45^{o}-\theta}{2}}}{2\cos{\frac{45^{o}+\theta}{2}}\cos{\frac{45^{o}-\theta}{2}}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{\cos{\theta}-\cos{45^{o}}}{\cos{\theta}+\cos{45^{o}}}\) ➜ \(\because 2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}=\cos{D}-\cos{C}\)
এবং \(2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}=\cos{D}+\cos{C}\)
\(=\frac{\cos{\theta}-\frac{1}{\sqrt{2}}}{\cos{\theta}+\frac{1}{\sqrt{2}}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{2}\cos{\theta}-1}{\sqrt{2}\cos{\theta}+1}\) ➜ লব ও হরকে \(\sqrt{2}\) দ্বারা গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{\frac{45^{o}+\theta}{2}}\sin{\frac{45^{o}-\theta}{2}}}{\cos{\frac{45^{o}+\theta}{2}}\cos{\frac{45^{o}-\theta}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{2\sin{\frac{45^{o}+\theta}{2}}\sin{\frac{45^{o}-\theta}{2}}}{2\cos{\frac{45^{o}+\theta}{2}}\cos{\frac{45^{o}-\theta}{2}}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{\cos{\theta}-\cos{45^{o}}}{\cos{\theta}+\cos{45^{o}}}\) ➜ \(\because 2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}=\cos{D}-\cos{C}\)
এবং \(2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}=\cos{D}+\cos{C}\)
\(=\frac{\cos{\theta}-\frac{1}{\sqrt{2}}}{\cos{\theta}+\frac{1}{\sqrt{2}}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{2}\cos{\theta}-1}{\sqrt{2}\cos{\theta}+1}\) ➜ লব ও হরকে \(\sqrt{2}\) দ্বারা গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(vii)\) \(\cot{\frac{60^{o}+\theta}{2}}\cot{\frac{60^{o}-\theta}{2}}=\frac{2\cos{\theta}+1}{2\cos{\theta}-1}\)সমাধানঃ
\(L.S=\cot{\frac{60^{o}+\theta}{2}}\cot{\frac{60^{o}-\theta}{2}}\)
\(=\frac{\cos{\frac{60^{o}+\theta}{2}}\cos{\frac{60^{o}-\theta}{2}}}{\sin{\frac{60^{o}+\theta}{2}}\sin{\frac{60^{o}-\theta}{2}}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{2\cos{\frac{60^{o}+\theta}{2}}\cos{\frac{60^{o}-\theta}{2}}}{2\sin{\frac{60^{o}+\theta}{2}}\sin{\frac{60^{o}-\theta}{2}}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{\cos{\theta}+\cos{60^{o}}}{\cos{\theta}-\cos{60^{o}}}\) ➜ \(\because 2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}=\cos{D}+\cos{C}\)
এবং \(2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}=\cos{D}-\cos{C}\)
\(=\frac{\cos{\theta}+\frac{1}{2}}{\cos{\theta}-\frac{1}{2}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{2\cos{\theta}+1}{2\cos{\theta}-1}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{\frac{60^{o}+\theta}{2}}\cos{\frac{60^{o}-\theta}{2}}}{\sin{\frac{60^{o}+\theta}{2}}\sin{\frac{60^{o}-\theta}{2}}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{2\cos{\frac{60^{o}+\theta}{2}}\cos{\frac{60^{o}-\theta}{2}}}{2\sin{\frac{60^{o}+\theta}{2}}\sin{\frac{60^{o}-\theta}{2}}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{\cos{\theta}+\cos{60^{o}}}{\cos{\theta}-\cos{60^{o}}}\) ➜ \(\because 2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}=\cos{D}+\cos{C}\)
এবং \(2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}=\cos{D}-\cos{C}\)
\(=\frac{\cos{\theta}+\frac{1}{2}}{\cos{\theta}-\frac{1}{2}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{2\cos{\theta}+1}{2\cos{\theta}-1}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(viii)\) \(\sec{\left(\frac{\pi}{4}+\theta\right)}\sec{\left(\frac{\pi}{4}-\theta\right)}=2\sec{2\theta}\)সমাধানঃ
\(L.S=\sec{\left(\frac{\pi}{4}+\theta\right)}\sec{\left(\frac{\pi}{4}-\theta\right)}\)
\(=\frac{1}{\cos{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{2}{2\cos{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2}{\cos{\left(\frac{\pi}{4}+\theta-\frac{\pi}{4}+\theta\right)}+\cos{\left(\frac{\pi}{4}+\theta+\frac{\pi}{4}-\theta\right)}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{2}{\cos{2\theta}+\cos{\frac{2\pi}{4}}}\)
\(=\frac{2}{\cos{2\theta}+\cos{\frac{\pi}{2}}}\)
\(=\frac{2}{\cos{2\theta}+0}\) ➜ \(\because \cos{\frac{\pi}{2}}=0\)
\(=2\frac{1}{\cos{2\theta}}\)
\(=2\sec{2\theta}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{\cos{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{2}{2\cos{\left(\frac{\pi}{4}+\theta\right)}\cos{\left(\frac{\pi}{4}-\theta\right)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2}{\cos{\left(\frac{\pi}{4}+\theta-\frac{\pi}{4}+\theta\right)}+\cos{\left(\frac{\pi}{4}+\theta+\frac{\pi}{4}-\theta\right)}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{2}{\cos{2\theta}+\cos{\frac{2\pi}{4}}}\)
\(=\frac{2}{\cos{2\theta}+\cos{\frac{\pi}{2}}}\)
\(=\frac{2}{\cos{2\theta}+0}\) ➜ \(\because \cos{\frac{\pi}{2}}=0\)
\(=2\frac{1}{\cos{2\theta}}\)
\(=2\sec{2\theta}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(ix)\) \(4\cos{A}\cos{(120^{o}+A)}\cos{(240^{o}+A)}=\cos{3A}\)সমাধানঃ
\(L.S=4\cos{A}\cos{(120^{o}+A)}\cos{(240^{o}+A)}\)
\(=2\cos{A}\{2\cos{(240^{o}+A)}\cos{(120^{o}+A)}\}\)
\(=2\cos{A}\{\cos{(240^{o}+A-120^{o}-A)}+\cos{(240^{o}+A+120^{o}+A)}\}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=2\cos{A}\{\cos{120^{o}}+\cos{(360^{o}+2A)}\}\)
\(=2\cos{A}\{-\frac{1}{2}+\cos{(360^{o}+2A)}\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=-\cos{A}+2\cos{(360^{o}+2A)}\cos{A}\)
\(=-\cos{A}+\cos{(360^{o}+2A-A)}+\cos{(360^{o}+2A+A)}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=-\cos{A}+\cos{(360^{o}+A)}+\cos{(360^{o}+3A)}\)
\(=-\cos{A}+\cos{(90^{o}\times4+A)}+\cos{(90^{o}\times4+3A)}\) ➜ \(\because 360^{o}+A=90^{o}\times4+A\)
এবং \(360^{o}+3A=90^{o}\times4+3A\)
\(=-\cos{A}+\cos{A}+\cos{3A}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(4\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(=\cos{3A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\cos{A}\{2\cos{(240^{o}+A)}\cos{(120^{o}+A)}\}\)
\(=2\cos{A}\{\cos{(240^{o}+A-120^{o}-A)}+\cos{(240^{o}+A+120^{o}+A)}\}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=2\cos{A}\{\cos{120^{o}}+\cos{(360^{o}+2A)}\}\)
\(=2\cos{A}\{-\frac{1}{2}+\cos{(360^{o}+2A)}\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=-\cos{A}+2\cos{(360^{o}+2A)}\cos{A}\)
\(=-\cos{A}+\cos{(360^{o}+2A-A)}+\cos{(360^{o}+2A+A)}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=-\cos{A}+\cos{(360^{o}+A)}+\cos{(360^{o}+3A)}\)
\(=-\cos{A}+\cos{(90^{o}\times4+A)}+\cos{(90^{o}\times4+3A)}\) ➜ \(\because 360^{o}+A=90^{o}\times4+A\)
এবং \(360^{o}+3A=90^{o}\times4+3A\)
\(=-\cos{A}+\cos{A}+\cos{3A}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(4\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(=\cos{3A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(x)\) \(\sec{\left(45^{o}+\theta\right)}\sec{\left(45^{o}-\theta\right)}=2\sec{2\theta}\)সমাধানঃ
\(L.S=\sec{\left(45^{o}+\theta\right)}\sec{\left(45^{o}-\theta\right)}\)
\(=\frac{1}{\cos{\left(45^{o}+\theta\right)}\cos{\left(45^{o}-\theta\right)}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{2}{2\cos{\left(45^{o}+\theta\right)}\cos{\left(45^{o}-\theta\right)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2}{\cos{\left(45^{o}+\theta-45^{o}+\theta\right)}+\cos{\left(45^{o}+\theta+45^{o}-\theta\right)}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{2}{\cos{2\theta}+\cos{90^{o}}}\)
\(=\frac{2}{\cos{2\theta}+0}\) ➜ \(\because \cos{90^{o}}=0\)
\(=2\frac{1}{\cos{2\theta}}\)
\(=2\sec{2\theta}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{\cos{\left(45^{o}+\theta\right)}\cos{\left(45^{o}-\theta\right)}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{2}{2\cos{\left(45^{o}+\theta\right)}\cos{\left(45^{o}-\theta\right)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2}{\cos{\left(45^{o}+\theta-45^{o}+\theta\right)}+\cos{\left(45^{o}+\theta+45^{o}-\theta\right)}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{2}{\cos{2\theta}+\cos{90^{o}}}\)
\(=\frac{2}{\cos{2\theta}+0}\) ➜ \(\because \cos{90^{o}}=0\)
\(=2\frac{1}{\cos{2\theta}}\)
\(=2\sec{2\theta}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xi)\) \(\cos{10^{o}}\cos{50^{o}}\cos{70^{o}}=\frac{\sqrt{3}}{8}\)সমাধানঃ
\(L.S=\cos{10^{o}}\cos{50^{o}}\cos{70^{o}}\)
\(=\frac{1}{2}\cos{10^{o}}(2\cos{70^{o}}\cos{50^{o}})\)
\(=\frac{1}{2}\cos{10^{o}}\{\cos{(70^{o}-50^{o})}+\cos{(70^{o}+50^{o})}\}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{1}{2}\cos{10^{o}}\{\cos{20^{o}}+\cos{120^{o}}\}\)
\(=\frac{1}{2}\cos{10^{o}}\left\{\cos{20^{o}}-\frac{1}{2}\right\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{1}{2}\cos{10^{o}}\cos{20^{o}}-\frac{1}{4}\cos{10^{o}}\)
\(=\frac{1}{4}(2\cos{20^{o}}\cos{10^{o}})-\frac{1}{4}\cos{10^{o}}\)
\(=\frac{1}{4}\{\cos{(20^{o}-10^{o})}+\cos{(20^{o}+10^{o})}\}-\frac{1}{4}\cos{10^{o}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{1}{4}\{\cos{10^{o}}+\cos{30^{o}}\}-\frac{1}{4}\cos{10^{o}}\)
\(=\frac{1}{4}\left\{\cos{10^{o}}+\frac{\sqrt{3}}{2}\right\}-\frac{1}{4}\cos{10^{o}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{1}{4}\cos{10^{o}}+\frac{\sqrt{3}}{8}-\frac{1}{4}\cos{10^{o}}\)
\(=\frac{\sqrt{3}}{8}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\cos{10^{o}}(2\cos{70^{o}}\cos{50^{o}})\)
\(=\frac{1}{2}\cos{10^{o}}\{\cos{(70^{o}-50^{o})}+\cos{(70^{o}+50^{o})}\}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{1}{2}\cos{10^{o}}\{\cos{20^{o}}+\cos{120^{o}}\}\)
\(=\frac{1}{2}\cos{10^{o}}\left\{\cos{20^{o}}-\frac{1}{2}\right\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{1}{2}\cos{10^{o}}\cos{20^{o}}-\frac{1}{4}\cos{10^{o}}\)
\(=\frac{1}{4}(2\cos{20^{o}}\cos{10^{o}})-\frac{1}{4}\cos{10^{o}}\)
\(=\frac{1}{4}\{\cos{(20^{o}-10^{o})}+\cos{(20^{o}+10^{o})}\}-\frac{1}{4}\cos{10^{o}}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{1}{4}\{\cos{10^{o}}+\cos{30^{o}}\}-\frac{1}{4}\cos{10^{o}}\)
\(=\frac{1}{4}\left\{\cos{10^{o}}+\frac{\sqrt{3}}{2}\right\}-\frac{1}{4}\cos{10^{o}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{1}{4}\cos{10^{o}}+\frac{\sqrt{3}}{8}-\frac{1}{4}\cos{10^{o}}\)
\(=\frac{\sqrt{3}}{8}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xii)\) \(\sin{10^{o}}\sin{30^{o}}\sin{50^{o}}\sin{70^{o}}=\frac{1}{16}\)সমাধানঃ
\(L.S=\sin{10^{o}}\sin{30^{o}}\sin{50^{o}}\sin{70^{o}}\)
\(=\sin{10^{o}}\times\frac{1}{2}\sin{50^{o}}\sin{70^{o}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{2}\sin{10^{o}}\sin{50^{o}}\sin{70^{o}}\)
\(=\frac{1}{4}\sin{10^{o}}(2\sin{70^{o}}\sin{50^{o}})\)
\(=\frac{1}{4}\sin{10^{o}}\{\cos{(70^{o}-50^{o})}-\cos{(70^{o}+50^{o})}\}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{1}{4}\sin{10^{o}}\{\cos{20^{o}}-\cos{120^{o}}\}\)
\(=\frac{1}{4}\sin{10^{o}}\left\{\cos{20^{o}}+\frac{1}{2}\right\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{1}{4}\sin{10^{o}}\cos{20^{o}}+\frac{1}{8}\sin{10^{o}}\)
\(=\frac{1}{8}(2\cos{20^{o}}\sin{10^{o}})+\frac{1}{8}\sin{10^{o}}\)
\(=\frac{1}{8}\{\sin{(20^{o}+10^{o})}-\sin{(20^{o}-10^{o})}\}+\frac{1}{8}\sin{10^{o}}\) ➜ \(\because 2\cos{A}\sin{B}=\sin{(A+B)}-\sin{(A-B)}\)
\(=\frac{1}{8}\{\sin{30^{o}}-\sin{10^{o}}\}+\frac{1}{8}\sin{10^{o}}\)
\(=\frac{1}{8}\left\{\frac{1}{2}-\sin{10^{o}}\right\}+\frac{1}{8}\sin{10^{o}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{16}-\frac{1}{8}\sin{10^{o}}+\frac{1}{8}\sin{10^{o}}\)
\(=\frac{1}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{10^{o}}\times\frac{1}{2}\sin{50^{o}}\sin{70^{o}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{2}\sin{10^{o}}\sin{50^{o}}\sin{70^{o}}\)
\(=\frac{1}{4}\sin{10^{o}}(2\sin{70^{o}}\sin{50^{o}})\)
\(=\frac{1}{4}\sin{10^{o}}\{\cos{(70^{o}-50^{o})}-\cos{(70^{o}+50^{o})}\}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{1}{4}\sin{10^{o}}\{\cos{20^{o}}-\cos{120^{o}}\}\)
\(=\frac{1}{4}\sin{10^{o}}\left\{\cos{20^{o}}+\frac{1}{2}\right\}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{1}{4}\sin{10^{o}}\cos{20^{o}}+\frac{1}{8}\sin{10^{o}}\)
\(=\frac{1}{8}(2\cos{20^{o}}\sin{10^{o}})+\frac{1}{8}\sin{10^{o}}\)
\(=\frac{1}{8}\{\sin{(20^{o}+10^{o})}-\sin{(20^{o}-10^{o})}\}+\frac{1}{8}\sin{10^{o}}\) ➜ \(\because 2\cos{A}\sin{B}=\sin{(A+B)}-\sin{(A-B)}\)
\(=\frac{1}{8}\{\sin{30^{o}}-\sin{10^{o}}\}+\frac{1}{8}\sin{10^{o}}\)
\(=\frac{1}{8}\left\{\frac{1}{2}-\sin{10^{o}}\right\}+\frac{1}{8}\sin{10^{o}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=\frac{1}{16}-\frac{1}{8}\sin{10^{o}}+\frac{1}{8}\sin{10^{o}}\)
\(=\frac{1}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xiii)\) \(\tan{70^{o}}=\tan{20^{o}}+2\tan{50^{o}}\) রাঃ,কুঃ,চঃ,বঃ ২০১৮; ঢাঃ২০১৫,২০১০; বঃ২০০৬; চঃ২০০৫; বুয়েটঃ২০০৩-২০০৪ ।
সমাধানঃ
লেখা যায়,
\(\tan{70^{o}}=\tan{(50^{o}+20^{o})}\)
\(\Rightarrow \tan{70^{o}}=\frac{\tan{50^{o}}+\tan{20^{o}}}{1-\tan{50^{o}}\tan{20^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{70^{o}}-\tan{70^{o}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{70^{o}}-\tan{(90^{o}\times1-20^{o})}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ \(\because 70^{o}=90^{o}\times1-20^{o}\)
\(\Rightarrow \tan{70^{o}}-\cot{20^{o}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{70^{o}}-\frac{1}{\tan{20^{o}}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{70^{o}}-\tan{50^{o}}=\tan{50^{o}}+\tan{20^{o}}\)
\(\Rightarrow \tan{70^{o}}=\tan{50^{o}}+\tan{50^{o}}+\tan{20^{o}}\)
\(\Rightarrow \tan{70^{o}}=2\tan{50^{o}}+\tan{20^{o}}\)
\(\therefore \tan{70^{o}}=\tan{20^{o}}+2\tan{50^{o}}\)
(প্রমাণিত)
\(\tan{70^{o}}=\tan{(50^{o}+20^{o})}\)
\(\Rightarrow \tan{70^{o}}=\frac{\tan{50^{o}}+\tan{20^{o}}}{1-\tan{50^{o}}\tan{20^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{70^{o}}-\tan{70^{o}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{70^{o}}-\tan{(90^{o}\times1-20^{o})}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ \(\because 70^{o}=90^{o}\times1-20^{o}\)
\(\Rightarrow \tan{70^{o}}-\cot{20^{o}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{70^{o}}-\frac{1}{\tan{20^{o}}}\tan{50^{o}}\tan{20^{o}}=\tan{50^{o}}+\tan{20^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{70^{o}}-\tan{50^{o}}=\tan{50^{o}}+\tan{20^{o}}\)
\(\Rightarrow \tan{70^{o}}=\tan{50^{o}}+\tan{50^{o}}+\tan{20^{o}}\)
\(\Rightarrow \tan{70^{o}}=2\tan{50^{o}}+\tan{20^{o}}\)
\(\therefore \tan{70^{o}}=\tan{20^{o}}+2\tan{50^{o}}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xiv)\) \(\tan{54^{o}}=\tan{36^{o}}+2\tan{18^{o}}\) সমাধানঃ
লেখা যায়,
\(\tan{54^{o}}=\tan{(36^{o}+18^{o})}\)
\(\Rightarrow \tan{54^{o}}=\frac{\tan{36^{o}}+\tan{18^{o}}}{1-\tan{36^{o}}\tan{18^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{54^{o}}-\tan{54^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{54^{o}}-\tan{(90^{o}\times1-36^{o})}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because 54^{o}=90^{o}\times1-36^{o}\)
\(\Rightarrow \tan{54^{o}}-\cot{36^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{54^{o}}-\frac{1}{\tan{36^{o}}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{54^{o}}-\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\)
\(\Rightarrow \tan{54^{o}}=\tan{36^{o}}+\tan{18^{o}}+\tan{18^{o}}\)
\(\therefore \tan{54^{o}}=\tan{36^{o}}+2\tan{18^{o}}\)
(প্রমাণিত)
\(\tan{54^{o}}=\tan{(36^{o}+18^{o})}\)
\(\Rightarrow \tan{54^{o}}=\frac{\tan{36^{o}}+\tan{18^{o}}}{1-\tan{36^{o}}\tan{18^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow \tan{54^{o}}-\tan{54^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ আড় গুণ করে।
\(\Rightarrow \tan{54^{o}}-\tan{(90^{o}\times1-36^{o})}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because 54^{o}=90^{o}\times1-36^{o}\)
\(\Rightarrow \tan{54^{o}}-\cot{36^{o}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(\Rightarrow \tan{54^{o}}-\frac{1}{\tan{36^{o}}}\tan{36^{o}}\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow \tan{54^{o}}-\tan{18^{o}}=\tan{36^{o}}+\tan{18^{o}}\)
\(\Rightarrow \tan{54^{o}}=\tan{36^{o}}+\tan{18^{o}}+\tan{18^{o}}\)
\(\therefore \tan{54^{o}}=\tan{36^{o}}+2\tan{18^{o}}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xv)\) \(16\cos{\frac{2\pi}{15}}\cos{\frac{4\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}=1\)যঃ২০১৪; বঃ২০১৫,২০১৩; সিঃ২০১৪,২০১১; দিঃ২০১২; বুয়েটঃ২০০০-২০০১ ।
সমাধানঃ
\(L.S=16\cos{\frac{2\pi}{15}}\cos{\frac{4\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}\)
\(=\frac{8\left(2\sin{\frac{2\pi}{15}}\cos{\frac{2\pi}{15}}\right)\cos{\frac{4\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\)
\(=\frac{8\sin{\frac{4\pi}{15}}\cos{\frac{4\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{4\left(2\sin{\frac{4\pi}{15}}\cos{\frac{4\pi}{15}}\right)\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\)
\(=\frac{4\sin{\frac{8\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{2\left(2\sin{\frac{8\pi}{15}}\cos{\frac{8\pi}{15}}\right)\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\)
\(=\frac{2\sin{\frac{16\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{2\sin{\left(\frac{\pi}{2}\times2+\frac{\pi}{15}\right)}\cos{\left(\frac{\pi}{2}\times2-\frac{\pi}{15}\right)}}{\sin{\frac{2\pi}{15}}}\) ➜ \(\because \frac{16\pi}{15}=\frac{\pi}{2}\times2+\frac{\pi}{15}\)
এবং \(\frac{14\pi}{15}=\frac{\pi}{2}\times2-\frac{\pi}{15}\)
\(=\frac{2\left(-\sin{\frac{\pi}{15}}\right)\left(-\cos{\frac{\pi}{15}}\right)}{2\sin{\frac{\pi}{15}}\cos{\frac{\pi}{15}}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=\frac{2\sin{\frac{\pi}{15}}\cos{\frac{\pi}{15}}}{2\sin{\frac{\pi}{15}}\cos{\frac{\pi}{15}}}\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{8\left(2\sin{\frac{2\pi}{15}}\cos{\frac{2\pi}{15}}\right)\cos{\frac{4\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\)
