এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
- সার সংক্ষেপ
- উপ-গুণিতক কোণের ত্রিকোণমিতিক অনুপাত
- \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
- \(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
- \(1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
- \(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
- \(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
- \(\cos{A}=2\cos^2{\frac{A}{2}}-1\)
- \(\cos{A}=1-2\sin^2{\frac{A}{2}}\)
- \(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
- \(1-\cos{A}=2\sin^2{\frac{A}{2}}\)
- \(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
- \(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)
- \(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
- \(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
- \(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
- \(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
- \(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
- \(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\)
- \(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)
- \(15^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
- \(18^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
- \(36^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
- \(54^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
- \(72^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
- \(75^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
- অধ্যায় \(7E\)-এর উদাহরণসমুহ
- অধ্যায় \(7E\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
- অধ্যায় \(7E\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(7E\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(7E\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ

সার সংক্ষেপ
উপ-গুণিতক কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\) \(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\) \(1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\) \(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\) \(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\) \(\cos{A}=2\cos^2{\frac{A}{2}}-1\) \(\cos{A}=1-2\sin^2{\frac{A}{2}}\) \(1+\cos{A}=2\cos^2{\frac{A}{2}}\) \(1-\cos{A}=2\sin^2{\frac{A}{2}}\) \(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\) \(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\) \(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\) \(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\) \(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\) \(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\) \(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)\(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\)\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)\(15^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(18^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(36^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(54^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(72^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(75^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
উপ-গুণিতক কোণের ত্রিকোণমিতিক অনুপাত
Trigonometric ratio of sub-multiple angles
একটি কোণকে কোনো পূর্ণসংখ্যা দ্বারা ভাগ করলে উক্ত কোণের উপ-গুণিতক কোণ পাওয়া যায়।
যেমনঃ \(A\) কোণের উপ-গুণিতক কোণগুলি \(\frac{A}{2}, \ \frac{A}{3}, \ \frac{A}{4} .........\frac{A}{n}\) ইত্যাদি।
যেমনঃ \(A\) কোণের উপ-গুণিতক কোণগুলি \(\frac{A}{2}, \ \frac{A}{3}, \ \frac{A}{4} .........\frac{A}{n}\) ইত্যাদি।
প্রয়োজনীয় ও স্বরণীয় সূত্রসমূহ
Necessary and memorable formulas
\(\sin{A}\) কে \(\sin{\frac{A}{2}}\) এবং \(\cos{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\) \(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\) \(1-\sin{2}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\) \(\sin{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\) \(\cos{A}\) কে \(\sin{\frac{A}{2}}\) এবং \(\cos{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\) \(\cos{A}=2\cos^2{\frac{A}{2}}-1\) \(\cos{A}=1-2\sin^2{\frac{A}{2}}\) \(1+\cos{A}=2\cos^2{\frac{A}{2}}\) \(1-\cos{A}=2\sin^2{\frac{A}{2}}\) \(\cos{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\) \(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\) \(\tan{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\) \(\cot{A}\) কে \(\cot{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\) \(\sin{A}\) কে \(\sin{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\) \(\cos{A}\) কে \(\cos{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\) \(\tan{A}\) কে \(\tan{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\) \(\cot{A}\) কে \(\cot{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\) \(15^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\) \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\) \(\tan{15^{o}}=2-\sqrt{3}\)\(cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\) \(\sec{15^{o}}=\sqrt{6}-\sqrt{2}\) \(\cot{15^{o}}=2+\sqrt{3}\)
\(18^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\) \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\) \(\tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)\(cosec \ {18^{o}}=\sqrt{5}+1\) \(\sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\) \(\cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)
\(36^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\) \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\) \(\tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)\(cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\) \(\sec{36^{o}}=\sqrt{5}-1\) \(\cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(54^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\) \(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\) \(\tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)\(cosec \ {54^{o}}=\sqrt{5}-1\) \(\sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\) \(\cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)
\(72^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\) \(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\) \(\tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)\(cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\) \(\sec{72^{o}}=\sqrt{5}+1\) \(\cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(75^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\) \(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\) \(\tan{75^{o}}=2+\sqrt{3}\)\(cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\) \(\sec{75^{o}}=\sqrt{6}+\sqrt{2}\) \(\cot{75^{o}}=2-\sqrt{3}\)
দ্রষ্টব্যঃ
\(15^{o}, \ 18^{o}, \ 30^{o}, \ 36^{o}\) ও \(45^{o}\) কোণের ত্রিকোণমিতিক অনুপাত জানা থাকলে নিম্নলিখিত কোণের ত্রিকোণমিতিক অনুপাত নির্ণয় করা যায়। \(3^{o}=18^{o}-15^{o}, \ 6^{o}=36^{o}-30^{o}, \ 9^{o}=45^{o}-36^{o}, \ 12^{o}=30^{o}-18^{o}, \ 21^{o}=36^{o}-15^{o}\) ইত্যাদি।
\(\sin{A}\) কে \(\sin{\frac{A}{2}}\) এবং \(\cos{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\) \(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\) \(1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)প্রমাণঃ
আমরা জানি,
\(\sin{2A}=2\sin{A}\cos{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\sin{\left(2\times\frac{A}{2}\right)}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(\therefore \sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
আবার,
\(1+\sin{2A}=(\sin{A}+\cos{A})^2 ........(2)\)
\((2)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1+\sin{\left(2\times\frac{A}{2}\right)}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
\(\therefore 1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
\(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
আবার,
\(1-\sin{2A}=(\sin{A}-\cos{A})^2 ........(3)\)
\((3)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1-\sin{\left(2\times\frac{A}{2}\right)}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(\therefore 1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(\sin{2A}=2\sin{A}\cos{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\sin{\left(2\times\frac{A}{2}\right)}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(\therefore \sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
আবার,
\(1+\sin{2A}=(\sin{A}+\cos{A})^2 ........(2)\)
\((2)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1+\sin{\left(2\times\frac{A}{2}\right)}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
\(\therefore 1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
\(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)
আবার,
\(1-\sin{2A}=(\sin{A}-\cos{A})^2 ........(3)\)