\(=\frac{8\sin{\frac{4\pi}{15}}\cos{\frac{4\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{4\left(2\sin{\frac{4\pi}{15}}\cos{\frac{4\pi}{15}}\right)\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\)
\(=\frac{4\sin{\frac{8\pi}{15}}\cos{\frac{8\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{2\left(2\sin{\frac{8\pi}{15}}\cos{\frac{8\pi}{15}}\right)\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\)
\(=\frac{2\sin{\frac{16\pi}{15}}\cos{\frac{14\pi}{15}}}{\sin{\frac{2\pi}{15}}}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{2\sin{\left(\frac{\pi}{2}\times2+\frac{\pi}{15}\right)}\cos{\left(\frac{\pi}{2}\times2-\frac{\pi}{15}\right)}}{\sin{\frac{2\pi}{15}}}\) ➜ \(\because \frac{16\pi}{15}=\frac{\pi}{2}\times2+\frac{\pi}{15}\)
এবং \(\frac{14\pi}{15}=\frac{\pi}{2}\times2-\frac{\pi}{15}\)
\(=\frac{2\left(-\sin{\frac{\pi}{15}}\right)\left(-\cos{\frac{\pi}{15}}\right)}{2\sin{\frac{\pi}{15}}\cos{\frac{\pi}{15}}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=\frac{2\sin{\frac{\pi}{15}}\cos{\frac{\pi}{15}}}{2\sin{\frac{\pi}{15}}\cos{\frac{\pi}{15}}}\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xvi)\) \(\cos{\theta}\cos{(60^{o}-\theta)}\cos{(60^{o}+\theta)}=\frac{1}{4}\cos{3\theta}\)সমাধানঃ
\(L.S=\cos{\theta}\cos{(60^{o}-\theta)}\cos{(60^{o}+\theta)}\)
\(=\cos{\theta}\{\cos{(60^{o}+\theta)}\cos{(60^{o}-\theta)}\}\)
\(=\cos{\theta}(\cos^2{60^{o}}-\sin^2{\theta})\) ➜ \(\because \cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=\cos{\theta}\left\{\left(\frac{1}{2}\right)^2-\sin^2{\theta}\right\}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\cos{\theta}\left\{\frac{1}{4}-\sin^2{\theta}\right\}\)
\(=\frac{1}{4}\cos{\theta}-\cos{\theta}\sin^2{\theta}\)
\(=\frac{1}{4}\cos{\theta}-\cos{\theta}(1-\cos^2{\theta})\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
\(=\frac{1}{4}\cos{\theta}-\cos{\theta}+\cos^3{\theta}\)
\(=\frac{1-4}{4}\cos{\theta}+\cos^3{\theta}\)
\(=\frac{-3}{4}\cos{\theta}+\cos^3{\theta}\)
\(=-\frac{3}{4}\cos{\theta}+\cos^3{\theta}\)
\(=\frac{1}{4}(4\cos^3{\theta}-3\cos{\theta})\)
\(=\frac{1}{4}\cos{3\theta}\) ➜ \(\because 4\cos^3{A}-3\cos{A}=\cos{3A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\theta}\{\cos{(60^{o}+\theta)}\cos{(60^{o}-\theta)}\}\)
\(=\cos{\theta}(\cos^2{60^{o}}-\sin^2{\theta})\) ➜ \(\because \cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=\cos{\theta}\left\{\left(\frac{1}{2}\right)^2-\sin^2{\theta}\right\}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\cos{\theta}\left\{\frac{1}{4}-\sin^2{\theta}\right\}\)
\(=\frac{1}{4}\cos{\theta}-\cos{\theta}\sin^2{\theta}\)
\(=\frac{1}{4}\cos{\theta}-\cos{\theta}(1-\cos^2{\theta})\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
\(=\frac{1}{4}\cos{\theta}-\cos{\theta}+\cos^3{\theta}\)
\(=\frac{1-4}{4}\cos{\theta}+\cos^3{\theta}\)
\(=\frac{-3}{4}\cos{\theta}+\cos^3{\theta}\)
\(=-\frac{3}{4}\cos{\theta}+\cos^3{\theta}\)
\(=\frac{1}{4}(4\cos^3{\theta}-3\cos{\theta})\)
\(=\frac{1}{4}\cos{3\theta}\) ➜ \(\because 4\cos^3{A}-3\cos{A}=\cos{3A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xvii)\) \(\sin{\left(45^{o}+A\right)}\sin{\left(45^{o}-A\right)}=\frac{1}{2}\cos{2A}\)সমাধানঃ
\(L.S=\sin{\left(45^{o}+A\right)}\sin{\left(45^{o}-A\right)}\)
\(=\sin{\left(45^{o}+A\right)}\sin{\left(45^{o}-A\right)}\)
\(=\sin^2{45^{o}}-\sin^2{A}\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=\left(\frac{1}{\sqrt{2}}\right)^2-\sin^2{A}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{2}-\sin^2{A}\)
\(=\frac{1}{2}(1-2\sin^2{A})\)
\(=\frac{1}{2}\cos{2A}\) ➜ \(\because 1-2\sin^2{A}=\cos{2A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\left(45^{o}+A\right)}\sin{\left(45^{o}-A\right)}\)
\(=\sin^2{45^{o}}-\sin^2{A}\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=\left(\frac{1}{\sqrt{2}}\right)^2-\sin^2{A}\) ➜ \(\because \sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{2}-\sin^2{A}\)
\(=\frac{1}{2}(1-2\sin^2{A})\)
\(=\frac{1}{2}\cos{2A}\) ➜ \(\because 1-2\sin^2{A}=\cos{2A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xviii)\) \(4\cos{\theta}\cos{\left(\frac{2\pi}{3}+A\right)}\cos{\left(\frac{4\pi}{3}+A\right)}=\cos{3\theta}\)সমাধানঃ
\(L.S=4\cos{\theta}\cos{\left(\frac{2\pi}{3}+A\right)}\cos{\left(\frac{4\pi}{3}+A\right)}\)
\(=2\cos{\theta}\{2\cos{\left(\frac{4\pi}{3}+\theta\right)}\cos{\left(\frac{2\pi}{3}+\theta\right)}\}\)
\(=2\cos{\theta}\{\cos{\left(\frac{4\pi}{3}+\theta-\frac{2\pi}{3}-\theta\right)}+\cos{\left(\frac{4\pi}{3}+\theta+\frac{2\pi}{3}+\theta\right)}\}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=2\cos{\theta}\{\cos{\frac{4\pi-2\pi}{3}}+\cos{(\frac{4\pi+2\pi}{3}+2\theta)}\}\)
\(=2\cos{\theta}\{\cos{\frac{2\pi}{3}}+\cos{(\frac{6\pi}{3}+2\theta)}\}\)
\(=2\cos{\theta}\{\cos{\frac{2\pi}{3}}+\cos{(2\pi+2\theta)}\}\)
\(=2\cos{\theta}\{-\frac{1}{2}+\cos{(2\pi+2\theta)}\}\) ➜ \(\because \cos{\frac{2\pi}{3}}=-\frac{1}{2}\)
\(=-\cos{\theta}+2\cos{(2\pi+2\theta)}\cos{\theta}\)
\(=-\cos{\theta}+\cos{(2\pi+2\theta-\theta)}+\cos{(2\pi+2\theta+\theta)}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=-\cos{\theta}+\cos{(2\pi+\theta)}+\cos{(2\pi+3\theta)}\)
\(=-\cos{\theta}+\cos{\left(\frac{\pi}{2}\times4+\theta\right)}+\cos{\left(\frac{\pi}{2}\times4+3\theta\right)}\) ➜ \(\because 2\pi+\theta=\frac{\pi}{2}\times4+\theta\)
এবং \(2\pi+3\theta=\frac{\pi}{2}\times4+3\theta\)
\(=-\cos{\theta}+\cos{\theta}+\cos{3\theta}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(4\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(=\cos{3\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\cos{\theta}\{2\cos{\left(\frac{4\pi}{3}+\theta\right)}\cos{\left(\frac{2\pi}{3}+\theta\right)}\}\)
\(=2\cos{\theta}\{\cos{\left(\frac{4\pi}{3}+\theta-\frac{2\pi}{3}-\theta\right)}+\cos{\left(\frac{4\pi}{3}+\theta+\frac{2\pi}{3}+\theta\right)}\}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=2\cos{\theta}\{\cos{\frac{4\pi-2\pi}{3}}+\cos{(\frac{4\pi+2\pi}{3}+2\theta)}\}\)
\(=2\cos{\theta}\{\cos{\frac{2\pi}{3}}+\cos{(\frac{6\pi}{3}+2\theta)}\}\)
\(=2\cos{\theta}\{\cos{\frac{2\pi}{3}}+\cos{(2\pi+2\theta)}\}\)
\(=2\cos{\theta}\{-\frac{1}{2}+\cos{(2\pi+2\theta)}\}\) ➜ \(\because \cos{\frac{2\pi}{3}}=-\frac{1}{2}\)
\(=-\cos{\theta}+2\cos{(2\pi+2\theta)}\cos{\theta}\)
\(=-\cos{\theta}+\cos{(2\pi+2\theta-\theta)}+\cos{(2\pi+2\theta+\theta)}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=-\cos{\theta}+\cos{(2\pi+\theta)}+\cos{(2\pi+3\theta)}\)
\(=-\cos{\theta}+\cos{\left(\frac{\pi}{2}\times4+\theta\right)}+\cos{\left(\frac{\pi}{2}\times4+3\theta\right)}\) ➜ \(\because 2\pi+\theta=\frac{\pi}{2}\times4+\theta\)
এবং \(2\pi+3\theta=\frac{\pi}{2}\times4+3\theta\)
\(=-\cos{\theta}+\cos{\theta}+\cos{3\theta}\) ➜ \(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(4\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(=\cos{3\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xix)\) \(2\sin{\left(\theta+\frac{\pi}{4}\right)}\sin{\left(\theta-\frac{\pi}{4}\right)}=\sin^2{\theta}-\cos^2{\theta}\)সমাধানঃ
\(L.S=2\sin{\left(\theta+\frac{\pi}{4}\right)}\sin{\left(\theta-\frac{\pi}{4}\right)}\)
\(=2\sin{\left(\theta+\frac{\pi}{4}\right)}\sin{\left(\theta-\frac{\pi}{4}\right)}\)
\(=2\left\{\sin^2{\theta}-\sin^2{\frac{\pi}{4}}\right\}\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=2\left\{\sin^2{\theta}-\left(\frac{1}{\sqrt{2}}\right)^2\right\}\) ➜ \(\because \sin{\frac{\pi}{4}}=\frac{1}{\sqrt{2}}\)
\(=2\left\{\sin^2{\theta}-\left(\frac{1}{\sqrt{2}}\right)^2\right\}\)
\(=2\left\{\sin^2{\theta}-\frac{1}{2}\right\}\)
\(=2\sin^2{\theta}-1\)
\(=\sin^2{\theta}+\sin^2{\theta}-1\)
\(=\sin^2{\theta}-(1-\sin^2{\theta})\)
\(=\sin^2{\theta}-\cos^2{\theta}\) ➜ \(\because 1-\sin^2{A}=\cos^2{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\sin{\left(\theta+\frac{\pi}{4}\right)}\sin{\left(\theta-\frac{\pi}{4}\right)}\)
\(=2\left\{\sin^2{\theta}-\sin^2{\frac{\pi}{4}}\right\}\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(=2\left\{\sin^2{\theta}-\left(\frac{1}{\sqrt{2}}\right)^2\right\}\) ➜ \(\because \sin{\frac{\pi}{4}}=\frac{1}{\sqrt{2}}\)
\(=2\left\{\sin^2{\theta}-\left(\frac{1}{\sqrt{2}}\right)^2\right\}\)
\(=2\left\{\sin^2{\theta}-\frac{1}{2}\right\}\)
\(=2\sin^2{\theta}-1\)
\(=\sin^2{\theta}+\sin^2{\theta}-1\)
\(=\sin^2{\theta}-(1-\sin^2{\theta})\)
\(=\sin^2{\theta}-\cos^2{\theta}\) ➜ \(\because 1-\sin^2{A}=\cos^2{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xx)\) \(\sin{\frac{\pi}{16}}\sin{\frac{3\pi}{16}}\sin{\frac{5\pi}{16}}\sin{\frac{7\pi}{16}}=\frac{\sqrt{2}}{16}\)সমাধানঃ
\(L.S=\sin{\frac{\pi}{16}}\sin{\frac{3\pi}{16}}\sin{\frac{5\pi}{16}}\sin{\frac{7\pi}{16}}\)
\(=\frac{1}{4}\left\{2\sin{\frac{7\pi}{16}}\sin{\frac{\pi}{16}}\right\}\left\{2\sin{\frac{5\pi}{16}}\sin{\frac{3\pi}{16}}\right\}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{7\pi}{16}-\frac{\pi}{16}\right)}-\cos{\left(\frac{7\pi}{16}+\frac{\pi}{16}\right)}\right\}\left\{\cos{\left(\frac{5\pi}{16}-\frac{3\pi}{16}\right)}-\cos{\left(\frac{5\pi}{16}+\frac{3\pi}{16}\right)}\right\}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{7\pi-\pi}{16}\right)}-\cos{\left(\frac{7\pi+\pi}{16}\right)}\right\}\left\{\cos{\left(\frac{5\pi-3\pi}{16}\right)}-\cos{\left(\frac{5\pi+3\pi}{16}\right)}\right\}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{6\pi}{16}\right)}-\cos{\left(\frac{8\pi}{16}\right)}\right\}\left\{\cos{\left(\frac{2\pi}{16}\right)}-\cos{\left(\frac{8\pi}{16}\right)}\right\}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{3\pi}{8}\right)}-\cos{\left(\frac{\pi}{2}\right)}\right\}\left\{\cos{\left(\frac{\pi}{8}\right)}-\cos{\left(\frac{\pi}{2}\right)}\right\}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{3\pi}{8}\right)}-0\right\}\left\{\cos{\left(\frac{\pi}{8}\right)}-0\right\}\) ➜ \(\because \cos{\left(\frac{\pi}{2}\right)}=0\)
\(=\frac{1}{4}\cos{\left(\frac{3\pi}{8}\right)}\cos{\left(\frac{\pi}{8}\right)}\)
\(=\frac{1}{4}\cos{\left(\frac{\pi}{2}\times1-\frac{\pi}{8}\right)}\cos{\left(\frac{\pi}{8}\right)}\) ➜ \(\because \frac{3\pi}{8}=\frac{\pi}{2}\times1-\frac{\pi}{8}\)
\(=\frac{1}{4}\sin{\left(\frac{\pi}{8}\right)}\cos{\left(\frac{\pi}{8}\right)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\frac{1}{8}\times2\sin{\left(\frac{\pi}{8}\right)}\cos{\left(\frac{\pi}{8}\right)}\)
\(=\frac{1}{8}\sin{\left(\frac{2\pi}{8}\right)}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{1}{8}\sin{\left(\frac{\pi}{4}\right)}\)
\(=\frac{1}{8}\times\frac{1}{\sqrt{2}}\) ➜ \(\because \sin{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{8\sqrt{2}}\)
\(=\frac{\sqrt{2}}{8\sqrt{2}\times\sqrt{2}}\) ➜ লব ও হরকে \(\sqrt{2}\) দ্বারা গুন করে।
\(=\frac{\sqrt{2}}{8\times2}\)
\(=\frac{\sqrt{2}}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{4}\left\{2\sin{\frac{7\pi}{16}}\sin{\frac{\pi}{16}}\right\}\left\{2\sin{\frac{5\pi}{16}}\sin{\frac{3\pi}{16}}\right\}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{7\pi}{16}-\frac{\pi}{16}\right)}-\cos{\left(\frac{7\pi}{16}+\frac{\pi}{16}\right)}\right\}\left\{\cos{\left(\frac{5\pi}{16}-\frac{3\pi}{16}\right)}-\cos{\left(\frac{5\pi}{16}+\frac{3\pi}{16}\right)}\right\}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{7\pi-\pi}{16}\right)}-\cos{\left(\frac{7\pi+\pi}{16}\right)}\right\}\left\{\cos{\left(\frac{5\pi-3\pi}{16}\right)}-\cos{\left(\frac{5\pi+3\pi}{16}\right)}\right\}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{6\pi}{16}\right)}-\cos{\left(\frac{8\pi}{16}\right)}\right\}\left\{\cos{\left(\frac{2\pi}{16}\right)}-\cos{\left(\frac{8\pi}{16}\right)}\right\}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{3\pi}{8}\right)}-\cos{\left(\frac{\pi}{2}\right)}\right\}\left\{\cos{\left(\frac{\pi}{8}\right)}-\cos{\left(\frac{\pi}{2}\right)}\right\}\)
\(=\frac{1}{4}\left\{\cos{\left(\frac{3\pi}{8}\right)}-0\right\}\left\{\cos{\left(\frac{\pi}{8}\right)}-0\right\}\) ➜ \(\because \cos{\left(\frac{\pi}{2}\right)}=0\)
\(=\frac{1}{4}\cos{\left(\frac{3\pi}{8}\right)}\cos{\left(\frac{\pi}{8}\right)}\)
\(=\frac{1}{4}\cos{\left(\frac{\pi}{2}\times1-\frac{\pi}{8}\right)}\cos{\left(\frac{\pi}{8}\right)}\) ➜ \(\because \frac{3\pi}{8}=\frac{\pi}{2}\times1-\frac{\pi}{8}\)
\(=\frac{1}{4}\sin{\left(\frac{\pi}{8}\right)}\cos{\left(\frac{\pi}{8}\right)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
তাই কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=\frac{1}{8}\times2\sin{\left(\frac{\pi}{8}\right)}\cos{\left(\frac{\pi}{8}\right)}\)
\(=\frac{1}{8}\sin{\left(\frac{2\pi}{8}\right)}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{1}{8}\sin{\left(\frac{\pi}{4}\right)}\)
\(=\frac{1}{8}\times\frac{1}{\sqrt{2}}\) ➜ \(\because \sin{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{8\sqrt{2}}\)
\(=\frac{\sqrt{2}}{8\sqrt{2}\times\sqrt{2}}\) ➜ লব ও হরকে \(\sqrt{2}\) দ্বারা গুন করে।
\(=\frac{\sqrt{2}}{8\times2}\)
\(=\frac{\sqrt{2}}{16}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xxi)\) \((\cos{\alpha}+\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2=4\cos^2{\frac{1}{2}(\alpha+\beta)}\)যঃ২০১২ ।
সমাধানঃ
\(L.S=(\cos{\alpha}+\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2\)
\(=\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}+\sin^2{\alpha}+\sin^2{\beta}-2\sin{\alpha}\sin{\beta}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a-b)^2=a^2+b^2-2ab\)
\(=(\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta})\)
\(=1+1+2\cos{(\alpha+\beta)}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=2+2\cos{(\alpha+\beta)}\)
\(=2[1+\cos{\{2\times\frac{1}{2}(\alpha+\beta)\}}]\)
\(=2\times2\cos^2{\frac{1}{2}(\alpha+\beta)}\) ➜ \(\because 1+\cos{2A}=2\cos^2{A}\)
\(=4\cos^2{\frac{1}{2}(\alpha+\beta)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}+\sin^2{\alpha}+\sin^2{\beta}-2\sin{\alpha}\sin{\beta}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a-b)^2=a^2+b^2-2ab\)
\(=(\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta})\)
\(=1+1+2\cos{(\alpha+\beta)}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=2+2\cos{(\alpha+\beta)}\)
\(=2[1+\cos{\{2\times\frac{1}{2}(\alpha+\beta)\}}]\)
\(=2\times2\cos^2{\frac{1}{2}(\alpha+\beta)}\) ➜ \(\because 1+\cos{2A}=2\cos^2{A}\)
\(=4\cos^2{\frac{1}{2}(\alpha+\beta)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7C\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.3.(i)\) \(\sin{18^{o}}+\cos{18^{o}}=\sqrt{2}\cos{27^{o}}\) বুটেক্সঃ ২০১৩-২০১৪ ।
\(Q.3.(ii)\) \(\sin{27^{o}}+\cos{27^{o}}=\sqrt{2}\cos{18^{o}}\)
কুয়েটঃ ২০০৬-২০০৭; রাঃ২০১১ ।
\(Q.3.(iii)\) \(\sin{105^{o}}+\cos{105^{o}}=\frac{1}{\sqrt{2}}\)
\(Q.3.(iv)\) \(\sin{44^{o}}+\cos{44^{o}}=\sqrt{2}\cos{1^{o}}\)
ঢাঃ, দিঃ, সিঃ, যঃ২০১৮ ।
\(Q.3.(v)\) \(\cos{85^{o}}+\sin{85^{o}}=\sqrt{2}\cos{40^{o}}\)
চুয়েটঃ২০০৪-২০০৫ ।
\(Q.3.(vi)\) \(\frac{1}{2}cosec \ {10^{o}}-2\sin{70^{o}}=1\)
প্রমাণ করঃ
\(Q.3.(vii)\) \(cosec \ {20^{o}}+\sqrt{3}\sec{20^{o}}=4\tan{50^{o}}\)দিঃ২০১৯ ।
\(Q.3.(viii)\) \(\tan{(45^{o}+\theta)}+\tan{(45^{o}-\theta)}=2\sec{2\theta}\)
\(Q.3.(ix)\) \(\cot{(\alpha+15^{o})}-\tan{(\alpha-15^{o})}=\frac{4\cos{2\alpha}}{2\sin{2\alpha}+1}\)
\(Q.3.(x)\) \(\sin{65^{o}}+\cos{65^{o}}=\sqrt{2}\cos{20^{o}}\)
ঢাবিঃ২০১৪-২০১৫ ।
\(Q.3.(xi)\) \(\sin{55^{o}}+\cos{55^{o}}=\sqrt{2}\cos{10^{o}}\)
\(Q.3.(xii)\) \(\sin{25^{o}}+\cos{25^{o}}\) মান নির্ণয় কর।
উত্তরঃ \(\sqrt{2}\cos{20^{o}}\)
দিঃ২০১৯ ।
প্রমাণ করঃ
\(Q.3.(i)\) \(\sin{18^{o}}+\cos{18^{o}}=\sqrt{2}\cos{27^{o}}\) বুটেক্সঃ ২০১৩-২০১৪ ।
সমাধানঃ
\(L.S=\sin{18^{o}}+\cos{18^{o}}\)
\(=\cos{18^{o}}+\sin{18^{o}}\)
\(=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos{18^{o}}+\frac{1}{\sqrt{2}}\sin{18^{o}}\right)\)
\(=\sqrt{2}\left(\cos{45^{o}}\cos{18^{o}}+\sin{45^{o}}\sin{18^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(45^{o}-18^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{27^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{18^{o}}+\sin{18^{o}}\)
\(=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos{18^{o}}+\frac{1}{\sqrt{2}}\sin{18^{o}}\right)\)
\(=\sqrt{2}\left(\cos{45^{o}}\cos{18^{o}}+\sin{45^{o}}\sin{18^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(45^{o}-18^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{27^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(ii)\) \(\sin{27^{o}}+\cos{27^{o}}=\sqrt{2}\cos{18^{o}}\) কুয়েটঃ ২০০৬-২০০৭; রাঃ২০১১ ।
সমাধানঃ
\(L.S=\sin{27^{o}}+\cos{27^{o}}\)
\(=\cos{27^{o}}+\sin{27^{o}}\)
\(=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos{27^{o}}+\frac{1}{\sqrt{2}}\sin{27^{o}}\right)\)
\(=\sqrt{2}\left(\cos{45^{o}}\cos{27^{o}}+\sin{45^{o}}\sin{27^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(45^{o}-27^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{18^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{27^{o}}+\sin{27^{o}}\)
\(=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos{27^{o}}+\frac{1}{\sqrt{2}}\sin{27^{o}}\right)\)
\(=\sqrt{2}\left(\cos{45^{o}}\cos{27^{o}}+\sin{45^{o}}\sin{27^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(45^{o}-27^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{18^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(iii)\) \(\sin{105^{o}}+\cos{105^{o}}=\frac{1}{\sqrt{2}}\)সমাধানঃ
\(L.S=\sin{105^{o}}+\cos{105^{o}}\)
\(=\sin{105^{o}}+\cos{(90^{o}\times1+15^{o})}\) ➜ \(\because 105^{o}=90^{o}\times1+15^{o}\)
\(=\sin{105^{o}}-\sin{15^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=2\cos{\frac{105^{o}+15^{o}}{2}}\sin{\frac{105^{o}-15^{o}}{2}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=2\cos{\frac{120^{o}}{2}}\sin{\frac{90^{o}}{2}}\)
\(=2\cos{60^{o}}\sin{45^{o}}\)
\(=2\times\frac{1}{2}\times\frac{1}{\sqrt{2}}\) ➜ \(\because\cos{60^{o}}=\frac{1}{2}\)
এবং \(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{\sqrt{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{105^{o}}+\cos{(90^{o}\times1+15^{o})}\) ➜ \(\because 105^{o}=90^{o}\times1+15^{o}\)
\(=\sin{105^{o}}-\sin{15^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=2\cos{\frac{105^{o}+15^{o}}{2}}\sin{\frac{105^{o}-15^{o}}{2}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=2\cos{\frac{120^{o}}{2}}\sin{\frac{90^{o}}{2}}\)
\(=2\cos{60^{o}}\sin{45^{o}}\)
\(=2\times\frac{1}{2}\times\frac{1}{\sqrt{2}}\) ➜ \(\because\cos{60^{o}}=\frac{1}{2}\)
এবং \(\sin{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{\sqrt{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(iv)\) \(\sin{44^{o}}+\cos{44^{o}}=\sqrt{2}\cos{1^{o}}\) ঢাঃ, দিঃ, সিঃ, যঃ২০১৮ ।
সমাধানঃ
\(L.S=\sin{44^{o}}+\cos{44^{o}}\)
\(=\cos{44^{o}}+\sin{44^{o}}\)
\(=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos{44^{o}}+\frac{1}{\sqrt{2}}\sin{44^{o}}\right)\)
\(=\sqrt{2}\left(\cos{45^{o}}\cos{44^{o}}+\sin{45^{o}}\sin{44^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(45^{o}-44^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{1^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{44^{o}}+\sin{44^{o}}\)
\(=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos{44^{o}}+\frac{1}{\sqrt{2}}\sin{44^{o}}\right)\)
\(=\sqrt{2}\left(\cos{45^{o}}\cos{44^{o}}+\sin{45^{o}}\sin{44^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(45^{o}-44^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{1^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(v)\) \(\cos{85^{o}}+\sin{85^{o}}=\sqrt{2}\cos{40^{o}}\)চুয়েটঃ২০০৪-২০০৫ ।
সমাধানঃ
\(L.S=\cos{85^{o}}+\sin{85^{o}}\)
\(=\sqrt{2}\left(\cos{85^{o}}\frac{1}{\sqrt{2}}+\sin{85^{o}}\frac{1}{\sqrt{2}}\right)\)
\(=\sqrt{2}\left(\cos{85^{o}}\cos{45^{o}}+\sin{85^{o}}\sin{45^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(85^{o}-45^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{40^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sqrt{2}\left(\cos{85^{o}}\frac{1}{\sqrt{2}}+\sin{85^{o}}\frac{1}{\sqrt{2}}\right)\)
\(=\sqrt{2}\left(\cos{85^{o}}\cos{45^{o}}+\sin{85^{o}}\sin{45^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(85^{o}-45^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{40^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(vi)\) \(\frac{1}{2}cosec \ {10^{o}}-2\sin{70^{o}}=1\)সমাধানঃ
\(L.S=\frac{1}{2}cosec \ {10^{o}}-2\sin{70^{o}}\)
\(=\frac{1}{2\sin{10^{o}}}-2\sin{70^{o}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1-4\sin{70^{o}}\sin{10^{o}}}{2\sin{10^{o}}}\)
\(=\frac{1-2(2\sin{70^{o}}\sin{10^{o}})}{2\sin{10^{o}}}\)
\(=\frac{1-2\{\cos{(70^{o}-10^{o})}-\cos{(70^{o}+10^{o})}\}}{2\sin{10^{o}}}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{1-2\{\cos{60^{o}}-\cos{80^{o}}\}}{2\sin{10^{o}}}\)
\(=\frac{1-2\left\{\frac{1}{2}-\cos{80^{o}}\right\}}{2\sin{10^{o}}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{1-1+2\cos{80^{o}}}{2\sin{10^{o}}}\)
\(=\frac{2\cos{80^{o}}}{2\sin{10^{o}}}\)
\(=\frac{\cos{(90^{o}\times1-10^{o})}}{\sin{10^{o}}}\) ➜ \(\because 80^{o}=90^{o}\times1-10^{o}\)
\(=\frac{\sin{10^{o}}}{\sin{10^{o}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2\sin{10^{o}}}-2\sin{70^{o}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1-4\sin{70^{o}}\sin{10^{o}}}{2\sin{10^{o}}}\)
\(=\frac{1-2(2\sin{70^{o}}\sin{10^{o}})}{2\sin{10^{o}}}\)
\(=\frac{1-2\{\cos{(70^{o}-10^{o})}-\cos{(70^{o}+10^{o})}\}}{2\sin{10^{o}}}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
\(=\frac{1-2\{\cos{60^{o}}-\cos{80^{o}}\}}{2\sin{10^{o}}}\)
\(=\frac{1-2\left\{\frac{1}{2}-\cos{80^{o}}\right\}}{2\sin{10^{o}}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(=\frac{1-1+2\cos{80^{o}}}{2\sin{10^{o}}}\)
\(=\frac{2\cos{80^{o}}}{2\sin{10^{o}}}\)
\(=\frac{\cos{(90^{o}\times1-10^{o})}}{\sin{10^{o}}}\) ➜ \(\because 80^{o}=90^{o}\times1-10^{o}\)
\(=\frac{\sin{10^{o}}}{\sin{10^{o}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং কোসাইন অনুপাতের পরিবর্তন হয়ে সাইন হয়েছে।
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(vii)\) \(cosec \ {20^{o}}+\sqrt{3}\sec{20^{o}}=4\tan{50^{o}}\)দিঃ২০১৯ ।
সমাধানঃ
\(L.S=cosec \ {20^{o}}+\sqrt{3}\sec{20^{o}}\)
\(=\frac{1}{\sin{20^{o}}}+\frac{\sqrt{3}}{\cos{20^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
এবং \(\sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{\cos{20^{o}}+\sqrt{3}\sin{20^{o}}}{\sin{20^{o}}\cos{20^{o}}}\)
\(=\frac{\frac{1}{2}\cos{20^{o}}+\frac{\sqrt{3}}{2}\sin{20^{o}}}{\frac{1}{2}\sin{20^{o}}\cos{20^{o}}}\) ➜ লব ও হরকে \(2\) দ্বারা ভাগ করে।
\(=\frac{\sin{30^{o}}\cos{20^{o}}+\cos{30^{o}}\sin{20^{o}}}{\frac{1}{4}(2\sin{20^{o}}\cos{20^{o}})}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
এবং \(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{\sin{(30^{o}+20^{o})}}{\frac{1}{4}\sin{(2\times20^{o})}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{\sin{50^{o}}}{\frac{1}{4}\sin{40^{o}}}\)
\(=\frac{4\sin{50^{o}}}{\sin{(90^{o}\times1-50^{o})}}\) ➜ \(\because 40^{o}=90^{o}\times1-50^{o}\)
\(=\frac{4\sin{50^{o}}}{\cos{50^{o}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=4\frac{\sin{50^{o}}}{\cos{50^{o}}}\)
\(=4\tan{50^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{\sin{20^{o}}}+\frac{\sqrt{3}}{\cos{20^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
এবং \(\sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{\cos{20^{o}}+\sqrt{3}\sin{20^{o}}}{\sin{20^{o}}\cos{20^{o}}}\)
\(=\frac{\frac{1}{2}\cos{20^{o}}+\frac{\sqrt{3}}{2}\sin{20^{o}}}{\frac{1}{2}\sin{20^{o}}\cos{20^{o}}}\) ➜ লব ও হরকে \(2\) দ্বারা ভাগ করে।
\(=\frac{\sin{30^{o}}\cos{20^{o}}+\cos{30^{o}}\sin{20^{o}}}{\frac{1}{4}(2\sin{20^{o}}\cos{20^{o}})}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
এবং \(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{\sin{(30^{o}+20^{o})}}{\frac{1}{4}\sin{(2\times20^{o})}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=\frac{\sin{50^{o}}}{\frac{1}{4}\sin{40^{o}}}\)
\(=\frac{4\sin{50^{o}}}{\sin{(90^{o}\times1-50^{o})}}\) ➜ \(\because 40^{o}=90^{o}\times1-50^{o}\)
\(=\frac{4\sin{50^{o}}}{\cos{50^{o}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=4\frac{\sin{50^{o}}}{\cos{50^{o}}}\)
\(=4\tan{50^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(viii)\) \(\tan{(45^{o}+\theta)}+\tan{(45^{o}-\theta)}=2\sec{2\theta}\)সমাধানঃ
\(L.S=\tan{(45^{o}+\theta)}+\tan{(45^{o}-\theta)}\)
\(=\frac{\sin{(45^{o}+\theta)}}{\cos{(45^{o}+\theta)}}+\frac{\sin{(45^{o}-\theta)}}{\cos{(45^{o}-\theta)}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\sin{(45^{o}+\theta)}\cos{(45^{o}-\theta)}+\cos{(45^{o}+\theta)}\sin{(45^{o}-\theta)}}{\cos{(45^{o}+\theta)}\cos{(45^{o}-\theta)}}\)
\(=\frac{\sin{(45^{o}+\theta+45^{o}-\theta)}}{\cos{(45^{o}+\theta)}\cos{(45^{o}-\theta)}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(=\frac{2\sin{90^{o}}}{2\cos{(45^{o}+\theta)}\cos{(45^{o}-\theta)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\times1}{\cos{(45^{o}+\theta-45^{o}+\theta)}+\cos{(45^{o}+\theta+45^{o}-\theta)}}\) ➜ \(\because \sin{90^{o}}=1\)
এবং \(2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{2}{\cos{2\theta}+\cos{90^{o}}}\)
\(=\frac{2}{\cos{2\theta}+0}\) ➜ \(\because \cos{90^{o}}=0\)
\(=2\frac{1}{\cos{2\theta}}\)
\(=2\sec{2\theta}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{(45^{o}+\theta)}}{\cos{(45^{o}+\theta)}}+\frac{\sin{(45^{o}-\theta)}}{\cos{(45^{o}-\theta)}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\sin{(45^{o}+\theta)}\cos{(45^{o}-\theta)}+\cos{(45^{o}+\theta)}\sin{(45^{o}-\theta)}}{\cos{(45^{o}+\theta)}\cos{(45^{o}-\theta)}}\)
\(=\frac{\sin{(45^{o}+\theta+45^{o}-\theta)}}{\cos{(45^{o}+\theta)}\cos{(45^{o}-\theta)}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(=\frac{2\sin{90^{o}}}{2\cos{(45^{o}+\theta)}\cos{(45^{o}-\theta)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\times1}{\cos{(45^{o}+\theta-45^{o}+\theta)}+\cos{(45^{o}+\theta+45^{o}-\theta)}}\) ➜ \(\because \sin{90^{o}}=1\)
এবং \(2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{2}{\cos{2\theta}+\cos{90^{o}}}\)
\(=\frac{2}{\cos{2\theta}+0}\) ➜ \(\because \cos{90^{o}}=0\)
\(=2\frac{1}{\cos{2\theta}}\)
\(=2\sec{2\theta}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(ix)\) \(\cot{(\alpha+15^{o})}-\tan{(\alpha-15^{o})}=\frac{4\cos{2\alpha}}{2\sin{2\alpha}+1}\)সমাধানঃ
\(L.S=\cot{(\alpha+15^{o})}-\tan{(\alpha-15^{o})}\)
\(=\frac{\cos{(\alpha+15^{o})}}{\sin{(\alpha+15^{o})}}-\frac{\sin{(\alpha-15^{o})}}{\cos{(\alpha-15^{o})}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(\tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\cos{(\alpha+15^{o})}\cos{(\alpha-15^{o})}-\sin{(\alpha+15^{o})}\sin{(\alpha-15^{o})}}{\sin{(\alpha+15^{o})}\cos{(\alpha-15^{o})}}\)
\(=\frac{\cos{(\alpha+15^{o}+\alpha-15^{o})}}{\sin{(\alpha+15^{o})}\cos{(\alpha-15^{o})}}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=\frac{2\cos{2\alpha}}{2\sin{(\alpha+15^{o})}\cos{(\alpha-15^{o})}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\cos{2\alpha}}{\sin{(\alpha+15^{o}+\alpha-15^{o})}+\sin{(\alpha+15^{o}-\alpha+15^{o})}}\) ➜ \(\because 2\sin{A}\cos{B}=\sin{(A+B)}+\sin{(A-B)}\)
\(=\frac{2\cos{2\alpha}}{\sin{2\alpha}+\sin{30^{o}}}\)
\(=\frac{2\cos{2\alpha}}{\sin{2\alpha}+\frac{1}{2}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=\frac{4\cos{2\alpha}}{2\sin{2\alpha}+1}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{(\alpha+15^{o})}}{\sin{(\alpha+15^{o})}}-\frac{\sin{(\alpha-15^{o})}}{\cos{(\alpha-15^{o})}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(\tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\cos{(\alpha+15^{o})}\cos{(\alpha-15^{o})}-\sin{(\alpha+15^{o})}\sin{(\alpha-15^{o})}}{\sin{(\alpha+15^{o})}\cos{(\alpha-15^{o})}}\)
\(=\frac{\cos{(\alpha+15^{o}+\alpha-15^{o})}}{\sin{(\alpha+15^{o})}\cos{(\alpha-15^{o})}}\) ➜ \(\because \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=\frac{2\cos{2\alpha}}{2\sin{(\alpha+15^{o})}\cos{(\alpha-15^{o})}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2\cos{2\alpha}}{\sin{(\alpha+15^{o}+\alpha-15^{o})}+\sin{(\alpha+15^{o}-\alpha+15^{o})}}\) ➜ \(\because 2\sin{A}\cos{B}=\sin{(A+B)}+\sin{(A-B)}\)
\(=\frac{2\cos{2\alpha}}{\sin{2\alpha}+\sin{30^{o}}}\)
\(=\frac{2\cos{2\alpha}}{\sin{2\alpha}+\frac{1}{2}}\) ➜ \(\because \sin{30^{o}}=\frac{1}{2}\)
\(=\frac{4\cos{2\alpha}}{2\sin{2\alpha}+1}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(x)\) \(\sin{65^{o}}+\cos{65^{o}}=\sqrt{2}\cos{20^{o}}\)ঢাবিঃ২০১৪-২০১৫ ।
সমাধানঃ
\(L.S=\sin{65^{o}}+\cos{65^{o}}\)
\(=\cos{65^{o}}+\sin{65^{o}}\)
\(=\sqrt{2}\left(\cos{65^{o}}\times\frac{1}{\sqrt{2}}+\sin{65^{o}}\times\frac{1}{\sqrt{2}}\right)\)
\(=\sqrt{2}\left(\cos{65^{o}}\cos{45^{o}}+\sin{65^{o}}\sin{45^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(65^{o}-45^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{20^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{65^{o}}+\sin{65^{o}}\)
\(=\sqrt{2}\left(\cos{65^{o}}\times\frac{1}{\sqrt{2}}+\sin{65^{o}}\times\frac{1}{\sqrt{2}}\right)\)
\(=\sqrt{2}\left(\cos{65^{o}}\cos{45^{o}}+\sin{65^{o}}\sin{45^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(65^{o}-45^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{20^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xi)\) \(\sin{55^{o}}+\cos{55^{o}}=\sqrt{2}\cos{10^{o}}\)সমাধানঃ
\(L.S=\sin{55^{o}}+\cos{55^{o}}\)
\(=\cos{55^{o}}+\sin{55^{o}}\)
\(=\sqrt{2}\left(\cos{55^{o}}\times\frac{1}{\sqrt{2}}+\sin{55^{o}}\times\frac{1}{\sqrt{2}}\right)\)
\(=\sqrt{2}\left(\cos{55^{o}}\cos{45^{o}}+\sin{55^{o}}\sin{45^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(55^{o}-45^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{10^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{55^{o}}+\sin{55^{o}}\)
\(=\sqrt{2}\left(\cos{55^{o}}\times\frac{1}{\sqrt{2}}+\sin{55^{o}}\times\frac{1}{\sqrt{2}}\right)\)
\(=\sqrt{2}\left(\cos{55^{o}}\cos{45^{o}}+\sin{55^{o}}\sin{45^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(55^{o}-45^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{10^{o}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xii)\) \(\sin{25^{o}}+\cos{25^{o}}\) মান নির্ণয় কর। উত্তরঃ \(\sqrt{2}\cos{20^{o}}\)
দিঃ২০১৯ ।
সমাধানঃ
প্রদত্ত রাশি \(=\sin{25^{o}}+\cos{25^{o}}\)
\(=\cos{25^{o}}+\sin{25^{o}}\)
\(=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos{25^{o}}+\frac{1}{\sqrt{2}}\sin{25^{o}}\right)\)
\(=\sqrt{2}\left(\cos{45^{o}}\cos{25^{o}}+\sin{45^{o}}\sin{25^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(45^{o}-25^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{20^{o}}\)
(ইহাই নির্ণেয় মান )
\(=\cos{25^{o}}+\sin{25^{o}}\)
\(=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos{25^{o}}+\frac{1}{\sqrt{2}}\sin{25^{o}}\right)\)
\(=\sqrt{2}\left(\cos{45^{o}}\cos{25^{o}}+\sin{45^{o}}\sin{25^{o}}\right)\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{45^{o}}=\sin{45^{o}}\)
\(=\sqrt{2}\cos{(45^{o}-25^{o})}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=\sqrt{2}\cos{20^{o}}\)
(ইহাই নির্ণেয় মান )
অধ্যায় \(7C\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
\(Q.4.(i)\) যদি \(cosec \ {A}+\sec{A}=cosec \ {B}+\sec{B}\) হয়, তবে দেখাও যে, \(\tan{A}\tan{B}=\cot{\left(\frac{A+B}{2}\right)}\)
\(Q.4.(ii)\) যদি \(\sin{x}=m\sin{y}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(x-y)}=\frac{m-1}{m+1}\tan{\frac{1}{2}(x+y)}\)
\(Q.4.(iii)\) যদি \(\sin{2\alpha}=k\sin{2\theta}\) হয়, তবে দেখাও যে, \(\tan{(\alpha-\theta)}=\frac{k-1}{k+1}\tan{(\alpha+\theta)}\)
\(Q.4.(iv)\) যদি \(x+y=\theta\) এবং \(\cos{x}=m\cos{y}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(x-y)}=\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\)
\(Q.4.(v)\) \(\frac{\tan{(\theta+\alpha)}}{\tan{(\theta+\beta)}}=\frac{a}{b}\) হলে দেখাও যে, \(\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}=\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}\)
\(Q.4.(vi)\) যদি \(\sin{A}+\cos{A}=\sin{B}+\cos{B}\) হয়, তবে প্রমাণ কর যে, \(A+B=\frac{\pi}{2}\)
\(Q.4.(vii)\) \(\sin{\alpha}-\cos{\alpha}=\cos{\beta}-\sin{\beta}\) হলে দেখাও যে, \(2(\alpha+\beta)=\pi, \ (\alpha\ne{\beta})\)
\(Q.4.(viii)\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে প্রমাণ কর যে, \(\sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
\(Q.4.(ix)\) দেখাও যে, \(\frac{\sin{\theta}+\sin{5\theta}+\sin{9\theta}+\sin{13\theta}}{\cos{\theta}+\cos{5\theta}+\cos{9\theta}+\cos{13\theta}}=\tan{7\theta}\)
\(Q.4.(x)\) দেখাও যে, \(\cos{A}+\cos{B}+\cos{C}+\cos{(A+B+C)}\)\(=4\cos{\frac{B+C}{2}}\cos{\frac{C+A}{2}}\cos{\frac{A+B}{2}}\)
\(Q.4.(xi)\) প্রমাণ কর যে, \(\left(\frac{\cos{A}+\cos{B}}{\sin{A}-\sin{B}}\right)^n+\left(\frac{\sin{A}+\sin{B}}{\cos{A}-\cos{B}}\right)^n\)\(=\begin{cases}2\cot^n{\frac{A-B}{2}}; & \text{যখন } n \text{ জোড় সংখ্যা}\\0 \ ; &\text{যখন } n \text{ বিজোড় সংখ্যা}\end{cases}\)
\(Q.4.(xii)\) প্রমাণ কর যে, \(\frac{\sin{\alpha}+\sin{3\alpha}+\sin{5\alpha}}{\cos{\alpha}+\cos{3\alpha}+\cos{5\alpha}}=\tan{3\alpha}\)
\(Q.4.(xiii)\) প্রমাণ কর যে, \(\frac{\sin{7\theta}-\sin{3\theta}-\sin{5\theta}+\sin{\theta}}{\cos{7\theta}+\cos{3\theta}-\cos{5\theta}-\cos{\theta}}=\tan{2\theta}\)
\(Q.4.(xiv)\) \(\sin{\theta}=k\sin{(\alpha-\theta)}\) হলে দেখাও যে, \(\tan{(\theta-\frac{\alpha}{2})}=\frac{k-1}{k+1}\tan{\frac{\alpha}{2}}\)
\(Q.4.(xv)\) যদি \(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\) হয়, তবে প্রমাণ কর যে, \((m-n)\tan{\theta}=(m+n)\tan{\alpha}\)
\(Q.4.(xvi)\) যদি \(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\) হয়, তবে প্রমাণ কর যে, \((a+b)\tan{x}=(a-b)\cot{\alpha}\)
\(Q.4.(ii)\) যদি \(\sin{x}=m\sin{y}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(x-y)}=\frac{m-1}{m+1}\tan{\frac{1}{2}(x+y)}\)
\(Q.4.(iii)\) যদি \(\sin{2\alpha}=k\sin{2\theta}\) হয়, তবে দেখাও যে, \(\tan{(\alpha-\theta)}=\frac{k-1}{k+1}\tan{(\alpha+\theta)}\)
চঃ২০০৩ ।
\(Q.4.(iv)\) যদি \(x+y=\theta\) এবং \(\cos{x}=m\cos{y}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(x-y)}=\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\)
\(Q.4.(v)\) \(\frac{\tan{(\theta+\alpha)}}{\tan{(\theta+\beta)}}=\frac{a}{b}\) হলে দেখাও যে, \(\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}=\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}\)
\(Q.4.(vi)\) যদি \(\sin{A}+\cos{A}=\sin{B}+\cos{B}\) হয়, তবে প্রমাণ কর যে, \(A+B=\frac{\pi}{2}\)
কুঃ২০১২; সিঃ২০০৯; দিঃ,চঃ২০১০ ।
\(Q.4.(vii)\) \(\sin{\alpha}-\cos{\alpha}=\cos{\beta}-\sin{\beta}\) হলে দেখাও যে, \(2(\alpha+\beta)=\pi, \ (\alpha\ne{\beta})\)
দিঃ,বঃ২০১৯ ।
\(Q.4.(viii)\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে প্রমাণ কর যে, \(\sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
দিঃ,বঃ২০১৭ ।
\(Q.4.(ix)\) দেখাও যে, \(\frac{\sin{\theta}+\sin{5\theta}+\sin{9\theta}+\sin{13\theta}}{\cos{\theta}+\cos{5\theta}+\cos{9\theta}+\cos{13\theta}}=\tan{7\theta}\)
\(Q.4.(x)\) দেখাও যে, \(\cos{A}+\cos{B}+\cos{C}+\cos{(A+B+C)}\)\(=4\cos{\frac{B+C}{2}}\cos{\frac{C+A}{2}}\cos{\frac{A+B}{2}}\)
\(Q.4.(xi)\) প্রমাণ কর যে, \(\left(\frac{\cos{A}+\cos{B}}{\sin{A}-\sin{B}}\right)^n+\left(\frac{\sin{A}+\sin{B}}{\cos{A}-\cos{B}}\right)^n\)\(=\begin{cases}2\cot^n{\frac{A-B}{2}}; & \text{যখন } n \text{ জোড় সংখ্যা}\\0 \ ; &\text{যখন } n \text{ বিজোড় সংখ্যা}\end{cases}\)