\((3)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1-\sin{\left(2\times\frac{A}{2}\right)}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(\therefore 1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)
\(\sin{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\) প্রমাণঃ
আমরা জানি,
\(\sin{2A}=\frac{2\tan{A}}{1+\tan^2{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\sin{\left(2\times\frac{A}{2}\right)}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\therefore \sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\sin{2A}=\frac{2\tan{A}}{1+\tan^2{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\sin{\left(2\times\frac{A}{2}\right)}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\therefore \sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\cos{A}\) কে \(\sin{\frac{A}{2}}\) এবং \(\cos{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\) \(\cos{A}=2\cos^2{\frac{A}{2}}-1\) \(\cos{A}=1-2\sin^2{\frac{A}{2}}\) \(1+\cos{A}=2\cos^2{\frac{A}{2}}\) \(1-\cos{A}=2\sin^2{\frac{A}{2}}\)প্রমাণঃ
আমরা জানি,
\(\cos{2A}=\cos^2{A}-\sin^2{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(\therefore \cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
আবার,
\(\cos{2A}=2\cos^2{A}-1 ........(2)\)
\((2)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=2\cos^2{\frac{A}{2}}-1\)
\(\therefore \cos{A}=2\cos^2{\frac{A}{2}}-1\)
\(\cos{A}=2\cos^2{\frac{A}{2}}-1\)
আবার,
\(\cos{2A}=1-2\sin^2{A} ........(3)\)
\((3)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=1-2\sin^2{\frac{A}{2}}\)
\(\therefore \cos{A}=1-2\sin^2{\frac{A}{2}}\)
\(\cos{\left(2\times\frac{A}{2}\right)}=1-2\sin^2{\frac{A}{2}}\)
আবার,
\(1+\cos{2A}=2\cos^2{A} ........(4)\)
\((4)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1+\cos{\left(2\times\frac{A}{2}\right)}=2\cos^2{\frac{A}{2}}\)
\(\therefore 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
আবার,
\(1-\cos{2A}=2\sin^2{A} ........(5)\)
\((5)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1-\cos{\left(2\times\frac{A}{2}\right)}=2\sin^2{\frac{A}{2}}\)
\(\therefore 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(\cos{2A}=\cos^2{A}-\sin^2{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(\therefore \cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
আবার,
\(\cos{2A}=2\cos^2{A}-1 ........(2)\)
\((2)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=2\cos^2{\frac{A}{2}}-1\)
\(\therefore \cos{A}=2\cos^2{\frac{A}{2}}-1\)
\(\cos{A}=2\cos^2{\frac{A}{2}}-1\)
আবার,
\(\cos{2A}=1-2\sin^2{A} ........(3)\)
\((3)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=1-2\sin^2{\frac{A}{2}}\)
\(\therefore \cos{A}=1-2\sin^2{\frac{A}{2}}\)
\(\cos{\left(2\times\frac{A}{2}\right)}=1-2\sin^2{\frac{A}{2}}\)
আবার,
\(1+\cos{2A}=2\cos^2{A} ........(4)\)
\((4)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1+\cos{\left(2\times\frac{A}{2}\right)}=2\cos^2{\frac{A}{2}}\)
\(\therefore 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
আবার,
\(1-\cos{2A}=2\sin^2{A} ........(5)\)
\((5)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(1-\cos{\left(2\times\frac{A}{2}\right)}=2\sin^2{\frac{A}{2}}\)
\(\therefore 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(\cos{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\) \(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)প্রমাণঃ
আমরা জানি,
\(\cos{2A}=\frac{1-\tan^2{A}}{1+\tan^2{A}} .......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\therefore \cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
আবার,
\(1-\cos{A}=2\sin^2{\frac{A}{2}} ........(2)\)
\(1+\cos{A}=2\cos^2{\frac{A}{2}} ........(3)\)
\((2)\) কে \((3)\) দ্বারা ভাগ করে,
\(\frac{1-\cos{A}}{1+\cos{A}}=\frac{2\sin^2{\frac{A}{2}}}{2\cos^2{\frac{A}{2}}} \)
\(\Rightarrow \frac{1-\cos{A}}{1+\cos{A}}=\frac{\sin^2{\frac{A}{2}}}{\cos^2{\frac{A}{2}}} \)
\(\therefore \frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)
\(\cos{2A}=\frac{1-\tan^2{A}}{1+\tan^2{A}} .......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cos{\left(2\times\frac{A}{2}\right)}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\therefore \cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
আবার,
\(1-\cos{A}=2\sin^2{\frac{A}{2}} ........(2)\)
\(1+\cos{A}=2\cos^2{\frac{A}{2}} ........(3)\)
\((2)\) কে \((3)\) দ্বারা ভাগ করে,
\(\frac{1-\cos{A}}{1+\cos{A}}=\frac{2\sin^2{\frac{A}{2}}}{2\cos^2{\frac{A}{2}}} \)
\(\Rightarrow \frac{1-\cos{A}}{1+\cos{A}}=\frac{\sin^2{\frac{A}{2}}}{\cos^2{\frac{A}{2}}} \)
\(\therefore \frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
\(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)
\(\tan{A}\) কে \(\tan{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\) প্রমাণঃ
আমরা জানি,
\(\tan{2A}=\frac{2\tan{A}}{1-\tan^2{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\tan{\left(2\times\frac{A}{2}\right)}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\therefore \tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\tan{2A}=\frac{2\tan{A}}{1-\tan^2{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\tan{\left(2\times\frac{A}{2}\right)}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\therefore \tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\cot{A}\) কে \(\cot{\frac{A}{2}}\) এর মাধ্যমে প্রকাশ
\(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\) প্রমাণঃ
আমরা জানি,
\(\cot{2A}=\frac{\cot^2{A}-1}{2\cot{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cot{\left(2\times\frac{A}{2}\right)}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\therefore \cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\cot{2A}=\frac{\cot^2{A}-1}{2\cot{A}} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cot{\left(2\times\frac{A}{2}\right)}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\therefore \cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\)
\(\sin{A}\) কে \(\sin{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\) প্রমাণঃ
আমরা জানি,
\(\sin{3A}=3\sin{A}-4\sin^3{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\sin{\left(3\times\frac{A}{3}\right)}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\therefore \sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\sin{3A}=3\sin{A}-4\sin^3{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\sin{\left(3\times\frac{A}{3}\right)}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\therefore \sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)
\(\cos{A}\) কে \(\cos{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\) প্রমাণঃ
আমরা জানি,
\(\cos{3A}=4\cos^3{A}-3\cos{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\cos{\left(3\times\frac{A}{3}\right)}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\therefore \cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\cos{3A}=4\cos^3{A}-3\cos{A} ........(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\cos{\left(3\times\frac{A}{3}\right)}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\therefore \cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\)
\(\tan{A}\) কে \(\tan{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\) প্রমাণঃ
আমরা জানি,
\(\tan{3A}=\frac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\tan{\left(3\times\frac{A}{3}\right)}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\therefore \tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\tan{3A}=\frac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\tan{\left(3\times\frac{A}{3}\right)}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\therefore \tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)
\(\cot{A}\) কে \(\cot{\frac{A}{3}}\) এর মাধ্যমে প্রকাশ
\(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\) প্রমাণঃ
আমরা জানি,
\(\cot{3A}=\frac{\cot^3{A}-3\cot{A}}{3\cot^2{A}-1} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\cot{\left(3\times\frac{A}{3}\right)}=\frac{\cot^3{\frac{A}{3}}-3\cot{A}}{3\cot^2{\frac{A}{3}}-1}\)
\(\therefore \cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{A}}{3\cot^2{\frac{A}{3}}-1}\)
\(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\)
\(\cot{3A}=\frac{\cot^3{A}-3\cot{A}}{3\cot^2{A}-1} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{3}\) বসিয়ে,
\(\cot{\left(3\times\frac{A}{3}\right)}=\frac{\cot^3{\frac{A}{3}}-3\cot{A}}{3\cot^2{\frac{A}{3}}-1}\)
\(\therefore \cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{A}}{3\cot^2{\frac{A}{3}}-1}\)
\(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\)
বিশেষ সূত্র
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\) প্রমাণঃ
আমরা জানি,