\(Q.4.(xii)\) প্রমাণ কর যে, \(\frac{\sin{\alpha}+\sin{3\alpha}+\sin{5\alpha}}{\cos{\alpha}+\cos{3\alpha}+\cos{5\alpha}}=\tan{3\alpha}\)
\(Q.4.(xiii)\) প্রমাণ কর যে, \(\frac{\sin{7\theta}-\sin{3\theta}-\sin{5\theta}+\sin{\theta}}{\cos{7\theta}+\cos{3\theta}-\cos{5\theta}-\cos{\theta}}=\tan{2\theta}\)
\(Q.4.(xiv)\) \(\sin{\theta}=k\sin{(\alpha-\theta)}\) হলে দেখাও যে, \(\tan{(\theta-\frac{\alpha}{2})}=\frac{k-1}{k+1}\tan{\frac{\alpha}{2}}\)
কুঃ২০০৮; সিঃ২০০৩ ।
\(Q.4.(xv)\) যদি \(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\) হয়, তবে প্রমাণ কর যে, \((m-n)\tan{\theta}=(m+n)\tan{\alpha}\)
\(Q.4.(xvi)\) যদি \(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\) হয়, তবে প্রমাণ কর যে, \((a+b)\tan{x}=(a-b)\cot{\alpha}\)
ঢাঃ২০০৫ ।
\(Q.4.(xvii)\) \(a\cos{(\alpha+\beta)}=b\cos{(\alpha-\beta)}\) হলে প্রমাণ কর যে, \(\tan{\alpha}=\frac{a-b}{a+b}\cot{\beta}\)
\(Q.4.(xviii)\) যদি \(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\) হয়, তবে প্রমাণ কর যে, \(\tan{D}=\tan{A}\tan{B}\tan{C}\)
\(Q.4.(xix)\) \(2P=\tan{\frac{x+y}{2}}+\tan{\frac{x-y}{2}}\) হলে দেখাও যে, \(P=\frac{\sin{x}}{\cos{x}+\cos{y}}\)
\(Q.4.(xx)\) যদি \(\sin{x}+\sin{y}=1\) এবং \(\cos{x}+\cos{y}=0\) হয়, তবে প্রমাণ কর যে, \(x+y=\pi\)
\(Q.4.(xxi)\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে প্রমাণ কর যে,
\((a) \ \sin{(\alpha+\beta)}=\frac{2ab}{b^2+a^2}\)
\((b) \ \tan{(\alpha+\beta)}=\frac{2ab}{b^2-a^2}\)
\(Q.4.(xxii)\) \(p=\sin{2\alpha}, \ q=\sin{2\beta}, \ r=\cos{2\alpha}, \ s=\cos{2\beta}\) এবং \(p+q=c, \ r+s=d\) হয়, তবে দেখাও যে, \(\cos{(2\alpha+2\beta)}=\frac{d^2-c^2}{d^2+c^2}\)
\(Q.4.(xxiii)\) \(f(x)=\sin{x}, \ g(x)=\cos{x}\) এবং \(f(x)+f(y)=p, \ g(x)+g(y)=q\) হলে প্রমাণ কর যে, \(f\left(\frac{x-y}{2}\right)=\pm\frac{1}{2}\sqrt{4-p^2-q^2}\)
\(Q.4.(xxiv)\) যদি \(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\) হয়, তবে প্রমাণ কর যে, \(\tan{\left(\frac{\theta-\phi}{2}\right)}=\pm\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
\(Q.4.(xxv)\) \(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\) হলে দেখাও যে, \(\tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
\(Q.4.(xxvi)\) প্রমাণ কর যে, \(\frac{\cos{8\theta}+6\cos{6\theta}+13\cos{4\theta}+8\cos{2\theta}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}=2\cos{\theta}\)
\(Q.4.(xxvii)\) যদি \((\theta-\phi)\) সূক্ষ্ণ কোণ এবং \(\sin{\theta}+\sin{\phi}=\sqrt{3}(\cos{\phi}-\cos{\theta})\) হয়, তবে প্রমাণ কর যে, \(\sin{3\theta}+\sin{3\phi}=0\)
\(Q.4.(xxviii)\) \(A\) এর যে মানের জন্য \(\cos{A}\sin{\left(A-\frac{\pi}{6}\right)}\) এর মান বৃহত্তম হয়, তা নির্ণয় কর, যেখানে \(A\) সূক্ষ্ণকোণ।
উত্তরঃ \(\frac{\pi}{3}\)
\(Q.4.(xxix)\) \(\frac{x}{\tan{(\theta+\alpha)}}=\frac{y}{\tan{(\theta+\beta)}}=\frac{z}{\tan{(\theta+\gamma)}}\) হলে দেখাও যে, \(\frac{x+y}{x-y}\sin^2{(\alpha-\beta)}+\frac{y+z}{y-z}\sin^2{(\beta-\gamma)}+\frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=0\)
\(Q.4.(xxx)\) \(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\) হলে দেখাও যে, \(\frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
\(Q.4.(xviii)\) যদি \(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\) হয়, তবে প্রমাণ কর যে, \(\tan{D}=\tan{A}\tan{B}\tan{C}\)
\(Q.4.(xix)\) \(2P=\tan{\frac{x+y}{2}}+\tan{\frac{x-y}{2}}\) হলে দেখাও যে, \(P=\frac{\sin{x}}{\cos{x}+\cos{y}}\)
কুঃ২০১৯ ।
\(Q.4.(xx)\) যদি \(\sin{x}+\sin{y}=1\) এবং \(\cos{x}+\cos{y}=0\) হয়, তবে প্রমাণ কর যে, \(x+y=\pi\)
রুয়েটঃ২০১৮-২০১৯; বুয়েটঃ ২০০১-২০০২ ।
\(Q.4.(xxi)\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে প্রমাণ কর যে,
\((a) \ \sin{(\alpha+\beta)}=\frac{2ab}{b^2+a^2}\)
\((b) \ \tan{(\alpha+\beta)}=\frac{2ab}{b^2-a^2}\)
কুঃ২০১৪; সিঃ২০১১, ২০০১; রাঃ ২০০৮,২০০৩ ।
\(Q.4.(xxii)\) \(p=\sin{2\alpha}, \ q=\sin{2\beta}, \ r=\cos{2\alpha}, \ s=\cos{2\beta}\) এবং \(p+q=c, \ r+s=d\) হয়, তবে দেখাও যে, \(\cos{(2\alpha+2\beta)}=\frac{d^2-c^2}{d^2+c^2}\)
ঢাঃ,দিঃ,সিঃ,যঃ ২০১৮ ।
\(Q.4.(xxiii)\) \(f(x)=\sin{x}, \ g(x)=\cos{x}\) এবং \(f(x)+f(y)=p, \ g(x)+g(y)=q\) হলে প্রমাণ কর যে, \(f\left(\frac{x-y}{2}\right)=\pm\frac{1}{2}\sqrt{4-p^2-q^2}\)
দিঃ ২০১৭ ।
\(Q.4.(xxiv)\) যদি \(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\) হয়, তবে প্রমাণ কর যে, \(\tan{\left(\frac{\theta-\phi}{2}\right)}=\pm\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
\(Q.4.(xxv)\) \(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\) হলে দেখাও যে, \(\tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
\(Q.4.(xxvi)\) প্রমাণ কর যে, \(\frac{\cos{8\theta}+6\cos{6\theta}+13\cos{4\theta}+8\cos{2\theta}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}=2\cos{\theta}\)
\(Q.4.(xxvii)\) যদি \((\theta-\phi)\) সূক্ষ্ণ কোণ এবং \(\sin{\theta}+\sin{\phi}=\sqrt{3}(\cos{\phi}-\cos{\theta})\) হয়, তবে প্রমাণ কর যে, \(\sin{3\theta}+\sin{3\phi}=0\)
\(Q.4.(xxviii)\) \(A\) এর যে মানের জন্য \(\cos{A}\sin{\left(A-\frac{\pi}{6}\right)}\) এর মান বৃহত্তম হয়, তা নির্ণয় কর, যেখানে \(A\) সূক্ষ্ণকোণ।
উত্তরঃ \(\frac{\pi}{3}\)
\(Q.4.(xxix)\) \(\frac{x}{\tan{(\theta+\alpha)}}=\frac{y}{\tan{(\theta+\beta)}}=\frac{z}{\tan{(\theta+\gamma)}}\) হলে দেখাও যে, \(\frac{x+y}{x-y}\sin^2{(\alpha-\beta)}+\frac{y+z}{y-z}\sin^2{(\beta-\gamma)}+\frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=0\)
\(Q.4.(xxx)\) \(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\) হলে দেখাও যে, \(\frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
\(Q.4.(i)\) যদি \(cosec \ {A}+\sec{A}=cosec \ {B}+\sec{B}\) হয়, তবে দেখাও যে, \(\tan{A}\tan{B}=\cot{\left(\frac{A+B}{2}\right)}\)
সমাধানঃ
দেওয়া আছে,
\(cosec \ {A}+\sec{A}=cosec \ {B}+\sec{B}\)
\(\Rightarrow \frac{1}{\sin{A}}+\frac{1}{\cos{A}}=\frac{1}{\sin{B}}+\frac{1}{\cos{B}}\) ➜ \(\because cosec \ {P}=\frac{1}{\sin{P}}\)
এবং \(\sec{P}=\frac{1}{\cos{P}}\)
\(\Rightarrow \frac{1}{\cos{A}}-\frac{1}{\cos{B}}=\frac{1}{\sin{B}}-\frac{1}{\sin{A}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\cos{B}-\cos{A}}{\cos{A}\cos{B}}=\frac{\sin{A}-\sin{B}}{\sin{A}\sin{B}}\)
\(\Rightarrow \frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}=\frac{\sin{A}-\sin{B}}{\cos{B}-\cos{A}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{A}\tan{B}=\frac{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}{2\sin{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \tan{A}\tan{B}=\frac{\cos{\frac{A+B}{2}}}{\sin{\frac{A+B}{2}}}\)
\(\Rightarrow \tan{A}\tan{B}=\cot{\frac{A+B}{2}}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
(দেখানো হলো)
\(cosec \ {A}+\sec{A}=cosec \ {B}+\sec{B}\)
\(\Rightarrow \frac{1}{\sin{A}}+\frac{1}{\cos{A}}=\frac{1}{\sin{B}}+\frac{1}{\cos{B}}\) ➜ \(\because cosec \ {P}=\frac{1}{\sin{P}}\)
এবং \(\sec{P}=\frac{1}{\cos{P}}\)
\(\Rightarrow \frac{1}{\cos{A}}-\frac{1}{\cos{B}}=\frac{1}{\sin{B}}-\frac{1}{\sin{A}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\cos{B}-\cos{A}}{\cos{A}\cos{B}}=\frac{\sin{A}-\sin{B}}{\sin{A}\sin{B}}\)
\(\Rightarrow \frac{\sin{A}\sin{B}}{\cos{A}\cos{B}}=\frac{\sin{A}-\sin{B}}{\cos{B}-\cos{A}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{A}\tan{B}=\frac{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}{2\sin{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \tan{A}\tan{B}=\frac{\cos{\frac{A+B}{2}}}{\sin{\frac{A+B}{2}}}\)
\(\Rightarrow \tan{A}\tan{B}=\cot{\frac{A+B}{2}}\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
(দেখানো হলো)
\(Q.4.(ii)\) যদি \(\sin{x}=m\sin{y}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(x-y)}=\frac{m-1}{m+1}\tan{\frac{1}{2}(x+y)}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{x}=m\sin{y}\)
\(\Rightarrow \frac{\sin{x}}{\sin{y}}=m\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{x}-\sin{y}}{\sin{x}+\sin{y}}=\frac{m-1}{m+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{\frac{x+y}{2}}\sin{\frac{x-y}{2}}}{2\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}=\frac{m-1}{m+1}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{x-y}{2}}}{\cos{\frac{x-y}{2}}}=\frac{m-1}{m+1}\frac{\sin{\frac{x+y}{2}}}{\cos{\frac{x+y}{2}}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{\frac{x-y}{2}}=\frac{m-1}{m+1}\tan{\frac{x+y}{2}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\therefore \tan{\frac{1}{2}(x-y)}=\frac{m-1}{m+1}\tan{\frac{1}{2}(x+y)}\)
(প্রমাণিত)
\(\sin{x}=m\sin{y}\)
\(\Rightarrow \frac{\sin{x}}{\sin{y}}=m\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{x}-\sin{y}}{\sin{x}+\sin{y}}=\frac{m-1}{m+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{\frac{x+y}{2}}\sin{\frac{x-y}{2}}}{2\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}=\frac{m-1}{m+1}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{x-y}{2}}}{\cos{\frac{x-y}{2}}}=\frac{m-1}{m+1}\frac{\sin{\frac{x+y}{2}}}{\cos{\frac{x+y}{2}}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{\frac{x-y}{2}}=\frac{m-1}{m+1}\tan{\frac{x+y}{2}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\therefore \tan{\frac{1}{2}(x-y)}=\frac{m-1}{m+1}\tan{\frac{1}{2}(x+y)}\)
(প্রমাণিত)
\(Q.4.(iii)\) যদি \(\sin{2\alpha}=k\sin{2\theta}\) হয়, তবে দেখাও যে, \(\tan{(\alpha-\theta)}=\frac{k-1}{k+1}\tan{(\alpha+\theta)}\)
চঃ২০০৩ ।
সমাধানঃ
দেওয়া আছে,
\(\sin{2\alpha}=k\sin{2\theta}\)
\(\Rightarrow \frac{\sin{2\alpha}}{\sin{2\theta}}=k\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{2\alpha}-\sin{2\theta}}{\sin{2\alpha}+\sin{2\theta}}=\frac{k-1}{k+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{\frac{2\alpha+2\theta}{2}}\sin{\frac{2\alpha-2\theta}{2}}}{2\sin{\frac{2\alpha+2\theta}{2}}\cos{\frac{2\alpha-2\theta}{2}}}=\frac{k-1}{k+1}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{2(\alpha+\theta)}{2}}\sin{\frac{2(\alpha-\theta)}{2}}}{\sin{\frac{2(\alpha+\theta)}{2}}\cos{\frac{2(\alpha-\theta)}{2}}}=\frac{k-1}{k+1}\)
\(\Rightarrow \frac{\cos{(\alpha+\theta)}\sin{(\alpha-\theta)}}{\sin{(\alpha+\theta)}\cos{(\alpha-\theta)}}=\frac{k-1}{k+1}\)
\(\Rightarrow \frac{\sin{(\alpha-\theta)}}{\cos{(\alpha-\theta)}}=\frac{k-1}{k+1}\frac{\sin{(\alpha+\theta)}}{\cos{(\alpha+\theta)}}\) ➜ পক্ষান্তর করে।
\(\therefore \tan{(\alpha-\theta)}=\frac{k-1}{k+1}\tan{(\alpha+\theta)}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
(প্রমাণিত)
\(\sin{2\alpha}=k\sin{2\theta}\)
\(\Rightarrow \frac{\sin{2\alpha}}{\sin{2\theta}}=k\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{2\alpha}-\sin{2\theta}}{\sin{2\alpha}+\sin{2\theta}}=\frac{k-1}{k+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{\frac{2\alpha+2\theta}{2}}\sin{\frac{2\alpha-2\theta}{2}}}{2\sin{\frac{2\alpha+2\theta}{2}}\cos{\frac{2\alpha-2\theta}{2}}}=\frac{k-1}{k+1}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{2(\alpha+\theta)}{2}}\sin{\frac{2(\alpha-\theta)}{2}}}{\sin{\frac{2(\alpha+\theta)}{2}}\cos{\frac{2(\alpha-\theta)}{2}}}=\frac{k-1}{k+1}\)
\(\Rightarrow \frac{\cos{(\alpha+\theta)}\sin{(\alpha-\theta)}}{\sin{(\alpha+\theta)}\cos{(\alpha-\theta)}}=\frac{k-1}{k+1}\)
\(\Rightarrow \frac{\sin{(\alpha-\theta)}}{\cos{(\alpha-\theta)}}=\frac{k-1}{k+1}\frac{\sin{(\alpha+\theta)}}{\cos{(\alpha+\theta)}}\) ➜ পক্ষান্তর করে।
\(\therefore \tan{(\alpha-\theta)}=\frac{k-1}{k+1}\tan{(\alpha+\theta)}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
(প্রমাণিত)
\(Q.4.(iv)\) যদি \(x+y=\theta\) এবং \(\cos{x}=m\cos{y}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{1}{2}(x-y)}=\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\)
সমাধানঃ
দেওয়া আছে,
\(x+y=\theta\) এবং \(\cos{x}=m\cos{y}\)
\(\Rightarrow \frac{\cos{x}}{\cos{y}}=m\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\cos{x}-\cos{y}}{\cos{x}+\cos{y}}=\frac{m-1}{m+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\sin{\frac{x+y}{2}}\sin{\frac{y-x}{2}}}{2\cos{\frac{x+y}{2}}\cos{\frac{y-x}{2}}}=\frac{m-1}{m+1}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{y-x}{2}}}{\cos{\frac{y-x}{2}}}=\frac{m-1}{m+1}\frac{\cos{\frac{x+y}{2}}}{\sin{\frac{x+y}{2}}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{\frac{y-x}{2}}=\frac{m-1}{m+1}\cot{\frac{x+y}{2}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\Rightarrow \tan{\left\{-\left(\frac{x-y}{2}\right)\right\}}=-\frac{1-m}{1+m}\cot{\frac{x+y}{2}}\)
\(\Rightarrow -\tan{\frac{x-y}{2}}=-\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\) ➜ \(\because \tan{(-P)}=-\tan{P}\)
এবং \(x+y=\theta\)
\(\Rightarrow \tan{\frac{x-y}{2}}=\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\)
\(\therefore \tan{\frac{1}{2}(x-y)}=\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\)
(প্রমাণিত)
\(x+y=\theta\) এবং \(\cos{x}=m\cos{y}\)
\(\Rightarrow \frac{\cos{x}}{\cos{y}}=m\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\cos{x}-\cos{y}}{\cos{x}+\cos{y}}=\frac{m-1}{m+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\sin{\frac{x+y}{2}}\sin{\frac{y-x}{2}}}{2\cos{\frac{x+y}{2}}\cos{\frac{y-x}{2}}}=\frac{m-1}{m+1}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{y-x}{2}}}{\cos{\frac{y-x}{2}}}=\frac{m-1}{m+1}\frac{\cos{\frac{x+y}{2}}}{\sin{\frac{x+y}{2}}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{\frac{y-x}{2}}=\frac{m-1}{m+1}\cot{\frac{x+y}{2}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\Rightarrow \tan{\left\{-\left(\frac{x-y}{2}\right)\right\}}=-\frac{1-m}{1+m}\cot{\frac{x+y}{2}}\)
\(\Rightarrow -\tan{\frac{x-y}{2}}=-\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\) ➜ \(\because \tan{(-P)}=-\tan{P}\)
এবং \(x+y=\theta\)
\(\Rightarrow \tan{\frac{x-y}{2}}=\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\)
\(\therefore \tan{\frac{1}{2}(x-y)}=\frac{1-m}{1+m}\cot{\frac{\theta}{2}}\)
(প্রমাণিত)
\(Q.4.(v)\) \(\frac{\tan{(\theta+\alpha)}}{\tan{(\theta+\beta)}}=\frac{a}{b}\) হলে দেখাও যে, \(\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}=\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}\)
সমাধানঃ
দেওয়া আছে,
\(\frac{\tan{(\theta+\alpha)}}{\tan{(\theta+\beta)}}=\frac{a}{b}\)
\(\Rightarrow b\tan{(\theta+\alpha)}=a\tan{(\theta+\beta)}\) ➜ আড় গুণ করে।
\(\Rightarrow b\frac{\sin{(\theta+\alpha)}}{\cos{(\theta+\alpha)}}=a\frac{\sin{(\theta+\beta)}}{\cos{(\theta+\beta)}}\)
\(\Rightarrow b\sin{(\theta+\alpha)}\cos{(\theta+\beta)}=a\cos{(\theta+\alpha)}\sin{(\theta+\beta)}\) ➜ আড় গুণ করে।
\(\Rightarrow \frac{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}}{\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}=\frac{a}{b}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}+\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}-\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}=\frac{a+b}{a-b}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{\sin{(\theta+\alpha+\theta+\beta)}}{\sin{(\theta+\alpha-\theta-\beta)}}=\frac{a+b}{a-b}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\Rightarrow \frac{\sin{\{2\theta+(\alpha+\beta)\}}}{\sin{(\alpha-\beta)}}=\frac{a+b}{a-b}\)
\(\Rightarrow \sin{\{2\theta+(\alpha+\beta)\}}\sin{(\alpha-\beta)}=\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}\) ➜ উভয় পার্শে \(\sin^2{(\alpha-\beta)}\) গুণ করে।
\(\Rightarrow \sin{\{(\theta+\alpha)+(\theta+\beta)\}}\sin{\{(\theta+\alpha)-(\theta+\beta)\}}=\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}\) ➜ \(\because 2\theta+\alpha+\beta=(\theta+\alpha)+(\theta+\beta)\)
এবং \(\alpha-\beta=(\theta+\alpha)-(\theta+\beta)\)
\(\Rightarrow \sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}=\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(\therefore \frac{a+b}{a-b}\sin^2{(\alpha-\beta)}=\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}\) ➜ পক্ষান্তর করে।
(দেখানো হলো)
\(\frac{\tan{(\theta+\alpha)}}{\tan{(\theta+\beta)}}=\frac{a}{b}\)
\(\Rightarrow b\tan{(\theta+\alpha)}=a\tan{(\theta+\beta)}\) ➜ আড় গুণ করে।
\(\Rightarrow b\frac{\sin{(\theta+\alpha)}}{\cos{(\theta+\alpha)}}=a\frac{\sin{(\theta+\beta)}}{\cos{(\theta+\beta)}}\)
\(\Rightarrow b\sin{(\theta+\alpha)}\cos{(\theta+\beta)}=a\cos{(\theta+\alpha)}\sin{(\theta+\beta)}\) ➜ আড় গুণ করে।
\(\Rightarrow \frac{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}}{\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}=\frac{a}{b}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}+\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}-\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}=\frac{a+b}{a-b}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{\sin{(\theta+\alpha+\theta+\beta)}}{\sin{(\theta+\alpha-\theta-\beta)}}=\frac{a+b}{a-b}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\Rightarrow \frac{\sin{\{2\theta+(\alpha+\beta)\}}}{\sin{(\alpha-\beta)}}=\frac{a+b}{a-b}\)
\(\Rightarrow \sin{\{2\theta+(\alpha+\beta)\}}\sin{(\alpha-\beta)}=\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}\) ➜ উভয় পার্শে \(\sin^2{(\alpha-\beta)}\) গুণ করে।
\(\Rightarrow \sin{\{(\theta+\alpha)+(\theta+\beta)\}}\sin{\{(\theta+\alpha)-(\theta+\beta)\}}=\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}\) ➜ \(\because 2\theta+\alpha+\beta=(\theta+\alpha)+(\theta+\beta)\)
এবং \(\alpha-\beta=(\theta+\alpha)-(\theta+\beta)\)
\(\Rightarrow \sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}=\frac{a+b}{a-b}\sin^2{(\alpha-\beta)}\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
\(\therefore \frac{a+b}{a-b}\sin^2{(\alpha-\beta)}=\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}\) ➜ পক্ষান্তর করে।
(দেখানো হলো)
\(Q.4.(vi)\) যদি \(\sin{A}+\cos{A}=\sin{B}+\cos{B}\) হয়, তবে প্রমাণ কর যে, \(A+B=\frac{\pi}{2}\)
কুঃ২০১২; সিঃ২০০৯; দিঃ,চঃ২০১০ ।
সমাধানঃ
দেওয়া আছে,