\(\cot{A}-\tan{A}=2\cot{2A} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{\left(2\times\frac{A}{2}\right)}\)
\(\therefore \cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)
\(\cot{A}-\tan{A}=2\cot{2A} ......(1)\)
\((1)\) নং সমীকরণে,
\(A\) এর স্থানে \(\frac{A}{2}\) বসিয়ে,
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{\left(2\times\frac{A}{2}\right)}\)
\(\therefore \cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)
\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)
\(15^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\) \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\) \(\tan{15^{o}}=2-\sqrt{3}\)\(cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\) \(\sec{15^{o}}=\sqrt{6}-\sqrt{2}\) \(\cot{15^{o}}=2+\sqrt{3}\)
প্রমাণঃ
আমরা জানি,
\(\sin{15^{o}}=\sin{(45^{o}-30^{o})}\)
\(\Rightarrow \sin{15^{o}}=\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \sin{15^{o}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(\Rightarrow \sin{15^{o}}=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(\therefore \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
আবার,
\(\cos{15^{o}}=\sqrt{1-\sin^2{15^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(15^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\sqrt{1-\frac{(\sqrt{3}-1)^2}{(2\sqrt{2})^2}}\)
\(=\sqrt{1-\frac{3+1-2\sqrt{3}}{8}}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\sqrt{1-\frac{4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{8-4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{3+1+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{(\sqrt{3}+1)^2}{8}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\therefore \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
আবার,
\(\tan{15^{o}}=\frac{\sin{15^{o}}}{\cos{15^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{\sqrt{3}-1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
এবং \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
\(\tan{15^{o}}=\tan{(45^{o}-30^{o})}\)
\(=\frac{\tan{45^{o}}-\tan{30^{o}}}{1+\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
\(\tan{15^{o}}=2-\sqrt{3}\)
আবার,
\(cosec \ {15^{o}}=\frac{1}{\sin{15^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{2}\)
\(=\sqrt{2}(\sqrt{3}+1)\)
\(=\sqrt{6}+\sqrt{2}\)
\(\therefore cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\)
\(cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\)
আবার,
\(\sec{15^{o}}=\frac{1}{\cos{15^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{2}\)
\(=\sqrt{2}(\sqrt{3}-1)\)
\(=\sqrt{6}-\sqrt{2}\)
\(\therefore \sec{15^{o}}=\sqrt{6}-\sqrt{2}\)
\(\sec{15^{o}}=\sqrt{6}-\sqrt{2}\)
আমরা জানি,
\(\cot{15^{o}}=\cot{(45^{o}-30^{o})}\)
\(=\frac{\cot{45^{o}}\cot{30^{o}}+1}{\cot{30^{o}}-\cot{45^{o}}}\) ➜ \(\because \cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(=\frac{1\times\sqrt{3}+1}{\sqrt{3}-1}\) ➜ \(\because \cot{45^{o}}=1\)
এবং \(\cot{30^{o}}=\sqrt{3}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \cot{15^{o}}=2+\sqrt{3}\)
\(\cot{15^{o}}=2+\sqrt{3}\)
\(\sin{15^{o}}=\sin{(45^{o}-30^{o})}\)
\(\Rightarrow \sin{15^{o}}=\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \sin{15^{o}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(\Rightarrow \sin{15^{o}}=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(\therefore \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
আবার,
\(\cos{15^{o}}=\sqrt{1-\sin^2{15^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(15^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\sqrt{1-\frac{(\sqrt{3}-1)^2}{(2\sqrt{2})^2}}\)
\(=\sqrt{1-\frac{3+1-2\sqrt{3}}{8}}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\sqrt{1-\frac{4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{8-4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{3+1+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{(\sqrt{3}+1)^2}{8}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\therefore \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
আবার,
\(\tan{15^{o}}=\frac{\sin{15^{o}}}{\cos{15^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{\sqrt{3}-1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
এবং \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
বিকল্প পদ্ধতিঃ
আমরা জানি, \(\tan{15^{o}}=\tan{(45^{o}-30^{o})}\)
\(=\frac{\tan{45^{o}}-\tan{30^{o}}}{1+\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
\(\tan{15^{o}}=2-\sqrt{3}\)
আবার,
\(cosec \ {15^{o}}=\frac{1}{\sin{15^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{2}\)
\(=\sqrt{2}(\sqrt{3}+1)\)
\(=\sqrt{6}+\sqrt{2}\)
\(\therefore cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\)
\(cosec \ {15^{o}}=\sqrt{6}+\sqrt{2}\)
আবার,
\(\sec{15^{o}}=\frac{1}{\cos{15^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{2}\)
\(=\sqrt{2}(\sqrt{3}-1)\)
\(=\sqrt{6}-\sqrt{2}\)
\(\therefore \sec{15^{o}}=\sqrt{6}-\sqrt{2}\)
\(\sec{15^{o}}=\sqrt{6}-\sqrt{2}\)
আমরা জানি,
\(\cot{15^{o}}=\cot{(45^{o}-30^{o})}\)
\(=\frac{\cot{45^{o}}\cot{30^{o}}+1}{\cot{30^{o}}-\cot{45^{o}}}\) ➜ \(\because \cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(=\frac{1\times\sqrt{3}+1}{\sqrt{3}-1}\) ➜ \(\because \cot{45^{o}}=1\)
এবং \(\cot{30^{o}}=\sqrt{3}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \cot{15^{o}}=2+\sqrt{3}\)
\(\cot{15^{o}}=2+\sqrt{3}\)
\(18^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\) \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\) \(\tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)\(cosec \ {18^{o}}=\sqrt{5}+1\) \(\sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\) \(\cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)
প্রমাণঃ
ধরি,
\(\theta=18^{o}\)
\(\Rightarrow 5\theta=5\times18^{o}\)
\(\Rightarrow 5\theta=90^{o}\)
\(\Rightarrow 2\theta+3\theta=90^{o}\)
\(\Rightarrow 2\theta=90^{o}-3\theta\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}\times1-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\cos{3\theta}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(\Rightarrow 2\sin{\theta}\cos{\theta}=4\cos^3{\theta}-3\cos{\theta}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(\cos{3A}=4\cos^3{A}-3\cos{A}\)
\(\Rightarrow 2\sin{\theta}\cos{\theta}=\cos{\theta}(4\cos^2{\theta}-3)\)
\(\Rightarrow 2\sin{\theta}=4\cos^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=4(1-\sin^2{\theta})-3\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 2\sin{\theta}=4-4\sin^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=1-4\sin^2{\theta}\)
\(\Rightarrow 4\sin^2{\theta}+2\sin{\theta}-1=0\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{2^2-4\times4\times(-1)}}}{2\times4}\) ➜ \(\because ax^2+bx+c=0\)
\(\Rightarrow x=\frac{-b\pm{\sqrt{b^2-4ac}}}{2a}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4+16}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{20}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4\times5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{2\sqrt{5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{2(-1\pm{\sqrt{5}})}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-1\pm{\sqrt{5}}}{4}\)
\(\Rightarrow \sin{18^{o}}=\frac{-1+\sqrt{5}}{4}\) ➜ \(\because 18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
তাই \(\sin{18^{o}}\) এর মান ধনাত্মক হবে।
\(\therefore \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
আবার,
\(\cos{18^{o}}=\sqrt{1-\sin^2{18^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}(\sqrt{5}-1)\right\}^2}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\sqrt{1-\frac{1}{16}(\sqrt{5}-1)^2}\)
\(=\sqrt{\frac{1}{16}\{16-(\sqrt{5}-1)^2\}}\)
\(=\frac{1}{4}\sqrt{16-(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{4}\sqrt{16-(6-2\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{16-6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\therefore \cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
আবার,
\(\tan{18^{o}}=\frac{\sin{18^{o}}}{\cos{18^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{1}{4}(\sqrt{5}-1)}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
এবং \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{(\sqrt{5}-1)\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{5}-1)\sqrt{2\sqrt{5}(\sqrt{5}-1)}}{\sqrt{100-20}}\) ➜ \(\because \sqrt{10-2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}-1)}\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}-1)^2}}{\sqrt{80}}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1-2\sqrt{5})}}{4\sqrt{5}}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \(\sqrt{80}=4\sqrt{5}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-1)(3-\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}-3-5+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}-8)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-2)}}{2\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(\sqrt{5}-2)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{(5-2\sqrt{5})}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{25-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\therefore \tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