\(\sin{A}+\cos{A}=\sin{B}+\cos{B}\)
\(\Rightarrow \sin{A}-\sin{B}=\cos{B}-\cos{A}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}=2\sin{\frac{A+B}{2}}\sin{\frac{A-B}{2}}\) ➜ \(\because \sin{D}-\sin{C}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \frac{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}{2\sin{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=1\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\cos{\frac{A+B}{2}}}{\sin{\frac{A+B}{2}}}=1\)
\(\Rightarrow \cot{\frac{A+B}{2}}=\cot{\frac{\pi}{4}}\) ➜ \(\because \cot{\frac{\pi}{4}}=1\)
\(\Rightarrow \frac{A+B}{2}=\frac{\pi}{4}\)
\(\Rightarrow A+B=\frac{2\pi}{4}\)
\(\therefore A+B=\frac{\pi}{2}\)
(প্রমাণিত)
\(\sin{A}+\cos{A}=\sin{B}+\cos{B}\)
\(\Rightarrow \sin{A}-\sin{B}=\cos{B}-\cos{A}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}=2\sin{\frac{A+B}{2}}\sin{\frac{A-B}{2}}\) ➜ \(\because \sin{D}-\sin{C}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \frac{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}{2\sin{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=1\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\cos{\frac{A+B}{2}}}{\sin{\frac{A+B}{2}}}=1\)
\(\Rightarrow \cot{\frac{A+B}{2}}=\cot{\frac{\pi}{4}}\) ➜ \(\because \cot{\frac{\pi}{4}}=1\)
\(\Rightarrow \frac{A+B}{2}=\frac{\pi}{4}\)
\(\Rightarrow A+B=\frac{2\pi}{4}\)
\(\therefore A+B=\frac{\pi}{2}\)
(প্রমাণিত)
\(Q.4.(vii)\) \(\sin{\alpha}-\cos{\alpha}=\cos{\beta}-\sin{\beta}\) হলে দেখাও যে, \(2(\alpha+\beta)=\pi, \ (\alpha\ne{\beta})\)
দিঃ,বঃ২০১৯ ।
সমাধানঃ
দেওয়া আছে,
\(\sin{\alpha}-\cos{\alpha}=\cos{\beta}-\sin{\beta}\)
\(\Rightarrow \sin{\alpha}+\sin{\beta}=\cos{\beta}+\cos{\alpha}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}=2\cos{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}\) ➜ \(\because \sin{D}+\sin{C}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}{2\cos{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}=1\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{\frac{\alpha+\beta}{2}}}{\cos{\frac{\alpha+\beta}{2}}}=1\)
\(\Rightarrow \tan{\frac{\alpha+\beta}{2}}=\tan{\frac{\pi}{4}}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(\Rightarrow \frac{\alpha+\beta}{2}=\frac{\pi}{4}\)
\(\Rightarrow 2(\alpha+\beta)=\frac{4\pi}{4}\) ➜ উভয় পার্শে \(4\) গুণ করে।
\(\therefore 2(\alpha+\beta)=\pi\)
(দেখানো হলো)
\(\sin{\alpha}-\cos{\alpha}=\cos{\beta}-\sin{\beta}\)
\(\Rightarrow \sin{\alpha}+\sin{\beta}=\cos{\beta}+\cos{\alpha}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}=2\cos{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}\) ➜ \(\because \sin{D}+\sin{C}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}{2\cos{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}=1\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{\frac{\alpha+\beta}{2}}}{\cos{\frac{\alpha+\beta}{2}}}=1\)
\(\Rightarrow \tan{\frac{\alpha+\beta}{2}}=\tan{\frac{\pi}{4}}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(\Rightarrow \frac{\alpha+\beta}{2}=\frac{\pi}{4}\)
\(\Rightarrow 2(\alpha+\beta)=\frac{4\pi}{4}\) ➜ উভয় পার্শে \(4\) গুণ করে।
\(\therefore 2(\alpha+\beta)=\pi\)
(দেখানো হলো)
\(Q.4.(viii)\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে প্রমাণ কর যে, \(\sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
দিঃ,বঃ২০১৭ ।
সমাধানঃ
দেওয়া আছে,
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ........(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\alpha}+\sin{\beta})^2+(\cos{\alpha}+\cos{\beta})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\alpha}+\sin^2{\beta}+2\sin{\alpha}\sin{\beta}+\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}=a^2+b^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\alpha-\beta)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\alpha-\beta)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\alpha-\beta}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\alpha-\beta}{2}\right)}=a^2+b^2\)
\(\Rightarrow 4\left\{1-\sin^2{\left(\frac{\alpha-\beta}{2}\right)}\right\}=a^2+b^2\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 4-4\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=a^2+b^2\)
\(\Rightarrow 4-a^2-b^2=4\sin^2{\left(\frac{\alpha-\beta}{2}\right)}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 4\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=4-a^2-b^2\) ➜ পক্ষান্তর করে।
\(\Rightarrow \sin^2{\left(\frac{\alpha-\beta}{2}\right)}=\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin{\left(\frac{\alpha-\beta}{2}\right)}=\pm\sqrt{\frac{1}{4}(4-a^2-b^2)}\)
\(\therefore \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{(4-a^2-b^2)}\)
(প্রমাণিত)
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ........(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\alpha}+\sin{\beta})^2+(\cos{\alpha}+\cos{\beta})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\alpha}+\sin^2{\beta}+2\sin{\alpha}\sin{\beta}+\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}=a^2+b^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\alpha-\beta)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\alpha-\beta)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\alpha-\beta}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\alpha-\beta}{2}\right)}=a^2+b^2\)
\(\Rightarrow 4\left\{1-\sin^2{\left(\frac{\alpha-\beta}{2}\right)}\right\}=a^2+b^2\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 4-4\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=a^2+b^2\)
\(\Rightarrow 4-a^2-b^2=4\sin^2{\left(\frac{\alpha-\beta}{2}\right)}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 4\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=4-a^2-b^2\) ➜ পক্ষান্তর করে।
\(\Rightarrow \sin^2{\left(\frac{\alpha-\beta}{2}\right)}=\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin{\left(\frac{\alpha-\beta}{2}\right)}=\pm\sqrt{\frac{1}{4}(4-a^2-b^2)}\)
\(\therefore \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{(4-a^2-b^2)}\)
(প্রমাণিত)
\(Q.4.(ix)\) দেখাও যে, \(\frac{\sin{\theta}+\sin{5\theta}+\sin{9\theta}+\sin{13\theta}}{\cos{\theta}+\cos{5\theta}+\cos{9\theta}+\cos{13\theta}}=\tan{7\theta}\)
সমাধানঃ
\(L.S=\frac{\sin{\theta}+\sin{5\theta}+\sin{9\theta}+\sin{13\theta}}{\cos{\theta}+\cos{5\theta}+\cos{9\theta}+\cos{13\theta}}\)
\(=\frac{(\sin{9\theta}+\sin{5\theta})+(\sin{13\theta}+\sin{\theta})}{(\cos{9\theta}+\cos{5\theta})+(\cos{13\theta}+\cos{\theta})}\)
\(=\frac{2\sin{\frac{9\theta+5\theta}{2}}\cos{\frac{9\theta-5\theta}{2}}+2\sin{\frac{13\theta+\theta}{2}}\cos{\frac{13\theta-\theta}{2}}}{2\cos{\frac{9\theta+5\theta}{2}}\cos{\frac{9\theta-5\theta}{2}}+2\cos{\frac{13\theta+\theta}{2}}\cos{\frac{13\theta-\theta}{2}}}\) ➜ \(\because \sin{D}+\sin{C}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\frac{2\sin{\frac{14\theta}{2}}\cos{\frac{4\theta}{2}}+2\sin{\frac{14\theta}{2}}\cos{\frac{12\theta}{2}}}{2\cos{\frac{14\theta}{2}}\cos{\frac{4\theta}{2}}+2\cos{\frac{14\theta}{2}}\cos{\frac{12\theta}{2}}}\)
\(=\frac{2\sin{7\theta}\cos{2\theta}+2\sin{7\theta}\cos{6\theta}}{2\cos{7\theta}\cos{2\theta}+2\cos{7\theta}\cos{6\theta}}\)
\(=\frac{2\sin{7\theta}(\cos{2\theta}+\cos{6\theta})}{2\cos{7\theta}(\cos{2\theta}+\cos{6\theta}})\)
\(=\frac{\sin{7\theta}}{\cos{7\theta}}\)
\(=\tan{7\theta}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(=\frac{(\sin{9\theta}+\sin{5\theta})+(\sin{13\theta}+\sin{\theta})}{(\cos{9\theta}+\cos{5\theta})+(\cos{13\theta}+\cos{\theta})}\)
\(=\frac{2\sin{\frac{9\theta+5\theta}{2}}\cos{\frac{9\theta-5\theta}{2}}+2\sin{\frac{13\theta+\theta}{2}}\cos{\frac{13\theta-\theta}{2}}}{2\cos{\frac{9\theta+5\theta}{2}}\cos{\frac{9\theta-5\theta}{2}}+2\cos{\frac{13\theta+\theta}{2}}\cos{\frac{13\theta-\theta}{2}}}\) ➜ \(\because \sin{D}+\sin{C}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\frac{2\sin{\frac{14\theta}{2}}\cos{\frac{4\theta}{2}}+2\sin{\frac{14\theta}{2}}\cos{\frac{12\theta}{2}}}{2\cos{\frac{14\theta}{2}}\cos{\frac{4\theta}{2}}+2\cos{\frac{14\theta}{2}}\cos{\frac{12\theta}{2}}}\)
\(=\frac{2\sin{7\theta}\cos{2\theta}+2\sin{7\theta}\cos{6\theta}}{2\cos{7\theta}\cos{2\theta}+2\cos{7\theta}\cos{6\theta}}\)
\(=\frac{2\sin{7\theta}(\cos{2\theta}+\cos{6\theta})}{2\cos{7\theta}(\cos{2\theta}+\cos{6\theta}})\)
\(=\frac{\sin{7\theta}}{\cos{7\theta}}\)
\(=\tan{7\theta}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(Q.4.(x)\) দেখাও যে, \(\cos{A}+\cos{B}+\cos{C}+\cos{(A+B+C)}\)\(=4\cos{\frac{B+C}{2}}\cos{\frac{C+A}{2}}\cos{\frac{A+B}{2}}\)
সমাধানঃ
\(L.S=\cos{A}+\cos{B}+\cos{C}+\cos{(A+B+C)}\)
\(=\{\cos{A}+\cos{(A+B+C)}\}+\{\cos{C}+\cos{B}\}\)
\(=2\cos{\frac{A+B+C+A}{2}}\cos{\frac{A+B+C-A}{2}}+2\cos{\frac{B+C}{2}}\cos{\frac{B-C}{2}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\cos{\frac{B+C}{2}}\left(\cos{\frac{2A+B+C}{2}}+\cos{\frac{B-C}{2}}\right)\)
\(=2\cos{\frac{B+C}{2}}\left(\cos{\frac{B-C}{2}}+\cos{\frac{2A+B+C}{2}}\right)\)
\(=2\cos{\frac{B+C}{2}}\left\{\cos{\left(\frac{A+B}{2}-\frac{C+A}{2}\right)}+\cos{\left(\frac{A+B}{2}+\frac{C+A}{2}\right)}\right\}\) ➜ \(\because \frac{B-C}{2}=\frac{A+B}{2}-\frac{C+A}{2}\)
এবং \(\frac{2A+B+C}{2}=\frac{A+B}{2}+\frac{C+A}{2}\)
\(=2\cos{\frac{B+C}{2}}\times2\cos{\frac{A+B}{2}}\cos{\frac{C+A}{2}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=4\cos{\frac{B+C}{2}}\cos{\frac{C+A}{2}}\cos{\frac{A+B}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(=\{\cos{A}+\cos{(A+B+C)}\}+\{\cos{C}+\cos{B}\}\)
\(=2\cos{\frac{A+B+C+A}{2}}\cos{\frac{A+B+C-A}{2}}+2\cos{\frac{B+C}{2}}\cos{\frac{B-C}{2}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=2\cos{\frac{B+C}{2}}\left(\cos{\frac{2A+B+C}{2}}+\cos{\frac{B-C}{2}}\right)\)
\(=2\cos{\frac{B+C}{2}}\left(\cos{\frac{B-C}{2}}+\cos{\frac{2A+B+C}{2}}\right)\)
\(=2\cos{\frac{B+C}{2}}\left\{\cos{\left(\frac{A+B}{2}-\frac{C+A}{2}\right)}+\cos{\left(\frac{A+B}{2}+\frac{C+A}{2}\right)}\right\}\) ➜ \(\because \frac{B-C}{2}=\frac{A+B}{2}-\frac{C+A}{2}\)
এবং \(\frac{2A+B+C}{2}=\frac{A+B}{2}+\frac{C+A}{2}\)
\(=2\cos{\frac{B+C}{2}}\times2\cos{\frac{A+B}{2}}\cos{\frac{C+A}{2}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=4\cos{\frac{B+C}{2}}\cos{\frac{C+A}{2}}\cos{\frac{A+B}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(Q.4.(xi)\) প্রমাণ কর যে, \(\left(\frac{\cos{A}+\cos{B}}{\sin{A}-\sin{B}}\right)^n+\left(\frac{\sin{A}+\sin{B}}{\cos{A}-\cos{B}}\right)^n\)\(=\begin{cases}2\cot^n{\frac{A-B}{2}}; & \text{যখন } n \text{ জোড় সংখ্যা}\\0 \ ; &\text{যখন } n \text{ বিজোড় সংখ্যা}\end{cases}\)
সমাধানঃ
\(L.S=\left(\frac{\cos{A}+\cos{B}}{\sin{A}-\sin{B}}\right)^n+\left(\frac{\sin{A}+\sin{B}}{\cos{A}-\cos{B}}\right)^n\)
\(=\left(\frac{\cos{B}+\cos{A}}{\sin{A}-\sin{B}}\right)^n+\left\{\frac{\sin{A}+\sin{B}}{-(\cos{B}-\cos{A})}\right\}^n\)
\(=\left(\frac{2\cos{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}\right)^n+\left\{\frac{2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{-2\sin{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}\right\}^n\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=\left(\frac{\cos{\frac{A-B}{2}}}{\sin{\frac{A-B}{2}}}\right)^n+(-1)^n\left(\frac{\cos{\frac{A-B}{2}}}{\sin{\frac{A-B}{2}}}\right)^n\)
\(=\left(\cot{\frac{A-B}{2}}\right)^n+(-1)^n\left(\cot{\frac{A-B}{2}}\right)^n\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
\(=\cot^n{\frac{A-B}{2}}+(-1)^n\cot^2{\frac{A-B}{2}}\)
যখন \(n\) জোড় সংখ্যা
অর্থাৎ \(n=2m, \ m\in{\mathbb{Z}}\)
\(=\cot^n{\frac{A-B}{2}}+(-1)^{2m}\cot^2{\frac{A-B}{2}}\)
\(=\cot^n{\frac{A-B}{2}}+\cot^2{\frac{A-B}{2}}\) ➜ \(\because (-1)^{2m}=1\)
\(=2\cot^n{\frac{A-B}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
আবার, যখন \(n\) বিজোড় সংখ্যা
অর্থাৎ \(n=2m+1, \ m\in{\mathbb{Z}}\)
\(=\cot^n{\frac{A-B}{2}}+(-1)^{2m+1}\cot^2{\frac{A-B}{2}}\)
\(=\cot^n{\frac{A-B}{2}}-\cot^2{\frac{A-B}{2}}\) ➜ \(\because (-1)^{2m+1}=-1\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(=\left(\frac{\cos{B}+\cos{A}}{\sin{A}-\sin{B}}\right)^n+\left\{\frac{\sin{A}+\sin{B}}{-(\cos{B}-\cos{A})}\right\}^n\)
\(=\left(\frac{2\cos{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}\right)^n+\left\{\frac{2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{-2\sin{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}\right\}^n\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=\left(\frac{\cos{\frac{A-B}{2}}}{\sin{\frac{A-B}{2}}}\right)^n+(-1)^n\left(\frac{\cos{\frac{A-B}{2}}}{\sin{\frac{A-B}{2}}}\right)^n\)
\(=\left(\cot{\frac{A-B}{2}}\right)^n+(-1)^n\left(\cot{\frac{A-B}{2}}\right)^n\) ➜ \(\because \frac{\cos{P}}{\sin{P}}=\cot{P}\)
\(=\cot^n{\frac{A-B}{2}}+(-1)^n\cot^2{\frac{A-B}{2}}\)
যখন \(n\) জোড় সংখ্যা
অর্থাৎ \(n=2m, \ m\in{\mathbb{Z}}\)
\(=\cot^n{\frac{A-B}{2}}+(-1)^{2m}\cot^2{\frac{A-B}{2}}\)
\(=\cot^n{\frac{A-B}{2}}+\cot^2{\frac{A-B}{2}}\) ➜ \(\because (-1)^{2m}=1\)
\(=2\cot^n{\frac{A-B}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
আবার, যখন \(n\) বিজোড় সংখ্যা
অর্থাৎ \(n=2m+1, \ m\in{\mathbb{Z}}\)
\(=\cot^n{\frac{A-B}{2}}+(-1)^{2m+1}\cot^2{\frac{A-B}{2}}\)
\(=\cot^n{\frac{A-B}{2}}-\cot^2{\frac{A-B}{2}}\) ➜ \(\because (-1)^{2m+1}=-1\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(Q.4.(xii)\) প্রমাণ কর যে, \(\frac{\sin{\alpha}+\sin{3\alpha}+\sin{5\alpha}}{\cos{\alpha}+\cos{3\alpha}+\cos{5\alpha}}=\tan{3\alpha}\)
সমাধানঃ
\(L.S=\frac{\sin{\alpha}+\sin{3\alpha}+\sin{5\alpha}}{\cos{\alpha}+\cos{3\alpha}+\cos{5\alpha}}\)
\(=\frac{(\sin{5\theta}+\sin{\theta})+\sin{3\theta}}{(\cos{\theta}+\cos{5\theta})+\cos{3\theta}}\)
\(=\frac{2\sin{\frac{5\theta+\theta}{2}}\cos{\frac{5\theta-\theta}{2}}+\sin{3\theta}}{2\cos{\frac{5\theta+\theta}{2}}\cos{\frac{5\theta-\theta}{2}}+\cos{3\theta}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\frac{2\sin{\frac{6\theta}{2}}\cos{\frac{4\theta}{2}}+\sin{3\theta}}{2\cos{\frac{6\theta}{2}}\cos{\frac{4\theta}{2}}+\cos{3\theta}}\)
\(=\frac{2\sin{3\theta}\cos{2\theta}+\sin{3\theta}}{2\cos{3\theta}\cos{2\theta}+\cos{3\theta}}\)
\(=\frac{2\sin{3\theta}(\cos{2\theta}+1)}{2\cos{3\theta}(\cos{2\theta}+1)}\)
\(=\frac{\sin{3\theta}}{\cos{3\theta}}\)
\(=\tan{3\theta}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(=\frac{(\sin{5\theta}+\sin{\theta})+\sin{3\theta}}{(\cos{\theta}+\cos{5\theta})+\cos{3\theta}}\)
\(=\frac{2\sin{\frac{5\theta+\theta}{2}}\cos{\frac{5\theta-\theta}{2}}+\sin{3\theta}}{2\cos{\frac{5\theta+\theta}{2}}\cos{\frac{5\theta-\theta}{2}}+\cos{3\theta}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\frac{2\sin{\frac{6\theta}{2}}\cos{\frac{4\theta}{2}}+\sin{3\theta}}{2\cos{\frac{6\theta}{2}}\cos{\frac{4\theta}{2}}+\cos{3\theta}}\)
\(=\frac{2\sin{3\theta}\cos{2\theta}+\sin{3\theta}}{2\cos{3\theta}\cos{2\theta}+\cos{3\theta}}\)
\(=\frac{2\sin{3\theta}(\cos{2\theta}+1)}{2\cos{3\theta}(\cos{2\theta}+1)}\)
\(=\frac{\sin{3\theta}}{\cos{3\theta}}\)
\(=\tan{3\theta}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(Q.4.(xiii)\) প্রমাণ কর যে, \(\frac{\sin{7\theta}-\sin{3\theta}-\sin{5\theta}+\sin{\theta}}{\cos{7\theta}+\cos{3\theta}-\cos{5\theta}-\cos{\theta}}=\tan{2\theta}\)
সমাধানঃ
\(L.S=\frac{\sin{7\theta}-\sin{3\theta}-\sin{5\theta}+\sin{\theta}}{\cos{7\theta}+\cos{3\theta}-\cos{5\theta}-\cos{\theta}}\)
\(=\frac{(\sin{7\theta}+\sin{\theta})-(\sin{5\theta}+\sin{3\theta})}{(\cos{3\theta}-\cos{5\theta})-(\cos{\theta}-\cos{7\theta})}\)
\(=\frac{2\sin{\frac{7\theta+\theta}{2}}\cos{\frac{7\theta-\theta}{2}}-2\sin{\frac{5\theta+3\theta}{2}}\cos{\frac{5\theta-3\theta}{2}}}{2\sin{\frac{5\theta+3\theta}{2}}\sin{\frac{5\theta-3\theta}{2}}-2\sin{\frac{7\theta+\theta}{2}}\sin{\frac{7\theta-\theta}{2}}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=\frac{2\sin{\frac{8\theta}{2}}\cos{\frac{6\theta}{2}}-2\sin{\frac{8\theta}{2}}\cos{\frac{2\theta}{2}}}{2\sin{\frac{8\theta}{2}}\sin{\frac{2\theta}{2}}-2\sin{\frac{8\theta}{2}}\sin{\frac{6\theta}{2}}}\)
\(=\frac{2\sin{4\theta}\cos{3\theta}-2\sin{4\theta}\cos{\theta}}{2\sin{4\theta}\sin{\theta}-2\sin{4\theta}\sin{3\theta}}\)
\(=\frac{-2\sin{4\theta}(\cos{\theta}-\cos{3\theta})}{-2\sin{4\theta}(\sin{3\theta}-\sin{\theta})}\)
\(=\frac{\cos{\theta}-\cos{3\theta}}{\sin{3\theta}-\sin{\theta}}\)
\(=\frac{2\sin{\frac{3\theta+\theta}{2}}\sin{\frac{3\theta-\theta}{2}}}{2\cos{\frac{3\theta+\theta}{2}}\sin{\frac{3\theta-\theta}{2}}}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=\frac{\sin{\frac{4\theta}{2}}\sin{\frac{2\theta}{2}}}{\cos{\frac{4\theta}{2}}\sin{\frac{2\theta}{2}}}\)
\(=\frac{\sin{2\theta}\sin{\theta}}{\cos{2\theta}\sin{\theta}}\)
\(=\frac{\sin{2\theta}}{\cos{2\theta}}\)
\(=\tan{2\theta}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(=\frac{(\sin{7\theta}+\sin{\theta})-(\sin{5\theta}+\sin{3\theta})}{(\cos{3\theta}-\cos{5\theta})-(\cos{\theta}-\cos{7\theta})}\)
\(=\frac{2\sin{\frac{7\theta+\theta}{2}}\cos{\frac{7\theta-\theta}{2}}-2\sin{\frac{5\theta+3\theta}{2}}\cos{\frac{5\theta-3\theta}{2}}}{2\sin{\frac{5\theta+3\theta}{2}}\sin{\frac{5\theta-3\theta}{2}}-2\sin{\frac{7\theta+\theta}{2}}\sin{\frac{7\theta-\theta}{2}}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=\frac{2\sin{\frac{8\theta}{2}}\cos{\frac{6\theta}{2}}-2\sin{\frac{8\theta}{2}}\cos{\frac{2\theta}{2}}}{2\sin{\frac{8\theta}{2}}\sin{\frac{2\theta}{2}}-2\sin{\frac{8\theta}{2}}\sin{\frac{6\theta}{2}}}\)
\(=\frac{2\sin{4\theta}\cos{3\theta}-2\sin{4\theta}\cos{\theta}}{2\sin{4\theta}\sin{\theta}-2\sin{4\theta}\sin{3\theta}}\)
\(=\frac{-2\sin{4\theta}(\cos{\theta}-\cos{3\theta})}{-2\sin{4\theta}(\sin{3\theta}-\sin{\theta})}\)
\(=\frac{\cos{\theta}-\cos{3\theta}}{\sin{3\theta}-\sin{\theta}}\)
\(=\frac{2\sin{\frac{3\theta+\theta}{2}}\sin{\frac{3\theta-\theta}{2}}}{2\cos{\frac{3\theta+\theta}{2}}\sin{\frac{3\theta-\theta}{2}}}\) ➜ \(\because \cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(=\frac{\sin{\frac{4\theta}{2}}\sin{\frac{2\theta}{2}}}{\cos{\frac{4\theta}{2}}\sin{\frac{2\theta}{2}}}\)
\(=\frac{\sin{2\theta}\sin{\theta}}{\cos{2\theta}\sin{\theta}}\)
\(=\frac{\sin{2\theta}}{\cos{2\theta}}\)
\(=\tan{2\theta}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(Q.4.(xiv)\) \(\sin{\theta}=k\sin{(\alpha-\theta)}\) হলে দেখাও যে, \(\tan{(\theta-\frac{\alpha}{2})}=\frac{k-1}{k+1}\tan{\frac{\alpha}{2}}\)
কুঃ২০০৮; সিঃ২০০৩ ।
সমাধানঃ
দেওয়া আছে,
\(\sin{\theta}=k\sin{(\alpha-\theta)}\)
\(\Rightarrow \frac{\sin{\theta}}{\sin{(\alpha-\theta)}}=k\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{\theta}-\sin{(\alpha-\theta)}}{\sin{\theta}+\sin{(\alpha-\theta)}}=\frac{k-1}{k+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{\frac{\theta+\alpha-\theta}{2}}\sin{\frac{\theta-\alpha+\theta}{2}}}{2\sin{\frac{\theta+\alpha-\theta}{2}}\cos{\frac{\theta-\alpha+\theta}{2}}}=\frac{k-1}{k+1}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{\alpha}{2}}\sin{\frac{2\theta-\alpha}{2}}}{\sin{\frac{\alpha}{2}}\cos{\frac{2\theta-\alpha}{2}}}=\frac{k-1}{k+1}\)
\(\Rightarrow \frac{\sin{\frac{2\theta-\alpha}{2}}}{\cos{\frac{2\theta-\alpha}{2}}}=\frac{k-1}{k+1}\frac{\sin{\frac{\alpha}{2}}}{\cos{\frac{\alpha}{2}}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{\frac{2\theta-\alpha}{2}}=\frac{k-1}{k+1}\tan{\frac{\alpha}{2}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\therefore \tan{\left(\theta-\frac{\alpha}{2}\right)}=\frac{k-1}{k+1}\tan{\frac{\alpha}{2}}\)
(প্রমাণিত)
\(\sin{\theta}=k\sin{(\alpha-\theta)}\)
\(\Rightarrow \frac{\sin{\theta}}{\sin{(\alpha-\theta)}}=k\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{\theta}-\sin{(\alpha-\theta)}}{\sin{\theta}+\sin{(\alpha-\theta)}}=\frac{k-1}{k+1}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{\frac{\theta+\alpha-\theta}{2}}\sin{\frac{\theta-\alpha+\theta}{2}}}{2\sin{\frac{\theta+\alpha-\theta}{2}}\cos{\frac{\theta-\alpha+\theta}{2}}}=\frac{k-1}{k+1}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{\alpha}{2}}\sin{\frac{2\theta-\alpha}{2}}}{\sin{\frac{\alpha}{2}}\cos{\frac{2\theta-\alpha}{2}}}=\frac{k-1}{k+1}\)
\(\Rightarrow \frac{\sin{\frac{2\theta-\alpha}{2}}}{\cos{\frac{2\theta-\alpha}{2}}}=\frac{k-1}{k+1}\frac{\sin{\frac{\alpha}{2}}}{\cos{\frac{\alpha}{2}}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan{\frac{2\theta-\alpha}{2}}=\frac{k-1}{k+1}\tan{\frac{\alpha}{2}}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\therefore \tan{\left(\theta-\frac{\alpha}{2}\right)}=\frac{k-1}{k+1}\tan{\frac{\alpha}{2}}\)
(প্রমাণিত)
\(Q.4.(xv)\) যদি \(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\) হয়, তবে প্রমাণ কর যে, \((m-n)\tan{\theta}=(m+n)\tan{\alpha}\)
সমাধানঃ
দেওয়া আছে,
\(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\)
\(\Rightarrow m(\sin{\theta}\cos{\alpha}-\cos{\theta}\sin{\alpha})=n(\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha})\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow m\sin{\theta}\cos{\alpha}-m\cos{\theta}\sin{\alpha}=n\sin{\theta}\cos{\alpha}+n\cos{\theta}\sin{\alpha}\)
\(\Rightarrow m\sin{\theta}\cos{\alpha}-n\sin{\theta}\cos{\alpha}=m\cos{\theta}\sin{\alpha}+n\cos{\theta}\sin{\alpha}\) ➜ পক্ষান্তর করে।
\(\Rightarrow (m-n)\sin{\theta}\cos{\alpha}=(m+n)\cos{\theta}\sin{\alpha}\)
\(\Rightarrow (m-n)\frac{\sin{\theta}\cos{\alpha}}{\cos{\theta}\cos{\alpha}}=(m+n)\frac{\cos{\theta}\sin{\alpha}}{\cos{\theta}\cos{\alpha}}\) ➜ উভয় পার্শে \(\cos{\theta}\cos{\alpha}\) ভাগ করে।
\(\Rightarrow (m-n)\frac{\sin{\theta}}{\cos{\theta}}=(m+n)\frac{\sin{\alpha}}{\cos{\alpha}}\)
\(\therefore (m-n)\tan{\theta}=(m+n)\tan{\alpha}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
(প্রমাণিত)
\(m\sin{(\theta-\alpha)}=n\sin{(\theta+\alpha)}\)
\(\Rightarrow m(\sin{\theta}\cos{\alpha}-\cos{\theta}\sin{\alpha})=n(\sin{\theta}\cos{\alpha}+\cos{\theta}\sin{\alpha})\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
এবং \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow m\sin{\theta}\cos{\alpha}-m\cos{\theta}\sin{\alpha}=n\sin{\theta}\cos{\alpha}+n\cos{\theta}\sin{\alpha}\)
\(\Rightarrow m\sin{\theta}\cos{\alpha}-n\sin{\theta}\cos{\alpha}=m\cos{\theta}\sin{\alpha}+n\cos{\theta}\sin{\alpha}\) ➜ পক্ষান্তর করে।
\(\Rightarrow (m-n)\sin{\theta}\cos{\alpha}=(m+n)\cos{\theta}\sin{\alpha}\)
\(\Rightarrow (m-n)\frac{\sin{\theta}\cos{\alpha}}{\cos{\theta}\cos{\alpha}}=(m+n)\frac{\cos{\theta}\sin{\alpha}}{\cos{\theta}\cos{\alpha}}\) ➜ উভয় পার্শে \(\cos{\theta}\cos{\alpha}\) ভাগ করে।
\(\Rightarrow (m-n)\frac{\sin{\theta}}{\cos{\theta}}=(m+n)\frac{\sin{\alpha}}{\cos{\alpha}}\)
\(\therefore (m-n)\tan{\theta}=(m+n)\tan{\alpha}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
(প্রমাণিত)
\(Q.4.(xvi)\) যদি \(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\) হয়, তবে প্রমাণ কর যে, \((a+b)\tan{x}=(a-b)\cot{\alpha}\)
ঢাঃ২০০৫ ।
সমাধানঃ
দেওয়া আছে,
\(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\)
\(\Rightarrow a(\cos{x}\cos{\alpha}-\sin{x}\sin{\alpha})=b(\cos{x}\cos{\alpha}+\sin{x}\sin{\alpha})\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এবং \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow a\cos{x}\cos{\alpha}-a\sin{x}\sin{\alpha}=b\cos{x}\cos{\alpha}+b\sin{x}\sin{\alpha}\)
\(\Rightarrow a\cos{x}\cos{\alpha}-b\cos{x}\cos{\alpha}=a\sin{x}\sin{\alpha}+b\sin{x}\sin{\alpha}\) ➜ পক্ষান্তর করে।
\(\Rightarrow (a-b)\cos{x}\cos{\alpha}=(a+b)\sin{x}\sin{\alpha}\)
\(\Rightarrow (a-b)\frac{\cos{x}\cos{\alpha}}{\cos{x}\sin{\alpha}}=(a+b)\frac{\sin{x}\sin{\alpha}}{\cos{x}\sin{\alpha}}\) ➜ উভয় পার্শে \(\cos{x}\sin{\alpha}\) ভাগ করে।
\(\Rightarrow (a-b)\frac{\cos{\alpha}}{\sin{\alpha}}=(a+b)\frac{\sin{x}}{\cos{x}}\)
\(\Rightarrow (a-b)\cot{\alpha}=(a+b)\tan{x}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\therefore (a+b)\tan{x}=(a-b)\cot{\alpha}\) ➜ পক্ষান্তর করে।
(প্রমাণিত)
\(a\cos{(x+\alpha)}=b\cos{(x-\alpha)}\)
\(\Rightarrow a(\cos{x}\cos{\alpha}-\sin{x}\sin{\alpha})=b(\cos{x}\cos{\alpha}+\sin{x}\sin{\alpha})\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এবং \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow a\cos{x}\cos{\alpha}-a\sin{x}\sin{\alpha}=b\cos{x}\cos{\alpha}+b\sin{x}\sin{\alpha}\)
\(\Rightarrow a\cos{x}\cos{\alpha}-b\cos{x}\cos{\alpha}=a\sin{x}\sin{\alpha}+b\sin{x}\sin{\alpha}\) ➜ পক্ষান্তর করে।
\(\Rightarrow (a-b)\cos{x}\cos{\alpha}=(a+b)\sin{x}\sin{\alpha}\)
\(\Rightarrow (a-b)\frac{\cos{x}\cos{\alpha}}{\cos{x}\sin{\alpha}}=(a+b)\frac{\sin{x}\sin{\alpha}}{\cos{x}\sin{\alpha}}\) ➜ উভয় পার্শে \(\cos{x}\sin{\alpha}\) ভাগ করে।
\(\Rightarrow (a-b)\frac{\cos{\alpha}}{\sin{\alpha}}=(a+b)\frac{\sin{x}}{\cos{x}}\)
\(\Rightarrow (a-b)\cot{\alpha}=(a+b)\tan{x}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\therefore (a+b)\tan{x}=(a-b)\cot{\alpha}\) ➜ পক্ষান্তর করে।
(প্রমাণিত)
\(Q.4.(xvii)\) \(a\cos{(\alpha+\beta)}=b\cos{(\alpha-\beta)}\) হলে প্রমাণ কর যে, \(\tan{\alpha}=\frac{a-b}{a+b}\cot{\beta}\)
সমাধানঃ
দেওয়া আছে,
\(a\cos{(\alpha+\beta)}=b\cos{(\alpha-\beta)}\)
\(\Rightarrow a(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta})=b(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এবং \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow a\cos{\alpha}\cos{\beta}-a\sin{\alpha}\sin{\beta}=b\cos{\alpha}\cos{\beta}+b\sin{\alpha}\sin{\beta}\)
\(\Rightarrow a\cos{\alpha}\cos{\beta}-b\cos{\alpha}\cos{\beta}=a\sin{\alpha}\sin{\beta}+b\sin{\alpha}\sin{\beta}\) ➜ পক্ষান্তর করে।
\(\Rightarrow (a-b)\cos{\alpha}\cos{\beta}=(a+b)\sin{\alpha}\sin{\beta}\)
\(\Rightarrow (a-b)\frac{\cos{\alpha}\cos{\beta}}{\cos{\alpha}\sin{\beta}}=(a+b)\frac{\sin{\alpha}\sin{\beta}}{\cos{\alpha}\sin{\beta}}\) ➜ উভয় পার্শে \(\cos{\alpha}\sin{\beta}\) ভাগ করে।
\(\Rightarrow (a-b)\frac{\cos{\beta}}{\sin{\beta}}=(a+b)\frac{\sin{\alpha}}{\cos{\alpha}}\)
\(\Rightarrow (a-b)\cot{\beta}=(a+b)\tan{\alpha}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\Rightarrow (a+b)\tan{\alpha}=(a-b)\cot{\beta}\) ➜ পক্ষান্তর করে।
\(\therefore \tan{\alpha}=\frac{a-b}{a+b}\cot{\beta}\)
(প্রমাণিত)
\(a\cos{(\alpha+\beta)}=b\cos{(\alpha-\beta)}\)
\(\Rightarrow a(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta})=b(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})\) ➜ \(\because \cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
এবং \(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow a\cos{\alpha}\cos{\beta}-a\sin{\alpha}\sin{\beta}=b\cos{\alpha}\cos{\beta}+b\sin{\alpha}\sin{\beta}\)
\(\Rightarrow a\cos{\alpha}\cos{\beta}-b\cos{\alpha}\cos{\beta}=a\sin{\alpha}\sin{\beta}+b\sin{\alpha}\sin{\beta}\) ➜ পক্ষান্তর করে।
\(\Rightarrow (a-b)\cos{\alpha}\cos{\beta}=(a+b)\sin{\alpha}\sin{\beta}\)
\(\Rightarrow (a-b)\frac{\cos{\alpha}\cos{\beta}}{\cos{\alpha}\sin{\beta}}=(a+b)\frac{\sin{\alpha}\sin{\beta}}{\cos{\alpha}\sin{\beta}}\) ➜ উভয় পার্শে \(\cos{\alpha}\sin{\beta}\) ভাগ করে।
\(\Rightarrow (a-b)\frac{\cos{\beta}}{\sin{\beta}}=(a+b)\frac{\sin{\alpha}}{\cos{\alpha}}\)
\(\Rightarrow (a-b)\cot{\beta}=(a+b)\tan{\alpha}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\Rightarrow (a+b)\tan{\alpha}=(a-b)\cot{\beta}\) ➜ পক্ষান্তর করে।
\(\therefore \tan{\alpha}=\frac{a-b}{a+b}\cot{\beta}\)
(প্রমাণিত)
\(Q.4.(xviii)\) যদি \(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\) হয়, তবে প্রমাণ কর যে, \(\tan{D}=\tan{A}\tan{B}\tan{C}\)
সমাধানঃ
দেওয়া আছে,
\(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\)
\(\Rightarrow \frac{\sin{(C+D)}}{\sin{(C-D)}}=\frac{\cos{(A-B)}}{\cos{(A+B)}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{(C+D)}-\sin{(C-D)}}{\sin{(C+D)}+\sin{(C-D)}}=\frac{\cos{(A-B)}-\cos{(A+B)}}{\cos{(A-B)}+\cos{(A+B)}}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{C}\sin{D}}{2\sin{C}\cos{D}}=\frac{2\sin{A}\sin{B}}{2\cos{A}\cos{B}}\) ➜ \(\because \sin{(P+Q)}-\sin{(P-Q)}=2\cos{P}\sin{Q}\)
\(\sin{(P+Q)}+\sin{(P-Q)}=2\sin{P}\cos{Q}\)
\(\cos{(P-Q)}-\cos{(P+Q)}=2\sin{P}\sin{Q}\)
এবং \(\cos{(P-Q)}+\cos{(P+Q)}=2\cos{P}\cos{Q}\)
\(\Rightarrow \frac{\sin{D}}{\cos{D}}=\frac{\sin{A}\sin{B}\sin{C}}{\cos{A}\cos{B}\cos{C}}\)
\(\therefore \tan{D}=\tan{A}\tan{B}\tan{C}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
(প্রমাণিত)
\(\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}\)
\(\Rightarrow \frac{\sin{(C+D)}}{\sin{(C-D)}}=\frac{\cos{(A-B)}}{\cos{(A+B)}}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{\sin{(C+D)}-\sin{(C-D)}}{\sin{(C+D)}+\sin{(C-D)}}=\frac{\cos{(A-B)}-\cos{(A+B)}}{\cos{(A-B)}+\cos{(A+B)}}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{2\cos{C}\sin{D}}{2\sin{C}\cos{D}}=\frac{2\sin{A}\sin{B}}{2\cos{A}\cos{B}}\) ➜ \(\because \sin{(P+Q)}-\sin{(P-Q)}=2\cos{P}\sin{Q}\)
\(\sin{(P+Q)}+\sin{(P-Q)}=2\sin{P}\cos{Q}\)
\(\cos{(P-Q)}-\cos{(P+Q)}=2\sin{P}\sin{Q}\)
এবং \(\cos{(P-Q)}+\cos{(P+Q)}=2\cos{P}\cos{Q}\)
\(\Rightarrow \frac{\sin{D}}{\cos{D}}=\frac{\sin{A}\sin{B}\sin{C}}{\cos{A}\cos{B}\cos{C}}\)
\(\therefore \tan{D}=\tan{A}\tan{B}\tan{C}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
(প্রমাণিত)
\(Q.4.(xix)\) \(2P=\tan{\frac{x+y}{2}}+\tan{\frac{x-y}{2}}\) হলে দেখাও যে, \(P=\frac{\sin{x}}{\cos{x}+\cos{y}}\)
কুঃ২০১৯ ।
সমাধানঃ
দেওয়া আছে,
\(2P=\tan{\frac{x+y}{2}}+\tan{\frac{x-y}{2}}\)
\(\Rightarrow 2P=\frac{\sin{\frac{x+y}{2}}}{\cos{\frac{x+y}{2}}}+\frac{\sin{\frac{x-y}{2}}}{\cos{\frac{x-y}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow 2P=\frac{\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}+\cos{\frac{x+y}{2}}\sin{\frac{x-y}{2}}}{\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}\)
\(\Rightarrow 2P=\frac{\sin{\left(\frac{x+y}{2}+\frac{x-y}{2}\right)}}{\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow P=\frac{\sin{\left(\frac{x+y+x-y}{2}\right)}}{2\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}\)
\(\Rightarrow P=\frac{\sin{\left(\frac{2x}{2}\right)}}{\cos{y}+\cos{x}}\) ➜ \(\because 2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}=\cos{D}+\cos{C}\)
\(\therefore P=\frac{\sin{x}}{\cos{x}+\cos{y}}\)
( দেখানো হলো)
\(2P=\tan{\frac{x+y}{2}}+\tan{\frac{x-y}{2}}\)
\(\Rightarrow 2P=\frac{\sin{\frac{x+y}{2}}}{\cos{\frac{x+y}{2}}}+\frac{\sin{\frac{x-y}{2}}}{\cos{\frac{x-y}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow 2P=\frac{\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}+\cos{\frac{x+y}{2}}\sin{\frac{x-y}{2}}}{\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}\)
\(\Rightarrow 2P=\frac{\sin{\left(\frac{x+y}{2}+\frac{x-y}{2}\right)}}{\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow P=\frac{\sin{\left(\frac{x+y+x-y}{2}\right)}}{2\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}\)
\(\Rightarrow P=\frac{\sin{\left(\frac{2x}{2}\right)}}{\cos{y}+\cos{x}}\) ➜ \(\because 2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}=\cos{D}+\cos{C}\)
\(\therefore P=\frac{\sin{x}}{\cos{x}+\cos{y}}\)
( দেখানো হলো)
\(Q.4.(xx)\) যদি \(\sin{x}+\sin{y}=1\) এবং \(\cos{x}+\cos{y}=0\) হয়, তবে প্রমাণ কর যে, \(x+y=\pi\)
রুয়েটঃ২০১৮-২০১৯; বুয়েটঃ ২০০১-২০০২ ।
সমাধানঃ
দেওয়া আছে,
\(\sin{x}+\sin{y}=1\) এবং \(\cos{x}+\cos{y}=0\)
ধরি,
\(\sin{x}+\sin{y}=1 .....(1)\)
এবং \(\cos{x}+\cos{y}=0 .....(2)\)
\((2)\div{(1)}\) এর সাহায্যে
\(\frac{\cos{x}+\cos{y}}{\sin{x}+\sin{y}}=\frac{0}{1}\)
\(\Rightarrow \frac{\cos{y}+\cos{x}}{\sin{x}+\sin{y}}=0\)
\(\Rightarrow \frac{2\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}{2\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}=0\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{x+y}{2}}}{\sin{\frac{x+y}{2}}}=0\)
\(\Rightarrow \cot{\frac{x+y}{2}}=\cot{\frac{\pi}{2}}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\cot{\frac{\pi}{2}}=0\)
\(\Rightarrow \frac{x+y}{2}=\frac{\pi}{2}\)
\(\therefore x+y=\pi\)
(প্রমাণিত)
\(\sin{x}+\sin{y}=1\) এবং \(\cos{x}+\cos{y}=0\)
ধরি,
\(\sin{x}+\sin{y}=1 .....(1)\)
এবং \(\cos{x}+\cos{y}=0 .....(2)\)
\((2)\div{(1)}\) এর সাহায্যে
\(\frac{\cos{x}+\cos{y}}{\sin{x}+\sin{y}}=\frac{0}{1}\)
\(\Rightarrow \frac{\cos{y}+\cos{x}}{\sin{x}+\sin{y}}=0\)
\(\Rightarrow \frac{2\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}{2\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}}=0\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{x+y}{2}}}{\sin{\frac{x+y}{2}}}=0\)
\(\Rightarrow \cot{\frac{x+y}{2}}=\cot{\frac{\pi}{2}}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\cot{\frac{\pi}{2}}=0\)
\(\Rightarrow \frac{x+y}{2}=\frac{\pi}{2}\)
\(\therefore x+y=\pi\)
(প্রমাণিত)
\(Q.4.(xxi)\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে প্রমাণ কর যে,
\((a) \ \sin{(\alpha+\beta)}=\frac{2ab}{b^2+a^2}\)
\((b) \ \tan{(\alpha+\beta)}=\frac{2ab}{b^2-a^2}\)
\((a) \ \sin{(\alpha+\beta)}=\frac{2ab}{b^2+a^2}\)
\((b) \ \tan{(\alpha+\beta)}=\frac{2ab}{b^2-a^2}\)
কুঃ২০১৪; সিঃ২০১১, ২০০১; রাঃ ২০০৮,২০০৩ ।
সমাধানঃ
\((a)\)
দেওয়া আছে,
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a .....(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b .....(2)\)
\((1)\times{(2)}\) এর সাহায্যে,
\((\sin{\alpha}+\sin{\beta})(\cos{\alpha}+\cos{\beta})=ab\)
\(\Rightarrow \sin{\alpha}\cos{\alpha}+\sin{\beta}\cos{\beta}+\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}=ab\)
\(\Rightarrow \frac{1}{2}\times2\sin{\alpha}\cos{\alpha}+\frac{1}{2}\times2\sin{\beta}\cos{\beta}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow \frac{1}{2}\sin{2\alpha}+\frac{1}{2}\sin{2\beta}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \frac{1}{2}(\sin{2\alpha}+\sin{2\beta})+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \frac{1}{2}\times2\sin{\frac{2\alpha+2\beta}{2}}\cos{\frac{2\alpha-2\beta}{2}}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \sin{\frac{2(\alpha+\beta)}{2}}\cos{\frac{2(\alpha-\beta)}{2}}+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}\cos{(\alpha-\beta)}+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}\{\cos{(\alpha-\beta)}+1\}=ab\)
\(\therefore \sin{(\alpha+\beta)}=\frac{ab}{\cos{(\alpha-\beta)}+1}\)
\(=\frac{2ab}{2\cos{(\alpha-\beta)}+2}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2ab}{2\cos{(\alpha-\beta)}+1+1}\)
\(=\frac{2ab}{2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}+\sin^2{\alpha}+\cos^2{\alpha}+\sin^2{\beta}+\cos^2{\beta}}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
এবং \(\sin^2{A}+\cos^2{A}=1\)
\(=\frac{2ab}{\sin^2{\alpha}+2\sin{\alpha}\sin{\beta}+\sin^2{\beta}+\cos^2{\alpha}+2\cos{\alpha}\cos{\beta}+\cos^2{\beta}}\)
\(=\frac{2ab}{(\sin{\alpha}+\sin{\beta})^2+(\cos{\alpha}+\cos{\beta})^2}\) ➜ \(\because A^2+2AB+B^2=(A+B)^2\)
\(=\frac{2ab}{a^2+b^2}\) ➜ \(\because \sin{\alpha}+\sin{\beta}=a\)
এবং \(\cos{\alpha}+\cos{\beta}=b\)
\(\therefore \sin{(\alpha+\beta)}=\frac{2ab}{a^2+b^2}\)
(প্রমাণিত)
\((b)\)
দেওয়া আছে,
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a .....(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b .....(2)\)
\((1)\times{(2)}\) এর সাহায্যে,
\((\sin{\alpha}+\sin{\beta})(\cos{\alpha}+\cos{\beta})=ab\)
\(\Rightarrow \sin{\alpha}\cos{\alpha}+\sin{\beta}\cos{\beta}+\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}=ab\)