আবার,
\(cosec \ {18^{o}}=\frac{1}{\sin{18^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\frac{4}{\sqrt{5}-1}\)
\(=\frac{4(\sqrt{5}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।
\(=\frac{4(\sqrt{5}+1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4(\sqrt{5}+1)}{4}\)
\(=\sqrt{5}+1\)
\(\therefore cosec \ {18^{o}}=\sqrt{5}+1\)
\(cosec \ {18^{o}}=\sqrt{5}+1\)
আবার,
\(\sec{18^{o}}=\frac{1}{\cos{18^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{4}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{4\sqrt{5}}\)➜ \(\because \sqrt{80}=4\sqrt{5}\)
\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(10-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\therefore \sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
আবার,
\(\cot{18^{o}}=\frac{1}{\tan{18^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(=\frac{1}{\frac{1}{5}\sqrt{25-10\sqrt{5}}}\) ➜ \(\because \tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(=\frac{5}{\sqrt{25-10\sqrt{5}}}\)
\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{25+10\sqrt{5}}\times\sqrt{25-10\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{25+10\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{625-500}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{125}}\)
\(=\frac{5\sqrt{25+10\sqrt{5}}}{5\sqrt{5}}\)➜ \(\because \sqrt{125}=5\sqrt{5}\)
\(=\frac{\sqrt{25+10\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}}\)
\(\therefore \cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)
\(\cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)
\(\theta=18^{o}\)
\(\Rightarrow 5\theta=5\times18^{o}\)
\(\Rightarrow 5\theta=90^{o}\)
\(\Rightarrow 2\theta+3\theta=90^{o}\)
\(\Rightarrow 2\theta=90^{o}-3\theta\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}\times1-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\cos{3\theta}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(\Rightarrow 2\sin{\theta}\cos{\theta}=4\cos^3{\theta}-3\cos{\theta}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(\cos{3A}=4\cos^3{A}-3\cos{A}\)
\(\Rightarrow 2\sin{\theta}\cos{\theta}=\cos{\theta}(4\cos^2{\theta}-3)\)
\(\Rightarrow 2\sin{\theta}=4\cos^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=4(1-\sin^2{\theta})-3\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 2\sin{\theta}=4-4\sin^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=1-4\sin^2{\theta}\)
\(\Rightarrow 4\sin^2{\theta}+2\sin{\theta}-1=0\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{2^2-4\times4\times(-1)}}}{2\times4}\) ➜ \(\because ax^2+bx+c=0\)
\(\Rightarrow x=\frac{-b\pm{\sqrt{b^2-4ac}}}{2a}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4+16}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{20}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4\times5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{2\sqrt{5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{2(-1\pm{\sqrt{5}})}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-1\pm{\sqrt{5}}}{4}\)
\(\Rightarrow \sin{18^{o}}=\frac{-1+\sqrt{5}}{4}\) ➜ \(\because 18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
তাই \(\sin{18^{o}}\) এর মান ধনাত্মক হবে।
\(\therefore \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
আবার,
\(\cos{18^{o}}=\sqrt{1-\sin^2{18^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}(\sqrt{5}-1)\right\}^2}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\sqrt{1-\frac{1}{16}(\sqrt{5}-1)^2}\)
\(=\sqrt{\frac{1}{16}\{16-(\sqrt{5}-1)^2\}}\)
\(=\frac{1}{4}\sqrt{16-(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{4}\sqrt{16-(6-2\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{16-6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\therefore \cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
আবার,
\(\tan{18^{o}}=\frac{\sin{18^{o}}}{\cos{18^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{1}{4}(\sqrt{5}-1)}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
এবং \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{(\sqrt{5}-1)\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{5}-1)\sqrt{2\sqrt{5}(\sqrt{5}-1)}}{\sqrt{100-20}}\) ➜ \(\because \sqrt{10-2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}-1)}\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}-1)^2}}{\sqrt{80}}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1-2\sqrt{5})}}{4\sqrt{5}}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \(\sqrt{80}=4\sqrt{5}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-1)(3-\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}-3-5+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}-8)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-2)}}{2\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(\sqrt{5}-2)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{(5-2\sqrt{5})}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{25-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\therefore \tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
আবার,
\(cosec \ {18^{o}}=\frac{1}{\sin{18^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\frac{4}{\sqrt{5}-1}\)
\(=\frac{4(\sqrt{5}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।
\(=\frac{4(\sqrt{5}+1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4(\sqrt{5}+1)}{4}\)
\(=\sqrt{5}+1\)
\(\therefore cosec \ {18^{o}}=\sqrt{5}+1\)
\(cosec \ {18^{o}}=\sqrt{5}+1\)
আবার,
\(\sec{18^{o}}=\frac{1}{\cos{18^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{4}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{4\sqrt{5}}\)➜ \(\because \sqrt{80}=4\sqrt{5}\)
\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(10-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\therefore \sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\sec{18^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
আবার,
\(\cot{18^{o}}=\frac{1}{\tan{18^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(=\frac{1}{\frac{1}{5}\sqrt{25-10\sqrt{5}}}\) ➜ \(\because \tan{18^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(=\frac{5}{\sqrt{25-10\sqrt{5}}}\)
\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{25+10\sqrt{5}}\times\sqrt{25-10\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{25+10\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{625-500}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{5\sqrt{25+10\sqrt{5}}}{\sqrt{125}}\)
\(=\frac{5\sqrt{25+10\sqrt{5}}}{5\sqrt{5}}\)➜ \(\because \sqrt{125}=5\sqrt{5}\)
\(=\frac{\sqrt{25+10\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}}\)
\(\therefore \cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)
\(\cot{18^{o}}=\sqrt{5+2\sqrt{5}}\)
\(36^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\) \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\) \(\tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)\(cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\) \(\sec{36^{o}}=\sqrt{5}-1\) \(\cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
প্রমাণঃ
লেখা যায়,
\(\sin{36^{o}}=\sin{(2\times18^{o})}\)
\(=2\sin{18^{o}}\cos{18^{o}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2\times\frac{1}{4}(\sqrt{5}-1)\times\frac{1}{4}\sqrt{10+2\sqrt{5}}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}-1)^2}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(6-2\sqrt{5})}\)
\(=\frac{1}{8}\sqrt{4\sqrt{5}(\sqrt{5}+1)(3-\sqrt{5})}\)
\(=\frac{2}{8}\sqrt{\sqrt{5}(3\sqrt{5}+3-5-\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{\sqrt{5}(2\sqrt{5}-2)}\)
\(=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\therefore \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
আবার,
\(\cos{36^{o}}=\sqrt{1-\sin^2{36^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(36^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}\sqrt{10-2\sqrt{5}}\right\}^2}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\sqrt{1-\frac{1}{16}(10-2\sqrt{5})}\)
\(=\sqrt{\frac{1}{16}\{16-(10-2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-10+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{5+1+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{(\sqrt{5}+1)^2}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