\(\Rightarrow \frac{1}{2}\times2\sin{\alpha}\cos{\alpha}+\frac{1}{2}\times2\sin{\beta}\cos{\beta}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow \frac{1}{2}\sin{2\alpha}+\frac{1}{2}\sin{2\beta}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \frac{1}{2}(\sin{2\alpha}+\sin{2\beta})+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \frac{1}{2}\times2\sin{\frac{2\alpha+2\beta}{2}}\cos{\frac{2\alpha-2\beta}{2}}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \sin{\frac{2(\alpha+\beta)}{2}}\cos{\frac{2(\alpha-\beta)}{2}}+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}\cos{(\alpha-\beta)}+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}\{\cos{(\alpha-\beta)}+1\}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}=\frac{ab}{\cos{(\alpha-\beta)}+1}\)
\(\Rightarrow \frac{\sin{(\alpha+\beta)}}{\cos{(\alpha+\beta)}}=\frac{ab}{\cos{(\alpha+\beta)}\{\cos{(\alpha-\beta)}+1\}}\) ➜ উভয় পার্শে \(\cos{(\alpha+\beta)}\) ভাগ করে।
\(\therefore \tan{(\alpha+\beta)}=\frac{ab}{\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}+\cos{(\alpha+\beta)}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{2ab}{2\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}+2\cos{(\alpha+\beta)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2ab}{\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}+\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}+2\cos{(\alpha+\beta)}}\)
\(=\frac{2ab}{\cos^2{\alpha}-\sin^2{\beta}+\cos^2{\beta}-\sin^2{\alpha}+2\cos{\alpha}\cos{\beta}-2\sin{\alpha}\sin{\beta}}\) ➜ \(\because \cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(\cos{(A+B)}\cos{(A-B)}=\cos^2{B}-\sin^2{A}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{2ab}{(\cos^2{\alpha}+2\cos{\alpha}\cos{\beta}+\cos^2{\beta})-(\sin^2{\alpha}+2\sin{\alpha}\sin{\beta}+\sin^2{\beta})}\)
\(=\frac{2ab}{(\cos{\alpha}+\cos{\beta})^2-(\sin{\alpha}+\sin{\beta})^2}\) ➜ \(\because A^2+2AB+B^2=(A+B)^2\)
\(=\frac{2ab}{b^2-a^2}\) ➜ \(\because \cos{\alpha}+\cos{\beta}=b\)
এবং \(\sin{\alpha}+\sin{\beta}=a\)
\(\therefore \tan{(\alpha+\beta)}=\frac{2ab}{b^2-a^2}\)
(প্রমাণিত)
দেওয়া আছে,
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a .....(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b .....(2)\)
\((1)\times{(2)}\) এর সাহায্যে,
\((\sin{\alpha}+\sin{\beta})(\cos{\alpha}+\cos{\beta})=ab\)
\(\Rightarrow \sin{\alpha}\cos{\alpha}+\sin{\beta}\cos{\beta}+\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}=ab\)
\(\Rightarrow \frac{1}{2}\times2\sin{\alpha}\cos{\alpha}+\frac{1}{2}\times2\sin{\beta}\cos{\beta}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow \frac{1}{2}\sin{2\alpha}+\frac{1}{2}\sin{2\beta}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \frac{1}{2}(\sin{2\alpha}+\sin{2\beta})+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \frac{1}{2}\times2\sin{\frac{2\alpha+2\beta}{2}}\cos{\frac{2\alpha-2\beta}{2}}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \sin{\frac{2(\alpha+\beta)}{2}}\cos{\frac{2(\alpha-\beta)}{2}}+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}\cos{(\alpha-\beta)}+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}\{\cos{(\alpha-\beta)}+1\}=ab\)
\(\therefore \sin{(\alpha+\beta)}=\frac{ab}{\cos{(\alpha-\beta)}+1}\)
\(=\frac{2ab}{2\cos{(\alpha-\beta)}+2}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2ab}{2\cos{(\alpha-\beta)}+1+1}\)
\(=\frac{2ab}{2\cos{\alpha}\cos{\beta}+2\sin{\alpha}\sin{\beta}+\sin^2{\alpha}+\cos^2{\alpha}+\sin^2{\beta}+\cos^2{\beta}}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
এবং \(\sin^2{A}+\cos^2{A}=1\)
\(=\frac{2ab}{\sin^2{\alpha}+2\sin{\alpha}\sin{\beta}+\sin^2{\beta}+\cos^2{\alpha}+2\cos{\alpha}\cos{\beta}+\cos^2{\beta}}\)
\(=\frac{2ab}{(\sin{\alpha}+\sin{\beta})^2+(\cos{\alpha}+\cos{\beta})^2}\) ➜ \(\because A^2+2AB+B^2=(A+B)^2\)
\(=\frac{2ab}{a^2+b^2}\) ➜ \(\because \sin{\alpha}+\sin{\beta}=a\)
এবং \(\cos{\alpha}+\cos{\beta}=b\)
\(\therefore \sin{(\alpha+\beta)}=\frac{2ab}{a^2+b^2}\)
(প্রমাণিত)
\((b)\)
দেওয়া আছে,
\(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\)
ধরি,
\(\sin{\alpha}+\sin{\beta}=a .....(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b .....(2)\)
\((1)\times{(2)}\) এর সাহায্যে,
\((\sin{\alpha}+\sin{\beta})(\cos{\alpha}+\cos{\beta})=ab\)
\(\Rightarrow \sin{\alpha}\cos{\alpha}+\sin{\beta}\cos{\beta}+\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}=ab\)
\(\Rightarrow \frac{1}{2}\times2\sin{\alpha}\cos{\alpha}+\frac{1}{2}\times2\sin{\beta}\cos{\beta}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
\(\Rightarrow \frac{1}{2}\sin{2\alpha}+\frac{1}{2}\sin{2\beta}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \frac{1}{2}(\sin{2\alpha}+\sin{2\beta})+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \frac{1}{2}\times2\sin{\frac{2\alpha+2\beta}{2}}\cos{\frac{2\alpha-2\beta}{2}}+\sin{(\alpha+\beta)}=ab\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \sin{\frac{2(\alpha+\beta)}{2}}\cos{\frac{2(\alpha-\beta)}{2}}+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}\cos{(\alpha-\beta)}+\sin{(\alpha+\beta)}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}\{\cos{(\alpha-\beta)}+1\}=ab\)
\(\Rightarrow \sin{(\alpha+\beta)}=\frac{ab}{\cos{(\alpha-\beta)}+1}\)
\(\Rightarrow \frac{\sin{(\alpha+\beta)}}{\cos{(\alpha+\beta)}}=\frac{ab}{\cos{(\alpha+\beta)}\{\cos{(\alpha-\beta)}+1\}}\) ➜ উভয় পার্শে \(\cos{(\alpha+\beta)}\) ভাগ করে।
\(\therefore \tan{(\alpha+\beta)}=\frac{ab}{\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}+\cos{(\alpha+\beta)}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{2ab}{2\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}+2\cos{(\alpha+\beta)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2ab}{\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}+\cos{(\alpha+\beta)}\cos{(\alpha-\beta)}+2\cos{(\alpha+\beta)}}\)
\(=\frac{2ab}{\cos^2{\alpha}-\sin^2{\beta}+\cos^2{\beta}-\sin^2{\alpha}+2\cos{\alpha}\cos{\beta}-2\sin{\alpha}\sin{\beta}}\) ➜ \(\because \cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(\cos{(A+B)}\cos{(A-B)}=\cos^2{B}-\sin^2{A}\)
এবং \(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(=\frac{2ab}{(\cos^2{\alpha}+2\cos{\alpha}\cos{\beta}+\cos^2{\beta})-(\sin^2{\alpha}+2\sin{\alpha}\sin{\beta}+\sin^2{\beta})}\)
\(=\frac{2ab}{(\cos{\alpha}+\cos{\beta})^2-(\sin{\alpha}+\sin{\beta})^2}\) ➜ \(\because A^2+2AB+B^2=(A+B)^2\)
\(=\frac{2ab}{b^2-a^2}\) ➜ \(\because \cos{\alpha}+\cos{\beta}=b\)
এবং \(\sin{\alpha}+\sin{\beta}=a\)
\(\therefore \tan{(\alpha+\beta)}=\frac{2ab}{b^2-a^2}\)
(প্রমাণিত)
\(Q.4.(xxii)\) \(p=\sin{2\alpha}, \ q=\sin{2\beta}, \ r=\cos{2\alpha}, \ s=\cos{2\beta}\) এবং \(p+q=c, \ r+s=d\) হয়, তবে দেখাও যে, \(\cos{(2\alpha+2\beta)}=\frac{d^2-c^2}{d^2+c^2}\)
ঢাঃ,দিঃ,সিঃ,যঃ ২০১৮ ।
সমাধানঃ
দেওয়া আছে,
\(p=\sin{2\alpha}, \ q=\sin{2\beta}, \ r=\cos{2\alpha}, \ s=\cos{2\beta}\) এবং \(p+q=c, \ r+s=d\)
\(\therefore \sin{2\alpha}+\sin{2\beta}=c\) এবং \(\cos{2\alpha}+\cos{2\beta}=d\)
ধরি,
\(\sin{2\alpha}+\sin{2\beta}=c .....(1)\)
এবং \(\cos{2\alpha}+\cos{2\beta}=d .....(2)\)
\((2)\div{(1)}\) এর সাহায্যে,
\(\frac{\cos{2\alpha}+\cos{2\beta}}{\sin{2\alpha}+\sin{2\beta}}=\frac{d}{c}\)
\(\Rightarrow \frac{2\cos{\frac{2\alpha+2\beta}{2}}\cos{\frac{2\alpha-2\beta}{2}}}{2\sin{\frac{2\alpha+2\beta}{2}}\cos{\frac{2\alpha-2\beta}{2}}}=\frac{d}{c}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{2(\alpha+\beta)}{2}}}{\sin{\frac{2(\alpha+\beta)}{2}}}=\frac{d}{c}\)
\(\Rightarrow \frac{\cos{(\alpha+\beta)}}{\sin{(\alpha+\beta)}}=\frac{d}{c}\)
\(\Rightarrow \frac{\cos^2{(\alpha+\beta)}}{\sin^2{(\alpha+\beta)}}=\frac{d^2}{c^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\cos^2{(\alpha+\beta)}-\sin^2{(\alpha+\beta)}}{\cos^2{(\alpha+\beta)}+\sin^2{(\alpha+\beta)}}=\frac{d^2-c^2}{d^2+c^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\cos{2(\alpha+\beta)}}{1}=\frac{d^2-c^2}{d^2+c^2}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\cos^2{A}+\sin^2{A}=1\)
\(\therefore \cos{(2\alpha+2\beta)}=\frac{d^2-c^2}{d^2+c^2}\)
( দেখানো হলো)
\(p=\sin{2\alpha}, \ q=\sin{2\beta}, \ r=\cos{2\alpha}, \ s=\cos{2\beta}\) এবং \(p+q=c, \ r+s=d\)
\(\therefore \sin{2\alpha}+\sin{2\beta}=c\) এবং \(\cos{2\alpha}+\cos{2\beta}=d\)
ধরি,
\(\sin{2\alpha}+\sin{2\beta}=c .....(1)\)
এবং \(\cos{2\alpha}+\cos{2\beta}=d .....(2)\)
\((2)\div{(1)}\) এর সাহায্যে,
\(\frac{\cos{2\alpha}+\cos{2\beta}}{\sin{2\alpha}+\sin{2\beta}}=\frac{d}{c}\)
\(\Rightarrow \frac{2\cos{\frac{2\alpha+2\beta}{2}}\cos{\frac{2\alpha-2\beta}{2}}}{2\sin{\frac{2\alpha+2\beta}{2}}\cos{\frac{2\alpha-2\beta}{2}}}=\frac{d}{c}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{2(\alpha+\beta)}{2}}}{\sin{\frac{2(\alpha+\beta)}{2}}}=\frac{d}{c}\)
\(\Rightarrow \frac{\cos{(\alpha+\beta)}}{\sin{(\alpha+\beta)}}=\frac{d}{c}\)
\(\Rightarrow \frac{\cos^2{(\alpha+\beta)}}{\sin^2{(\alpha+\beta)}}=\frac{d^2}{c^2}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\cos^2{(\alpha+\beta)}-\sin^2{(\alpha+\beta)}}{\cos^2{(\alpha+\beta)}+\sin^2{(\alpha+\beta)}}=\frac{d^2-c^2}{d^2+c^2}\) ➜ বিয়োজন-যোজন করে।
\(\Rightarrow \frac{\cos{2(\alpha+\beta)}}{1}=\frac{d^2-c^2}{d^2+c^2}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\cos^2{A}+\sin^2{A}=1\)
\(\therefore \cos{(2\alpha+2\beta)}=\frac{d^2-c^2}{d^2+c^2}\)
( দেখানো হলো)
\(Q.4.(xxiii)\) \(f(x)=\sin{x}, \ g(x)=\cos{x}\) এবং \(f(x)+f(y)=p, \ g(x)+g(y)=q\) হলে প্রমাণ কর যে, \(f\left(\frac{x-y}{2}\right)=\pm\frac{1}{2}\sqrt{4-p^2-q^2}\)
দিঃ ২০১৭ ।
সমাধানঃ
দেওয়া আছে,
\(f(x)=\sin{x}, \ g(x)=\cos{x}\) এবং \(f(x)+f(y)=p, \ g(x)+g(y)=q\)
\(\therefore \sin{x}+\sin{y}=p\) এবং \(\cos{x}+\cos{y}=q\)
ধরি,
\(\sin{x}+\sin{y}=p .....(1)\)
এবং \(\cos{x}+\cos{y}=q .....(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{x}+\sin{y})^2+(\cos{x}+\cos{y})^2=p^2+q^2\)
\(\Rightarrow \sin^2{x}+\sin^2{y}+2\sin{x}\sin{y}+\cos^2{x}+\cos^2{y}+2\cos{x}\cos{y}=p^2+q^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{x}+\cos^2{x})+(\sin^2{y}+\cos^2{y})+2(\cos{x}\cos{y}+\sin{x}\sin{y})=p^2+q^2\)
\(\Rightarrow 1+1+2\cos{(x-y)}=p^2+q^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(x-y)}=p^2+q^2\)
\(\Rightarrow 2\{1+\cos{(x-y)}\}=p^2+q^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{x-y}{2}\right)}\}=p^2+q^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{x-y}{2}\right)}=p^2+q^2\)
\(\Rightarrow 4\left\{1-\sin^2{\left(\frac{x-y}{2}\right)}\right\}=p^2+q^2\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 4-4\sin^2{\left(\frac{x-y}{2}\right)}=p^2+q^2\)
\(\Rightarrow 4-p^2-q^2=4\sin^2{\left(\frac{x-y}{2}\right)}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 4\sin^2{\left(\frac{x-y}{2}\right)}=4-p^2-q^2\) ➜ পক্ষান্তর করে।
\(\Rightarrow \sin^2{\left(\frac{x-y}{2}\right)}=\frac{1}{4}(4-p^2-q^2)\)
\(\Rightarrow \sin{\left(\frac{x-y}{2}\right)}=\pm\sqrt{\frac{1}{4}(4-p^2-q^2)}\)
\(\Rightarrow \sin{\left(\frac{x-y}{2}\right)}=\pm\frac{1}{2}\sqrt{(4-p^2-q^2)}\)
\(\therefore f\left(\frac{x-y}{2}\right)=\pm\frac{1}{2}\sqrt{(4-p^2-q^2)}\) ➜ \(\because f(x)=\sin{x}\)
(প্রমাণিত)
\(f(x)=\sin{x}, \ g(x)=\cos{x}\) এবং \(f(x)+f(y)=p, \ g(x)+g(y)=q\)
\(\therefore \sin{x}+\sin{y}=p\) এবং \(\cos{x}+\cos{y}=q\)
ধরি,
\(\sin{x}+\sin{y}=p .....(1)\)
এবং \(\cos{x}+\cos{y}=q .....(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{x}+\sin{y})^2+(\cos{x}+\cos{y})^2=p^2+q^2\)
\(\Rightarrow \sin^2{x}+\sin^2{y}+2\sin{x}\sin{y}+\cos^2{x}+\cos^2{y}+2\cos{x}\cos{y}=p^2+q^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{x}+\cos^2{x})+(\sin^2{y}+\cos^2{y})+2(\cos{x}\cos{y}+\sin{x}\sin{y})=p^2+q^2\)
\(\Rightarrow 1+1+2\cos{(x-y)}=p^2+q^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(x-y)}=p^2+q^2\)
\(\Rightarrow 2\{1+\cos{(x-y)}\}=p^2+q^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{x-y}{2}\right)}\}=p^2+q^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{x-y}{2}\right)}=p^2+q^2\)
\(\Rightarrow 4\left\{1-\sin^2{\left(\frac{x-y}{2}\right)}\right\}=p^2+q^2\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 4-4\sin^2{\left(\frac{x-y}{2}\right)}=p^2+q^2\)
\(\Rightarrow 4-p^2-q^2=4\sin^2{\left(\frac{x-y}{2}\right)}\) ➜ পক্ষান্তর করে।
\(\Rightarrow 4\sin^2{\left(\frac{x-y}{2}\right)}=4-p^2-q^2\) ➜ পক্ষান্তর করে।
\(\Rightarrow \sin^2{\left(\frac{x-y}{2}\right)}=\frac{1}{4}(4-p^2-q^2)\)
\(\Rightarrow \sin{\left(\frac{x-y}{2}\right)}=\pm\sqrt{\frac{1}{4}(4-p^2-q^2)}\)
\(\Rightarrow \sin{\left(\frac{x-y}{2}\right)}=\pm\frac{1}{2}\sqrt{(4-p^2-q^2)}\)
\(\therefore f\left(\frac{x-y}{2}\right)=\pm\frac{1}{2}\sqrt{(4-p^2-q^2)}\) ➜ \(\because f(x)=\sin{x}\)
(প্রমাণিত)
\(Q.4.(xxiv)\) যদি \(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\) হয়, তবে প্রমাণ কর যে, \(\tan{\left(\frac{\theta-\phi}{2}\right)}=\pm\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\)
ধরি,
\(\sin{\theta}+\sin{\phi}=a .....(1)\)
এবং \(\cos{\theta}+\cos{\phi}=b .....(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\theta}+\sin{\phi})^2+(\cos{\theta}+\cos{\phi})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\theta}+\sin^2{\phi}+2\sin{\theta}\sin{\phi}+\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}=a^2+b^2\) ➜ \(\because (p+q)^2=p^2+q^2+2pq\)
\(\Rightarrow (\sin^2{\theta}+\cos^2{\theta})+(\sin^2{\phi}+\cos^2{\phi})+2(\cos{\theta}\cos{\phi}+\sin{\theta}\sin{\phi})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\theta-\phi)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\theta-\phi)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\theta-\phi}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\theta-\phi}{2}\right)}=a^2+b^2\)
\(\Rightarrow \cos^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{a^2+b^2}{4}\)
\(\Rightarrow \frac{1}{\cos^2{\left(\frac{\theta-\phi}{2}\right)}}=\frac{4}{a^2+b^2}\)
\(\Rightarrow \sec^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(\Rightarrow 1+\tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}\) ➜ \(\because \sec^2{A}=1+tan^2{A}\)
\(\Rightarrow \tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}-1\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4-a^2-b^2}{a^2+b^2}\)
\(\therefore \tan{\left(\frac{\theta-\phi}{2}\right)}=\pm\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
(প্রমাণিত)
\(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\)
ধরি,
\(\sin{\theta}+\sin{\phi}=a .....(1)\)
এবং \(\cos{\theta}+\cos{\phi}=b .....(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\theta}+\sin{\phi})^2+(\cos{\theta}+\cos{\phi})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\theta}+\sin^2{\phi}+2\sin{\theta}\sin{\phi}+\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}=a^2+b^2\) ➜ \(\because (p+q)^2=p^2+q^2+2pq\)
\(\Rightarrow (\sin^2{\theta}+\cos^2{\theta})+(\sin^2{\phi}+\cos^2{\phi})+2(\cos{\theta}\cos{\phi}+\sin{\theta}\sin{\phi})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\theta-\phi)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\theta-\phi)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\theta-\phi}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\theta-\phi}{2}\right)}=a^2+b^2\)
\(\Rightarrow \cos^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{a^2+b^2}{4}\)
\(\Rightarrow \frac{1}{\cos^2{\left(\frac{\theta-\phi}{2}\right)}}=\frac{4}{a^2+b^2}\)
\(\Rightarrow \sec^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(\Rightarrow 1+\tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}\) ➜ \(\because \sec^2{A}=1+tan^2{A}\)
\(\Rightarrow \tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}-1\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4-a^2-b^2}{a^2+b^2}\)
\(\therefore \tan{\left(\frac{\theta-\phi}{2}\right)}=\pm\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
(প্রমাণিত)
\(Q.4.(xxv)\) \(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\) হলে দেখাও যে, \(\tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\)
ধরি,
\(\sin{A}=\frac{1}{\sqrt{2}} .....(1)\)
এবং \(\sin{B}=\frac{1}{\sqrt{3}} .....(2)\)
\((1)\div(2)\) এর সাহায্যে,
\(\frac{\sin{A}}{\sin{B}}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{3}}}\)
\(\Rightarrow \frac{\sin{A}}{\sin{B}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{1}\)
\(\Rightarrow \frac{\sin{A}}{\sin{B}}=\frac{\sqrt{3}}{\sqrt{2}}\)
\(\Rightarrow \frac{\sin{A}+\sin{B}}{\sin{A}-\sin{B}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
\(\Rightarrow \tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং ডান পাশের লব ও হরকে \((\sqrt{3}+\sqrt{2})\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3})^2+(\sqrt{2})^2+2\sqrt{3}\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a-b)(a+b)=a^2-b^2\)
\(=\frac{3+2+2\sqrt{6}}{3-2}\)
\(=\frac{5+2\sqrt{6}}{1}\)
\(\therefore \tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
( দেখানো হলো)
\(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\)
ধরি,
\(\sin{A}=\frac{1}{\sqrt{2}} .....(1)\)
এবং \(\sin{B}=\frac{1}{\sqrt{3}} .....(2)\)
\((1)\div(2)\) এর সাহায্যে,
\(\frac{\sin{A}}{\sin{B}}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{3}}}\)
\(\Rightarrow \frac{\sin{A}}{\sin{B}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{1}\)
\(\Rightarrow \frac{\sin{A}}{\sin{B}}=\frac{\sqrt{3}}{\sqrt{2}}\)
\(\Rightarrow \frac{\sin{A}+\sin{B}}{\sin{A}-\sin{B}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
\(\Rightarrow \tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং ডান পাশের লব ও হরকে \((\sqrt{3}+\sqrt{2})\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3})^2+(\sqrt{2})^2+2\sqrt{3}\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a-b)(a+b)=a^2-b^2\)