\(\therefore \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
আবার,
\(\tan{36^{o}}=\frac{\sin{36^{o}}}{\cos{36^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{1}{4}\sqrt{10-2\sqrt{5}}}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
এবং \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}\)
\(=\frac{(\sqrt{5}-1)\sqrt{10-2\sqrt{5}}}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}-1)^2}}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10-2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}-1)}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1-2\sqrt{5})}}{4}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(6-2\sqrt{5})}}{4}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-1)(3-\sqrt{5})}}{4}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}-3-5+\sqrt{5})}}{4}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}-8)}}{2}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-2)}}{2}\)
\(=\frac{2\sqrt{5-2\sqrt{5}}}{2}\)
\(=\sqrt{5-2\sqrt{5}}\)
\(\therefore \tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
\(\tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
আবার,
\(cosec \ {36^{o}}=\frac{1}{\sin{36^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\frac{4}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(10+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\therefore cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
আবার,
\(\sec{36^{o}}=\frac{1}{\cos{36^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\frac{4}{\sqrt{5}+1}\)
\(=\frac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।
\(=\frac{4(\sqrt{5}-1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4(\sqrt{5}-1)}{4}\)
\(=\sqrt{5}-1\)
\(\therefore \sec{36^{o}}=\sqrt{5}-1\)
\(\sec{36^{o}}=\sqrt{5}-1\)
আবার,
\(\cot{36^{o}}=\frac{1}{\tan{36^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(=\frac{1}{\sqrt{5-2\sqrt{5}}}\) ➜ \(\because \tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5+2\sqrt{5}}\times\sqrt{5-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{5+2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{25-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(5+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\therefore \cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\sin{36^{o}}=\sin{(2\times18^{o})}\)
\(=2\sin{18^{o}}\cos{18^{o}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2\times\frac{1}{4}(\sqrt{5}-1)\times\frac{1}{4}\sqrt{10+2\sqrt{5}}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}-1)^2}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(6-2\sqrt{5})}\)
\(=\frac{1}{8}\sqrt{4\sqrt{5}(\sqrt{5}+1)(3-\sqrt{5})}\)
\(=\frac{2}{8}\sqrt{\sqrt{5}(3\sqrt{5}+3-5-\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{\sqrt{5}(2\sqrt{5}-2)}\)
\(=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\therefore \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
আবার,
\(\cos{36^{o}}=\sqrt{1-\sin^2{36^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(36^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}\sqrt{10-2\sqrt{5}}\right\}^2}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\sqrt{1-\frac{1}{16}(10-2\sqrt{5})}\)
\(=\sqrt{\frac{1}{16}\{16-(10-2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-10+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{5+1+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{(\sqrt{5}+1)^2}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
\(\therefore \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
আবার,
\(\tan{36^{o}}=\frac{\sin{36^{o}}}{\cos{36^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{1}{4}\sqrt{10-2\sqrt{5}}}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
এবং \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}\)
\(=\frac{(\sqrt{5}-1)\sqrt{10-2\sqrt{5}}}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}-1)^2}}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10-2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}-1)}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1-2\sqrt{5})}}{4}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}-1)(6-2\sqrt{5})}}{4}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-1)(3-\sqrt{5})}}{4}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}-3-5+\sqrt{5})}}{4}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}-8)}}{2}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}-2)}}{2}\)
\(=\frac{2\sqrt{5-2\sqrt{5}}}{2}\)
\(=\sqrt{5-2\sqrt{5}}\)
\(\therefore \tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
\(\tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
আবার,
\(cosec \ {36^{o}}=\frac{1}{\sin{36^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\frac{4}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(10+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\therefore cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(cosec \ {36^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
আবার,
\(\sec{36^{o}}=\frac{1}{\cos{36^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\frac{4}{\sqrt{5}+1}\)
\(=\frac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।
\(=\frac{4(\sqrt{5}-1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4(\sqrt{5}-1)}{4}\)
\(=\sqrt{5}-1\)
\(\therefore \sec{36^{o}}=\sqrt{5}-1\)
\(\sec{36^{o}}=\sqrt{5}-1\)
আবার,
\(\cot{36^{o}}=\frac{1}{\tan{36^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(=\frac{1}{\sqrt{5-2\sqrt{5}}}\) ➜ \(\because \tan{36^{o}}=\sqrt{5-2\sqrt{5}}\)
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5+2\sqrt{5}}\times\sqrt{5-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{5+2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{25-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(5+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\therefore \cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\cot{36^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(54^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\) \(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\) \(\tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)\(cosec \ {54^{o}}=\sqrt{5}-1\) \(\sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\) \(\cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)
প্রমাণঃ
লেখা যায়,
\(\sin{54^{o}}=\sin{(3\times18^{o})}\)
\(=3\sin{18^{o}}-4\sin^3{18^{o}}\) ➜ \(\because \sin{3A}=3\sin{A}-4\sin^3{A}\)
\(=3\times\frac{1}{4}(\sqrt{5}-1)-4\times\left\{\frac{1}{4}(\sqrt{5}-1)\right\}^3\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\frac{3}{4}(\sqrt{5}-1)-4\times\frac{1}{64}(\sqrt{5}-1)^3\)
\(=\frac{3}{4}(\sqrt{5}-1)-\frac{1}{16}(\sqrt{5}-1)^3\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(\sqrt{5}-1)^2\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(5+1-2\sqrt{5})\right\}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(6-2\sqrt{5})\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-6+2\sqrt{5}\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{6+2\sqrt{5}\right\}\)
\(=\frac{2}{16}(\sqrt{5}-1)(3+\sqrt{5})\)
\(=\frac{1}{8}(3\sqrt{5}-3+5-\sqrt{5})\)
\(=\frac{1}{8}(2\sqrt{5}+2)\)
\(=\frac{2}{8}(\sqrt{5}+1)\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
\(\therefore \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
আবার,
\(\cos{54^{o}}=\sqrt{1-\sin^2{54^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(54^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}(\sqrt{5}+1)\right\}^2}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\sqrt{1-\frac{1}{16}(\sqrt{5}+1)^2}\)
\(=\sqrt{\frac{1}{16}\{16-(\sqrt{5}+1)^2\}}\)
\(=\frac{1}{4}\sqrt{\{16-(5+1+2\sqrt{5})\}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\frac{1}{4}\sqrt{\{16-(6+2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-6-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\therefore \cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
আবার,
\(\tan{54^{o}}=\frac{\sin{54^{o}}}{\cos{54^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{1}{4}(\sqrt{5}+1)}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
এবং \(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{(\sqrt{5}+1)\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{5}+1)\sqrt{2\sqrt{5}(\sqrt{5}+1)}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10+2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}+1)^2}}{\sqrt{80}}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1+2\sqrt{5})}}{4\sqrt{5}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(6+2\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+1)(3+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}+3+5+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}+8)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+2)}}{2\sqrt{5}}\)
\(=\frac{2\sqrt{5+2\sqrt{5}}}{2\sqrt{5}}\)
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(5+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\therefore \tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
আবার,
\(cosec \ {54^{o}}=\frac{1}{\sin{54^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\frac{4}{\sqrt{5}+1}\)
\(=\frac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।
\(=\frac{4(\sqrt{5}-1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4(\sqrt{5}-1)}{4}\)
\(=\sqrt{5}-1\)
\(\therefore cosec \ {54^{o}}=\sqrt{5}-1\)
\(cosec \ {54^{o}}=\sqrt{5}-1\)
আবার,
\(\sec{54^{o}}=\frac{1}{\cos{54^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\frac{4}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(10+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\therefore \sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
আবার,
\(\cot{54^{o}}=\frac{1}{\tan{54^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(=\frac{1}{\frac{1}{5}\sqrt{25+10\sqrt{5}}}\) ➜ \(\because \tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(=\frac{5}{\sqrt{25+10\sqrt{5}}}\)
\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{25+10\sqrt{5}}\times\sqrt{25-10\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{25-10\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{625-500}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{125}}\)
\(=\frac{5\sqrt{25-10\sqrt{5}}}{5\sqrt{5}}\)
\(=\frac{\sqrt{25-10\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5(5-2\sqrt{5})}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5-2\sqrt{5}}}{\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}}\)
\(\therefore \cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)
\(\cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)
\(\sin{54^{o}}=\sin{(3\times18^{o})}\)
\(=3\sin{18^{o}}-4\sin^3{18^{o}}\) ➜ \(\because \sin{3A}=3\sin{A}-4\sin^3{A}\)
\(=3\times\frac{1}{4}(\sqrt{5}-1)-4\times\left\{\frac{1}{4}(\sqrt{5}-1)\right\}^3\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\frac{3}{4}(\sqrt{5}-1)-4\times\frac{1}{64}(\sqrt{5}-1)^3\)
\(=\frac{3}{4}(\sqrt{5}-1)-\frac{1}{16}(\sqrt{5}-1)^3\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(\sqrt{5}-1)^2\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(5+1-2\sqrt{5})\right\}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-(6-2\sqrt{5})\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{12-6+2\sqrt{5}\right\}\)
\(=\frac{1}{16}(\sqrt{5}-1)\left\{6+2\sqrt{5}\right\}\)
\(=\frac{2}{16}(\sqrt{5}-1)(3+\sqrt{5})\)
\(=\frac{1}{8}(3\sqrt{5}-3+5-\sqrt{5})\)
\(=\frac{1}{8}(2\sqrt{5}+2)\)
\(=\frac{2}{8}(\sqrt{5}+1)\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
\(\therefore \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
আবার,
\(\cos{54^{o}}=\sqrt{1-\sin^2{54^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(54^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}(\sqrt{5}+1)\right\}^2}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\sqrt{1-\frac{1}{16}(\sqrt{5}+1)^2}\)
\(=\sqrt{\frac{1}{16}\{16-(\sqrt{5}+1)^2\}}\)
\(=\frac{1}{4}\sqrt{\{16-(5+1+2\sqrt{5})\}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\frac{1}{4}\sqrt{\{16-(6+2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-6-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\therefore \cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
আবার,
\(\tan{54^{o}}=\frac{\sin{54^{o}}}{\cos{54^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{1}{4}(\sqrt{5}+1)}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
এবং \(\cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{(\sqrt{5}+1)\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{5}+1)\sqrt{2\sqrt{5}(\sqrt{5}+1)}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10+2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}+1)^2}}{\sqrt{80}}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1+2\sqrt{5})}}{4\sqrt{5}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(6+2\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+1)(3+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}+3+5+\sqrt{5})}}{4\sqrt{5}}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}+8)}}{2\sqrt{5}}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+2)}}{2\sqrt{5}}\)
\(=\frac{2\sqrt{5+2\sqrt{5}}}{2\sqrt{5}}\)
\(=\frac{\sqrt{5+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(5+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\therefore \tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(\tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
আবার,
\(cosec \ {54^{o}}=\frac{1}{\sin{54^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{1}{4}(\sqrt{5}+1)}\) ➜ \(\because \sin{54^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\frac{4}{\sqrt{5}+1}\)
\(=\frac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}-1)\) দ্বারা গুণ করে।
\(=\frac{4(\sqrt{5}-1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4(\sqrt{5}-1)}{4}\)
\(=\sqrt{5}-1\)
\(\therefore cosec \ {54^{o}}=\sqrt{5}-1\)
\(cosec \ {54^{o}}=\sqrt{5}-1\)
আবার,
\(\sec{54^{o}}=\frac{1}{\cos{54^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{1}{4}\sqrt{10-2\sqrt{5}}}\) ➜ \(\because \cos{54^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\frac{4}{\sqrt{10-2\sqrt{5}}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10+2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10+2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10+2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(10+2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50+10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\therefore \sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
\(\sec{54^{o}}=\frac{1}{5}\sqrt{50+10\sqrt{5}}\)
আবার,
\(\cot{54^{o}}=\frac{1}{\tan{54^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(=\frac{1}{\frac{1}{5}\sqrt{25+10\sqrt{5}}}\) ➜ \(\because \tan{54^{o}}=\frac{1}{5}\sqrt{25+10\sqrt{5}}\)
\(=\frac{5}{\sqrt{25+10\sqrt{5}}}\)
\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{25+10\sqrt{5}}\times\sqrt{25-10\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{25-10\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{625-500}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{5\sqrt{25-10\sqrt{5}}}{\sqrt{125}}\)
\(=\frac{5\sqrt{25-10\sqrt{5}}}{5\sqrt{5}}\)
\(=\frac{\sqrt{25-10\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5(5-2\sqrt{5})}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5-2\sqrt{5}}}{\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}}\)
\(\therefore \cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)
\(\cot{54^{o}}=\sqrt{5-2\sqrt{5}}\)
\(72^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\) \(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\) \(\tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)\(cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\) \(\sec{72^{o}}=\sqrt{5}+1\) \(\cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
প্রমাণঃ
লেখা যায়,
\(\sin{72^{o}}=\sin{(2\times36^{o})}\)
\(=2\sin{36^{o}}\cos{36^{o}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2\times\frac{1}{4}\sqrt{10-2\sqrt{5}}\times\frac{1}{4}(\sqrt{5}+1)\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\frac{1}{8}\sqrt{10-2\sqrt{5}}(\sqrt{5}+1)\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)}(\sqrt{5}+1)\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}+1)^2}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1+2\sqrt{5})}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(6+2\sqrt{5})}\)
\(=\frac{1}{8}\sqrt{4\sqrt{5}(\sqrt{5}-1)(3+\sqrt{5})}\)
\(=\frac{2}{8}\sqrt{\sqrt{5}(3\sqrt{5}-3+5-\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{\sqrt{5}(2\sqrt{5}+2)}\)
\(=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\therefore \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
আবার,
\(\cos{72^{o}}=\sqrt{1-\sin^2{72^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(72^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}\sqrt{10+2\sqrt{5}}\right\}^2}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\sqrt{1-\frac{1}{16}(10+2\sqrt{5})}\)