\(=\frac{3+2+2\sqrt{6}}{3-2}\)
\(=\frac{5+2\sqrt{6}}{1}\)
\(\therefore \tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
( দেখানো হলো)
\(Q.4.(xxvi)\) প্রমাণ কর যে, \(\frac{\cos{8\theta}+6\cos{6\theta}+13\cos{4\theta}+8\cos{2\theta}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}=2\cos{\theta}\)
সমাধানঃ
\(L.S=\frac{\cos{8\theta}+6\cos{6\theta}+13\cos{4\theta}+8\cos{2\theta}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{\cos{8\theta}+\cos{6\theta}+5\cos{6\theta}+5\cos{4\theta}+8\cos{4\theta}+8\cos{2\theta}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{(\cos{6\theta}+\cos{8\theta})+5(\cos{4\theta}+\cos{6\theta})+8(\cos{2\theta}+\cos{4\theta})}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{2\cos{\frac{8\theta+6\theta}{2}}\cos{\frac{8\theta-6\theta}{2}}+5(2\cos{\frac{6\theta+4\theta}{2}}\cos{\frac{6\theta-4\theta}{2}})+8(2\cos{\frac{4\theta+2\theta}{2}}\cos{\frac{4\theta-2\theta}{2}})}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\frac{2\cos{\frac{14\theta}{2}}\cos{\frac{2\theta}{2}}+10\cos{\frac{10\theta}{2}}\cos{\frac{2\theta}{2}}+16\cos{\frac{6\theta}{2}}\cos{\frac{2\theta}{2}}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{2\cos{7\theta}\cos{\theta}+10\cos{5\theta}\cos{\theta}+16\cos{3\theta}\cos{\theta}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{2\cos{\theta}(\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta})}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=2\cos{\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{8\theta}+\cos{6\theta}+5\cos{6\theta}+5\cos{4\theta}+8\cos{4\theta}+8\cos{2\theta}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{(\cos{6\theta}+\cos{8\theta})+5(\cos{4\theta}+\cos{6\theta})+8(\cos{2\theta}+\cos{4\theta})}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{2\cos{\frac{8\theta+6\theta}{2}}\cos{\frac{8\theta-6\theta}{2}}+5(2\cos{\frac{6\theta+4\theta}{2}}\cos{\frac{6\theta-4\theta}{2}})+8(2\cos{\frac{4\theta+2\theta}{2}}\cos{\frac{4\theta-2\theta}{2}})}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\) ➜ \(\because \cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\frac{2\cos{\frac{14\theta}{2}}\cos{\frac{2\theta}{2}}+10\cos{\frac{10\theta}{2}}\cos{\frac{2\theta}{2}}+16\cos{\frac{6\theta}{2}}\cos{\frac{2\theta}{2}}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{2\cos{7\theta}\cos{\theta}+10\cos{5\theta}\cos{\theta}+16\cos{3\theta}\cos{\theta}}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=\frac{2\cos{\theta}(\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta})}{\cos{7\theta}+5\cos{5\theta}+8\cos{3\theta}}\)
\(=2\cos{\theta}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(xxvii)\) যদি \((\theta-\phi)\) সূক্ষ্ণ কোণ এবং \(\sin{\theta}+\sin{\phi}=\sqrt{3}(\cos{\phi}-\cos{\theta})\) হয়, তবে প্রমাণ কর যে, \(\sin{3\theta}+\sin{3\phi}=0\)
সমাধানঃ
দেওয়া আছে,
\((\theta-\phi)\) সূক্ষ্ণ কোণ এবং \(\sin{\theta}+\sin{\phi}=\sqrt{3}(\cos{\phi}-\cos{\theta})\)
\(\Rightarrow \frac{\sin{\theta}+\sin{\phi}}{\cos{\phi}-\cos{\theta}}=\sqrt{3}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{2\sin{\frac{\theta+\phi}{2}}\cos{\frac{\theta-\phi}{2}}}{2\sin{\frac{\theta+\phi}{2}}\sin{\frac{\theta-\phi}{2}}}=\sqrt{3}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{\theta-\phi}{2}}}{\sin{\frac{\theta-\phi}{2}}}=\sqrt{3}\)
\(\Rightarrow \cot{\frac{\theta-\phi}{2}}=\cot{30^{o}}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\cot{30^{o}}=\sqrt{3}\)
\(\Rightarrow \frac{\theta-\phi}{2}=30^{o}\)
\(\Rightarrow \theta-\phi=60^{o}\)
\(\therefore \theta=60^{o}+\phi\)
এখন, \(L.S=\sin{3\theta}+\sin{3\phi}\)
\(=\sin{3(60^{o}+\phi)}+\sin{3\phi}\) ➜ \(\because \theta=60^{o}+\phi\)
\(=\sin{(180^{o}+3\phi)}+\sin{3\phi}\)
\(=\sin{(90^{o}\times2+3\phi)}+\sin{3\phi}\) ➜ \(\because 180^{o}+3\phi=90^{o}\times2+3\phi\)
\(=-\sin{3\phi}+\sin{3\phi}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি তৃতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\((\theta-\phi)\) সূক্ষ্ণ কোণ এবং \(\sin{\theta}+\sin{\phi}=\sqrt{3}(\cos{\phi}-\cos{\theta})\)
\(\Rightarrow \frac{\sin{\theta}+\sin{\phi}}{\cos{\phi}-\cos{\theta}}=\sqrt{3}\) ➜ পক্ষান্তর করে।
\(\Rightarrow \frac{2\sin{\frac{\theta+\phi}{2}}\cos{\frac{\theta-\phi}{2}}}{2\sin{\frac{\theta+\phi}{2}}\sin{\frac{\theta-\phi}{2}}}=\sqrt{3}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\cos{\frac{\theta-\phi}{2}}}{\sin{\frac{\theta-\phi}{2}}}=\sqrt{3}\)
\(\Rightarrow \cot{\frac{\theta-\phi}{2}}=\cot{30^{o}}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\cot{30^{o}}=\sqrt{3}\)
\(\Rightarrow \frac{\theta-\phi}{2}=30^{o}\)
\(\Rightarrow \theta-\phi=60^{o}\)
\(\therefore \theta=60^{o}+\phi\)
এখন, \(L.S=\sin{3\theta}+\sin{3\phi}\)
\(=\sin{3(60^{o}+\phi)}+\sin{3\phi}\) ➜ \(\because \theta=60^{o}+\phi\)
\(=\sin{(180^{o}+3\phi)}+\sin{3\phi}\)
\(=\sin{(90^{o}\times2+3\phi)}+\sin{3\phi}\) ➜ \(\because 180^{o}+3\phi=90^{o}\times2+3\phi\)
\(=-\sin{3\phi}+\sin{3\phi}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি তৃতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(xxviii)\) \(A\) এর যে মানের জন্য \(\cos{A}\sin{\left(A-\frac{\pi}{6}\right)}\) এর মান বৃহত্তম হয়, তা নির্ণয় কর, যেখানে \(A\) সূক্ষ্ণকোণ।
উত্তরঃ \(\frac{\pi}{3}\)
উত্তরঃ \(\frac{\pi}{3}\)
সমাধানঃ
প্রদত্ত রাশি,
\(=\cos{A}\sin{\left(A-\frac{\pi}{6}\right)}\)
\(=\frac{1}{2}\times2\cos{A}\sin{\left(A-\frac{\pi}{6}\right)}\)
\(=\frac{1}{2}\left\{\sin{\left(A+A-\frac{\pi}{6}\right)}-\sin{\left(A-A+\frac{\pi}{6}\right)}\right\}\) ➜ \(\because 2\cos{A}\sin{B}=\sin{(A+B)}-\sin{(A-B)}\)
\(=\frac{1}{2}\left\{\sin{\left(2A-\frac{\pi}{6}\right)}-\sin{\left(\frac{\pi}{6}\right)}\right\}\)
\(=\frac{1}{2}\left\{\sin{\left(2A-\frac{\pi}{6}\right)}-\frac{1}{2}\right\}\) ➜ \(\because \sin{\left(\frac{\pi}{6}\right)}=\frac{1}{2}\)
এখন, \(\frac{1}{2}\left\{\sin{\left(2A-\frac{\pi}{6}\right)}-\frac{1}{2}\right\}\) এর মান বৃহত্তম হবে,
যদি \(\sin{\left(2A-\frac{\pi}{6}\right)}\) এর মান বৃহত্তম হয়।
এখন, \(\sin{\left(2A-\frac{\pi}{6}\right)}\) এর মান বৃহত্তম মান=\(1\)
\(\therefore \sin{\left(2A-\frac{\pi}{6}\right)}=1\)
\(\Rightarrow \sin{\left(2A-\frac{\pi}{6}\right)}=\sin{\frac{\pi}{2}}\) ➜ \(\because \sin{\frac{\pi}{2}}=1\)
\(\Rightarrow 2A-\frac{\pi}{6}=\frac{\pi}{2}\)
\(\Rightarrow 2A=\frac{\pi}{6}+\frac{\pi}{2}\)
\(\Rightarrow 2A=\frac{\pi+3\pi}{6}\)
\(\Rightarrow 2A=\frac{4\pi}{6}\)
\(\Rightarrow 2A=\frac{2\pi}{3}\)
\(\therefore A=\frac{\pi}{3}\)
\(=\cos{A}\sin{\left(A-\frac{\pi}{6}\right)}\)
\(=\frac{1}{2}\times2\cos{A}\sin{\left(A-\frac{\pi}{6}\right)}\)
\(=\frac{1}{2}\left\{\sin{\left(A+A-\frac{\pi}{6}\right)}-\sin{\left(A-A+\frac{\pi}{6}\right)}\right\}\) ➜ \(\because 2\cos{A}\sin{B}=\sin{(A+B)}-\sin{(A-B)}\)
\(=\frac{1}{2}\left\{\sin{\left(2A-\frac{\pi}{6}\right)}-\sin{\left(\frac{\pi}{6}\right)}\right\}\)
\(=\frac{1}{2}\left\{\sin{\left(2A-\frac{\pi}{6}\right)}-\frac{1}{2}\right\}\) ➜ \(\because \sin{\left(\frac{\pi}{6}\right)}=\frac{1}{2}\)
এখন, \(\frac{1}{2}\left\{\sin{\left(2A-\frac{\pi}{6}\right)}-\frac{1}{2}\right\}\) এর মান বৃহত্তম হবে,
যদি \(\sin{\left(2A-\frac{\pi}{6}\right)}\) এর মান বৃহত্তম হয়।
এখন, \(\sin{\left(2A-\frac{\pi}{6}\right)}\) এর মান বৃহত্তম মান=\(1\)
\(\therefore \sin{\left(2A-\frac{\pi}{6}\right)}=1\)
\(\Rightarrow \sin{\left(2A-\frac{\pi}{6}\right)}=\sin{\frac{\pi}{2}}\) ➜ \(\because \sin{\frac{\pi}{2}}=1\)
\(\Rightarrow 2A-\frac{\pi}{6}=\frac{\pi}{2}\)
\(\Rightarrow 2A=\frac{\pi}{6}+\frac{\pi}{2}\)
\(\Rightarrow 2A=\frac{\pi+3\pi}{6}\)
\(\Rightarrow 2A=\frac{4\pi}{6}\)
\(\Rightarrow 2A=\frac{2\pi}{3}\)
\(\therefore A=\frac{\pi}{3}\)
\(Q.4.(xxix)\) \(\frac{x}{\tan{(\theta+\alpha)}}=\frac{y}{\tan{(\theta+\beta)}}=\frac{z}{\tan{(\theta+\gamma)}}\) হলে দেখাও যে, \(\frac{x+y}{x-y}\sin^2{(\alpha-\beta)}+\frac{y+z}{y-z}\sin^2{(\beta-\gamma)}+\frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=0\)
সমাধানঃ
দেওয়া আছে,
\(\frac{x}{\tan{(\theta+\alpha)}}=\frac{y}{\tan{(\theta+\beta)}}=\frac{z}{\tan{(\theta+\gamma)}}\)
প্রথম ও দ্বিতীয় অনুপাত নিয়ে,
\(\frac{x}{\tan{(\theta+\alpha)}}=\frac{y}{\tan{(\theta+\beta)}}\)
\(\Rightarrow \frac{x}{y}=\frac{\tan{(\theta+\alpha)}}{\tan{(\theta+\beta)}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \frac{x+y}{x-y}=\frac{\tan{(\theta+\alpha)}+\tan{(\theta+\beta)}}{\tan{(\theta+\alpha)}-\tan{(\theta+\beta)}}\) ➜ যোজন-বিয়োজন করে,
\(\Rightarrow \frac{x+y}{x-y}=\frac{\frac{\sin{(\theta+\alpha)}}{\cos{(\theta+\alpha)}}+\frac{\sin{(\theta+\beta)}}{\cos{(\theta+\beta)}}}{\frac{\sin{(\theta+\alpha)}}{\cos{(\theta+\alpha)}}-\frac{\sin{(\theta+\beta)}}{\cos{(\theta+\beta)}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \frac{x+y}{x-y}=\frac{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}+\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}-\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}\) ➜ লব ও হরকে \(\cos{(\theta+\alpha)}\cos{(\theta+\beta)}\) দ্বারা গুণ করে।
\(\Rightarrow \frac{x+y}{x-y}=\frac{\sin{\{(\theta+\alpha)+(\theta+\beta)\}}}{\sin{\{(\theta+\alpha)-(\theta+\beta)\}}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\Rightarrow \frac{x+y}{x-y}\sin{\{(\theta+\alpha)-(\theta+\beta)\}}=\sin{\{(\theta+\alpha)+(\theta+\beta)\}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \frac{x+y}{x-y}\sin^2{\{(\theta+\alpha)-(\theta+\beta)\}}=\sin{\{(\theta+\alpha)+(\theta+\beta)\}}\sin{\{(\theta+\alpha)-(\theta+\beta)\}}\) ➜ উভয় পার্শে \(\sin{\{(\theta+\alpha)-(\theta+\beta)\}}\) গুণ করে।
\(\therefore \frac{x+y}{x-y}\sin^2{(\alpha-\beta)}=\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)} .......(1)\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
অনুরূপভাবে,
দ্বিতীয় ও তৃতীয় অনুপাত নিয়ে,
\(\frac{y}{\tan{(\theta+\beta)}}=\frac{z}{\tan{(\theta+\gamma)}}\)
\(\therefore \frac{y+z}{y-z}\sin^2{(\beta-\gamma)}=\sin^2{(\theta+\beta)}-\sin^2{(\theta+\gamma)} .......(2)\)
তৃতীয় ও প্রথম অনুপাত নিয়ে,
\(\frac{z}{\tan{(\theta+\gamma)}}=\frac{x}{\tan{(\theta+\alpha)}}\)
\(\therefore \frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=\sin^2{(\theta+\gamma)}-\sin^2{(\theta+\alpha)} .......(3)\)
\((1)+(2)+(3)\) এর সাহায্যে
\(\frac{x+y}{x-y}\sin^2{(\alpha-\beta)}+\frac{y+z}{y-z}\sin^2{(\beta-\gamma)}+\frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=\)\(\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}+\sin^2{(\theta+\beta)}-\sin^2{(\theta+\gamma)}+\sin^2{(\theta+\gamma)}-\sin^2{(\theta+\alpha)}\)
\(\therefore \frac{x+y}{x-y}\sin^2{(\alpha-\beta)}+\frac{y+z}{y-z}\sin^2{(\beta-\gamma)}+\frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=0\)
(দেখানো হলো)
\(\frac{x}{\tan{(\theta+\alpha)}}=\frac{y}{\tan{(\theta+\beta)}}=\frac{z}{\tan{(\theta+\gamma)}}\)
প্রথম ও দ্বিতীয় অনুপাত নিয়ে,
\(\frac{x}{\tan{(\theta+\alpha)}}=\frac{y}{\tan{(\theta+\beta)}}\)
\(\Rightarrow \frac{x}{y}=\frac{\tan{(\theta+\alpha)}}{\tan{(\theta+\beta)}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \frac{x+y}{x-y}=\frac{\tan{(\theta+\alpha)}+\tan{(\theta+\beta)}}{\tan{(\theta+\alpha)}-\tan{(\theta+\beta)}}\) ➜ যোজন-বিয়োজন করে,
\(\Rightarrow \frac{x+y}{x-y}=\frac{\frac{\sin{(\theta+\alpha)}}{\cos{(\theta+\alpha)}}+\frac{\sin{(\theta+\beta)}}{\cos{(\theta+\beta)}}}{\frac{\sin{(\theta+\alpha)}}{\cos{(\theta+\alpha)}}-\frac{\sin{(\theta+\beta)}}{\cos{(\theta+\beta)}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \frac{x+y}{x-y}=\frac{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}+\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}{\sin{(\theta+\alpha)}\cos{(\theta+\beta)}-\cos{(\theta+\alpha)}\sin{(\theta+\beta)}}\) ➜ লব ও হরকে \(\cos{(\theta+\alpha)}\cos{(\theta+\beta)}\) দ্বারা গুণ করে।
\(\Rightarrow \frac{x+y}{x-y}=\frac{\sin{\{(\theta+\alpha)+(\theta+\beta)\}}}{\sin{\{(\theta+\alpha)-(\theta+\beta)\}}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\Rightarrow \frac{x+y}{x-y}\sin{\{(\theta+\alpha)-(\theta+\beta)\}}=\sin{\{(\theta+\alpha)+(\theta+\beta)\}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \frac{x+y}{x-y}\sin^2{\{(\theta+\alpha)-(\theta+\beta)\}}=\sin{\{(\theta+\alpha)+(\theta+\beta)\}}\sin{\{(\theta+\alpha)-(\theta+\beta)\}}\) ➜ উভয় পার্শে \(\sin{\{(\theta+\alpha)-(\theta+\beta)\}}\) গুণ করে।
\(\therefore \frac{x+y}{x-y}\sin^2{(\alpha-\beta)}=\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)} .......(1)\) ➜ \(\because \sin{(A+B)}\sin{(A-B)}=\sin^2{A}-\sin^2{B}\)
অনুরূপভাবে,
দ্বিতীয় ও তৃতীয় অনুপাত নিয়ে,
\(\frac{y}{\tan{(\theta+\beta)}}=\frac{z}{\tan{(\theta+\gamma)}}\)
\(\therefore \frac{y+z}{y-z}\sin^2{(\beta-\gamma)}=\sin^2{(\theta+\beta)}-\sin^2{(\theta+\gamma)} .......(2)\)
তৃতীয় ও প্রথম অনুপাত নিয়ে,
\(\frac{z}{\tan{(\theta+\gamma)}}=\frac{x}{\tan{(\theta+\alpha)}}\)
\(\therefore \frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=\sin^2{(\theta+\gamma)}-\sin^2{(\theta+\alpha)} .......(3)\)
\((1)+(2)+(3)\) এর সাহায্যে
\(\frac{x+y}{x-y}\sin^2{(\alpha-\beta)}+\frac{y+z}{y-z}\sin^2{(\beta-\gamma)}+\frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=\)\(\sin^2{(\theta+\alpha)}-\sin^2{(\theta+\beta)}+\sin^2{(\theta+\beta)}-\sin^2{(\theta+\gamma)}+\sin^2{(\theta+\gamma)}-\sin^2{(\theta+\alpha)}\)
\(\therefore \frac{x+y}{x-y}\sin^2{(\alpha-\beta)}+\frac{y+z}{y-z}\sin^2{(\beta-\gamma)}+\frac{z+x}{z-x}\sin^2{(\gamma-\alpha)}=0\)
(দেখানো হলো)
\(Q.4.(xxx)\) \(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\) হলে দেখাও যে, \(\frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
সমাধানঃ
দেওয়া আছে,
\(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\)
\(\Rightarrow x\cos{\alpha}+y\sin{\alpha}=k, \ x\cos{\beta}+y\sin{\beta}=k\)
\(\therefore x\cos{\alpha}+y\sin{\alpha}-k=0, \ x\cos{\beta}+y\sin{\beta}-k=0\)
ধরি,
\(x\cos{\alpha}+y\sin{\alpha}-k=0 .......(1)\)
\(x\cos{\beta}+y\sin{\beta}-k=0 .........(2)\)
\((1)\) ও \((2)\) বজ্র গুন করে,
\(\frac{x}{-k\sin{\alpha}+k\sin{\beta}}=\frac{y}{-k\cos{\beta}+k\cos{\alpha}}=\frac{1}{\cos{\alpha}\sin{\beta}-\sin{\alpha}\cos{\beta}}\)
\(\Rightarrow \frac{x}{-k(\sin{\alpha}-\sin{\beta})}=\frac{y}{-k(\cos{\beta}-\cos{\alpha})}=\frac{1}{-(\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta})}\)
\(\Rightarrow \frac{x}{k\times2\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{y}{k\times2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{1}{\sin{(\alpha-\beta)}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\Rightarrow \frac{x}{2k\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{y}{2k\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{1}{2\sin{\frac{\alpha-\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(\Rightarrow \frac{x}{\cos{\frac{\alpha+\beta}{2}}}=\frac{y}{\sin{\frac{\alpha+\beta}{2}}}=\frac{k}{\cos{\frac{\alpha-\beta}{2}}}\) ➜ প্রতিটি পদকে \(2k\sin{\frac{\alpha-\beta}{2}}\) দ্বারা গুণ করে।
\(\therefore \frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
(দেখানো হলো)
\(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\)
\(\Rightarrow x\cos{\alpha}+y\sin{\alpha}=k, \ x\cos{\beta}+y\sin{\beta}=k\)
\(\therefore x\cos{\alpha}+y\sin{\alpha}-k=0, \ x\cos{\beta}+y\sin{\beta}-k=0\)
ধরি,
\(x\cos{\alpha}+y\sin{\alpha}-k=0 .......(1)\)
\(x\cos{\beta}+y\sin{\beta}-k=0 .........(2)\)
\((1)\) ও \((2)\) বজ্র গুন করে,
\(\frac{x}{-k\sin{\alpha}+k\sin{\beta}}=\frac{y}{-k\cos{\beta}+k\cos{\alpha}}=\frac{1}{\cos{\alpha}\sin{\beta}-\sin{\alpha}\cos{\beta}}\)
\(\Rightarrow \frac{x}{-k(\sin{\alpha}-\sin{\beta})}=\frac{y}{-k(\cos{\beta}-\cos{\alpha})}=\frac{1}{-(\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta})}\)
\(\Rightarrow \frac{x}{k\times2\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{y}{k\times2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{1}{\sin{(\alpha-\beta)}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\Rightarrow \frac{x}{2k\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{y}{2k\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{1}{2\sin{\frac{\alpha-\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(\Rightarrow \frac{x}{\cos{\frac{\alpha+\beta}{2}}}=\frac{y}{\sin{\frac{\alpha+\beta}{2}}}=\frac{k}{\cos{\frac{\alpha-\beta}{2}}}\) ➜ প্রতিটি পদকে \(2k\sin{\frac{\alpha-\beta}{2}}\) দ্বারা গুণ করে।
\(\therefore \frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
(দেখানো হলো)
সংযুক্ত ও যৌগিক কোণের গুণফল, যোগফল ও বিয়োগফলের ত্রিকোণমিতিক অনুপাত \(\sin{(A+B)}+\sin{(A-B)}=2\sin{A}\cos{B}\) \(\sin{(A+B)}-\sin{(A-B)}=2\cos{A}\sin{B}\) \(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\) \(\cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\) \(\tan{(A+B)}+\tan{(A-B)}=\frac{2\sin{2A}}{\cos{2A}+\cos{2B}}\) \(\tan{(A+B)}-\tan{(A-B)}=\frac{2\sin{2B}}{\cos{2A}+\cos{2B}}\)\(\cot{(A+B)}+\cot{(A-B)}=\frac{2\sin{2A}}{\cos{2B}-\cos{2A}}\) \(\cot{(A+B)}-\cot{(A-B)}=\frac{2\sin{2B}}{\cos{2A}-\cos{2B}}\) \(\sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)\(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) \(\cos{D}+\cos{C}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\) \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\) অধ্যায় \(7A\)-এর উদাহরণসমুহ অধ্যায় \(7C\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ অধ্যায় \(7C\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ অধ্যায় \(7C\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ অধ্যায় \(7C\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