\(=\sqrt{\frac{1}{16}\{16-(10+2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-10-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{6-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{5+1-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{(\sqrt{5}-1)^2}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)
\(=\frac{1}{4}(\sqrt{5}-1)\)
\(\therefore \cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
আবার,
\(\tan{72^{o}}=\frac{\sin{72^{o}}}{\cos{72^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{1}{4}\sqrt{10+2\sqrt{5}}}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
এবং \(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}\)
\(=\frac{(\sqrt{5}+1)\sqrt{10+2\sqrt{5}}}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}+1)^2}}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10+2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1+2\sqrt{5})}}{4}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(6+2\sqrt{5})}}{4}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+1)(3+\sqrt{5})}}{4}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}+3+5+\sqrt{5})}}{4}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}+8)}}{2}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+2)}}{2}\)
\(=\frac{2\sqrt{5+2\sqrt{5}}}{2}\)
\(=\sqrt{5+2\sqrt{5}}\)
\(\therefore \tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
\(\tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
আবার,
\(cosec \ {72^{o}}=\frac{1}{\sin{72^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{4}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(10-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\therefore cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
আবার,
\(\sec{72^{o}}=\frac{1}{\cos{72^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\frac{4}{\sqrt{5}-1}\)
\(=\frac{4(\sqrt{5}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।
\(=\frac{4(\sqrt{5}+1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4(\sqrt{5}+1)}{4}\)
\(=\sqrt{5}+1\)
\(\therefore \sec{72^{o}}=\sqrt{5}+1\)
\(\sec{72^{o}}=\sqrt{5}+1\)
আবার,
\(\cot{72^{o}}=\frac{1}{\tan{72^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(=\frac{1}{\sqrt{5+2\sqrt{5}}}\) ➜ \(\because \tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{5+2\sqrt{5}}\times\sqrt{5-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{5-2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{25-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(5-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\therefore \cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\sin{72^{o}}=\sin{(2\times36^{o})}\)
\(=2\sin{36^{o}}\cos{36^{o}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2\times\frac{1}{4}\sqrt{10-2\sqrt{5}}\times\frac{1}{4}(\sqrt{5}+1)\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=\frac{1}{8}\sqrt{10-2\sqrt{5}}(\sqrt{5}+1)\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)}(\sqrt{5}+1)\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(\sqrt{5}+1)^2}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(5+1+2\sqrt{5})}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}-1)(6+2\sqrt{5})}\)
\(=\frac{1}{8}\sqrt{4\sqrt{5}(\sqrt{5}-1)(3+\sqrt{5})}\)
\(=\frac{2}{8}\sqrt{\sqrt{5}(3\sqrt{5}-3+5-\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{\sqrt{5}(2\sqrt{5}+2)}\)
\(=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\therefore \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
আবার,
\(\cos{72^{o}}=\sqrt{1-\sin^2{72^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(72^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}\sqrt{10+2\sqrt{5}}\right\}^2}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\sqrt{1-\frac{1}{16}(10+2\sqrt{5})}\)
\(=\sqrt{\frac{1}{16}\{16-(10+2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-10-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{6-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{5+1-2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{(\sqrt{5}-1)^2}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)
\(=\frac{1}{4}(\sqrt{5}-1)\)
\(\therefore \cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
আবার,
\(\tan{72^{o}}=\frac{\sin{72^{o}}}{\cos{72^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{1}{4}\sqrt{10+2\sqrt{5}}}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
এবং \(\cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}\)
\(=\frac{(\sqrt{5}+1)\sqrt{10+2\sqrt{5}}}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}+1)^2}}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
এবং \(\sqrt{10+2\sqrt{5}}=\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1+2\sqrt{5})}}{4}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\frac{\sqrt{2\sqrt{5}(\sqrt{5}+1)(6+2\sqrt{5})}}{4}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+1)(3+\sqrt{5})}}{4}\)
\(=\frac{2\sqrt{\sqrt{5}(3\sqrt{5}+3+5+\sqrt{5})}}{4}\)
\(=\frac{\sqrt{\sqrt{5}(4\sqrt{5}+8)}}{2}\)
\(=\frac{\sqrt{4\sqrt{5}(\sqrt{5}+2)}}{2}\)
\(=\frac{2\sqrt{5+2\sqrt{5}}}{2}\)
\(=\sqrt{5+2\sqrt{5}}\)
\(\therefore \tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
\(\tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
আবার,
\(cosec \ {72^{o}}=\frac{1}{\sin{72^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{1}{4}\sqrt{10+2\sqrt{5}}}\) ➜ \(\because \sin{72^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{4}{\sqrt{10+2\sqrt{5}}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}\times\sqrt{10-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{10-2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{100-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{\sqrt{80}}\)
\(=\frac{4\sqrt{10-2\sqrt{5}}}{4\sqrt{5}}\)
\(=\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{10-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(10-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{50-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(\therefore cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
\(cosec \ {72^{o}}=\frac{1}{5}\sqrt{50-10\sqrt{5}}\)
আবার,
\(\sec{72^{o}}=\frac{1}{\cos{72^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{1}{4}(\sqrt{5}-1)}\) ➜ \(\because \cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\frac{4}{\sqrt{5}-1}\)
\(=\frac{4(\sqrt{5}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)}\) ➜ লব ও হরকে \((\sqrt{5}+1)\) দ্বারা গুণ করে।
\(=\frac{4(\sqrt{5}+1)}{5-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{4(\sqrt{5}+1)}{4}\)
\(=\sqrt{5}+1\)
\(\therefore \sec{72^{o}}=\sqrt{5}+1\)
\(\sec{72^{o}}=\sqrt{5}+1\)
আবার,
\(\cot{72^{o}}=\frac{1}{\tan{72^{o}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(=\frac{1}{\sqrt{5+2\sqrt{5}}}\) ➜ \(\because \tan{72^{o}}=\sqrt{5+2\sqrt{5}}\)
\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{5+2\sqrt{5}}\times\sqrt{5-2\sqrt{5}}}\) ➜ লব ও হরকে \(\sqrt{5-2\sqrt{5}}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{25-20}}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{\sqrt{5-2\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{\sqrt{5}\sqrt{5-2\sqrt{5}}}{\sqrt{5}\times\sqrt{5}}\) ➜ লব ও হরকে \(\sqrt{5}\) দ্বারা গুণ করে।
\(=\frac{\sqrt{5(5-2\sqrt{5})}}{5}\)
\(=\frac{\sqrt{25-10\sqrt{5}}}{5}\)
\(=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\therefore \cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(\cot{72^{o}}=\frac{1}{5}\sqrt{25-10\sqrt{5}}\)
\(75^{o}\) কোণের ত্রিকোণমিতিক অনুপাত
\(\sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\) \(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\) \(\tan{75^{o}}=2+\sqrt{3}\)\(cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\) \(\sec{75^{o}}=\sqrt{6}+\sqrt{2}\) \(\cot{75^{o}}=2-\sqrt{3}\)
প্রমাণঃ
আমরা জানি,
\(\sin{75^{o}}=\sin{(45^{o}+30^{o})}\)
\(\Rightarrow \sin{75^{o}}=\sin{45^{o}}\cos{30^{o}}+\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow \sin{75^{o}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(\Rightarrow \sin{75^{o}}=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(\therefore \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
আবার,
\(\cos{75^{o}}=\sqrt{1-\sin^2{75^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(75^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left(\frac{\sqrt{3}+1}{2\sqrt{2}}\right)^2}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\sqrt{1-\frac{(\sqrt{3}+1)^2}{(2\sqrt{2})^2}}\)
\(=\sqrt{1-\frac{3+1+2\sqrt{3}}{8}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\sqrt{1-\frac{4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{8-4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{3+1-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{(\sqrt{3}-1)^2}{8}}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)
\(=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\therefore \cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
আবার,
\(\tan{75^{o}}=\frac{\sin{75^{o}}}{\cos{75^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
এবং \(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \tan{75^{o}}=2+\sqrt{3}\)
\(\tan{75^{o}}=\tan{(45^{o}+30^{o})}\)
\(=\frac{\tan{45^{o}}+\tan{30^{o}}}{1-\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{1+\frac{1}{\sqrt{3}}}{1-1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \tan{75^{o}}=2+\sqrt{3}\)
\(\tan{75^{o}}=2+\sqrt{3}\)
আবার,
\(cosec \ {75^{o}}=\frac{1}{\sin{75^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{2}\)
\(=\sqrt{2}(\sqrt{3}-1)\)
\(=\sqrt{6}-\sqrt{2}\)
\(\therefore cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\)
\(cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\)
আবার,
\(\sec{75^{o}}=\frac{1}{\cos{75^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{2}\)
\(=\sqrt{2}(\sqrt{3}+1)\)
\(=\sqrt{6}+\sqrt{2}\)
\(\therefore \sec{75^{o}}=\sqrt{6}+\sqrt{2}\)
\(\sec{75^{o}}=\sqrt{6}+\sqrt{2}\)
আমরা জানি,
\(\cot{75^{o}}=\cot{(45^{o}+30^{o})}\)
\(=\frac{\cot{45^{o}}\cot{30^{o}}-1}{\cot{30^{o}}+\cot{45^{o}}}\) ➜ \(\because \cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(=\frac{1\times\sqrt{3}-1}{\sqrt{3}+1}\) ➜ \(\because \cot{45^{o}}=1\)
এবং \(\cot{30^{o}}=\sqrt{3}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\)
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \cot{75^{o}}=2-\sqrt{3}\)
\(\cot{75^{o}}=2-\sqrt{3}\)
\(\sin{75^{o}}=\sin{(45^{o}+30^{o})}\)
\(\Rightarrow \sin{75^{o}}=\sin{45^{o}}\cos{30^{o}}+\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow \sin{75^{o}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(\Rightarrow \sin{75^{o}}=\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}\)
\(\therefore \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
আবার,
\(\cos{75^{o}}=\sqrt{1-\sin^2{75^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(75^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left(\frac{\sqrt{3}+1}{2\sqrt{2}}\right)^2}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\sqrt{1-\frac{(\sqrt{3}+1)^2}{(2\sqrt{2})^2}}\)
\(=\sqrt{1-\frac{3+1+2\sqrt{3}}{8}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\sqrt{1-\frac{4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{8-4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{3+1-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{(\sqrt{3}-1)^2}{8}}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)
\(=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\therefore \cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
আবার,
\(\tan{75^{o}}=\frac{\sin{75^{o}}}{\cos{75^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
এবং \(\cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \tan{75^{o}}=2+\sqrt{3}\)
বিকল্প পদ্ধতিঃ
আমরা জানি, \(\tan{75^{o}}=\tan{(45^{o}+30^{o})}\)
\(=\frac{\tan{45^{o}}+\tan{30^{o}}}{1-\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(=\frac{1+\frac{1}{\sqrt{3}}}{1-1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}+1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{3+1+2\sqrt{3}}{3-1}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4+2\sqrt{3}}{2}\)
\(=\frac{2(2+\sqrt{3})}{2}\)
\(=2+\sqrt{3}\)
\(\therefore \tan{75^{o}}=2+\sqrt{3}\)
\(\tan{75^{o}}=2+\sqrt{3}\)
আবার,
\(cosec \ {75^{o}}=\frac{1}{\sin{75^{o}}}\) ➜ \(\because cosec \ {A}=\frac{1}{\sin{A}}\)
\(=\frac{1}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{2}(\sqrt{3}-1)}{2}\)
\(=\sqrt{2}(\sqrt{3}-1)\)
\(=\sqrt{6}-\sqrt{2}\)
\(\therefore cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\)
\(cosec \ {75^{o}}=\sqrt{6}-\sqrt{2}\)
আবার,
\(\sec{75^{o}}=\frac{1}{\cos{75^{o}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{1}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে।
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{2}(\sqrt{3}+1)}{2}\)
\(=\sqrt{2}(\sqrt{3}+1)\)
\(=\sqrt{6}+\sqrt{2}\)
\(\therefore \sec{75^{o}}=\sqrt{6}+\sqrt{2}\)
\(\sec{75^{o}}=\sqrt{6}+\sqrt{2}\)
আমরা জানি,
\(\cot{75^{o}}=\cot{(45^{o}+30^{o})}\)
\(=\frac{\cot{45^{o}}\cot{30^{o}}-1}{\cot{30^{o}}+\cot{45^{o}}}\) ➜ \(\because \cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(=\frac{1\times\sqrt{3}-1}{\sqrt{3}+1}\) ➜ \(\because \cot{45^{o}}=1\)
এবং \(\cot{30^{o}}=\sqrt{3}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\)
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \cot{75^{o}}=2-\sqrt{3}\)
\(\cot{75^{o}}=2-\sqrt{3}\)
অধ্যায় \(7E\)-এর উদাহরণসমুহ
উদাহরণ \(1.\) প্রমাণ কর যে, \(\sin{\left(7\frac{1}{2}\right)^{o}}=\frac{1}{2}\sqrt{2-\sqrt{2+\sqrt{3}}}\)
উদাহরণ \(2.\) প্রমাণ কর যে, \(\sin{\left(67\frac{1}{2}\right)^{o}}=\frac{1}{2}\sqrt{2+\sqrt{2}}\)
উদাহরণ \(3.\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{24}\right)}=\sqrt{2-\sqrt{2+\sqrt{3}}}\)
উদাহরণ \(4.\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{32}\right)}=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\)
উদাহরণ \(5.\) প্রমাণ কর যে, \(2\sin{\frac{\pi}{16}}=2\sin{11^{o}15^{\prime}}=\sqrt{2-\sqrt{2+\sqrt{2}}}\)
উদাহরণ \(6.\) যদি \(\tan{\frac{\theta}{2}}=\sqrt{\frac{1-e}{1+e}}\tan{\frac{\phi}{2}}\) হয় তবে দেখাও যে, \(\cos{\phi}=\frac{\cos{\theta}-e}{1-e\cos{\theta}}\)
উদাহরণ \(7.\) \(\sin{\left(22\frac{1}{2}\right)^{o}}\) এবং \(\cos{\left(22\frac{1}{2}\right)^{o}}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{1}{2}\sqrt{2-\sqrt{2}}, \ \frac{1}{2}\sqrt{2+\sqrt{2}}\)
উদাহরণ \(2.\) প্রমাণ কর যে, \(\sin{\left(67\frac{1}{2}\right)^{o}}=\frac{1}{2}\sqrt{2+\sqrt{2}}\)
উদাহরণ \(3.\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{24}\right)}=\sqrt{2-\sqrt{2+\sqrt{3}}}\)
উদাহরণ \(4.\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{32}\right)}=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\)
উদাহরণ \(5.\) প্রমাণ কর যে, \(2\sin{\frac{\pi}{16}}=2\sin{11^{o}15^{\prime}}=\sqrt{2-\sqrt{2+\sqrt{2}}}\)
ঢাঃ ২০০৮;চঃ২০১৬,২০১৪; যঃ২০১৬,২০১৪,২০১০; দিঃ২০১২,২০১০; বঃ২০১৪,২০১০; রাঃ২০১৪,২০১২,২০০৫; কুঃ২০০৩; সিঃ ২০১৪; মাঃ ২০১১; বুটেক্সঃ২০০৭-৮; বুয়েটঃ২০১৩-২০১৪; চুয়েটঃ ২০০৫-২০০৬।
উদাহরণ \(6.\) যদি \(\tan{\frac{\theta}{2}}=\sqrt{\frac{1-e}{1+e}}\tan{\frac{\phi}{2}}\) হয় তবে দেখাও যে, \(\cos{\phi}=\frac{\cos{\theta}-e}{1-e\cos{\theta}}\)
ঢাঃ ২০১৪,২০০৬; রাঃ২০১৫,২০০৯; দিঃ২০১৬;কুঃ ২০১৫; চঃ ২০০৮; সিঃ২০১৫,২০১২,২০০৮; বঃ২০১৫; মাঃ ২০১৩; বুয়েটঃ২০০১-২০০২।
উদাহরণ \(7.\) \(\sin{\left(22\frac{1}{2}\right)^{o}}\) এবং \(\cos{\left(22\frac{1}{2}\right)^{o}}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{1}{2}\sqrt{2-\sqrt{2}}, \ \frac{1}{2}\sqrt{2+\sqrt{2}}\)
উদাহরণ \(8.\) দেখাও যে,
\((a)\) \(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\((b)\) \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\((c)\) \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\((d)\) \(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
উদাহরণ \(9.\) যদি \(\tan{\frac{\theta}{2}}=\tan^3{\frac{\phi}{2}}\) এবং \(\tan{\phi}=2tan{\alpha}\) হয় তবে দেখাও যে, \(\theta+\phi=2\alpha\)
উদাহরণ \(10.\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে দেখাও যে, \(\sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
উদাহরণ \(11.\) দেখাও যে,
\((a)\) \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\((b)\) \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\((c)\) \(\tan{15^{o}}=2-\sqrt{3}\)
উদাহরণ \(12.\) প্রমাণ কর যে, \(\sec{x}=\frac{2}{\sqrt{2+\sqrt{2+2\cos{4x}}}}\)
\((a)\) \(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\((b)\) \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\((c)\) \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\((d)\) \(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
উদাহরণ \(9.\) যদি \(\tan{\frac{\theta}{2}}=\tan^3{\frac{\phi}{2}}\) এবং \(\tan{\phi}=2tan{\alpha}\) হয় তবে দেখাও যে, \(\theta+\phi=2\alpha\)
উদাহরণ \(10.\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে দেখাও যে, \(\sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
বঃ, দিঃ২০১৭;কুঃ ২০১৯ ।
উদাহরণ \(11.\) দেখাও যে,
\((a)\) \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\((b)\) \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\((c)\) \(\tan{15^{o}}=2-\sqrt{3}\)
উদাহরণ \(12.\) প্রমাণ কর যে, \(\sec{x}=\frac{2}{\sqrt{2+\sqrt{2+2\cos{4x}}}}\)
ঢাঃ২০১৪; দিঃ২০০৯; যঃ২০০৫।
উদাহরণ \(1.\) প্রমাণ কর যে, \(\sin{\left(7\frac{1}{2}\right)^{o}}=\frac{1}{2}\sqrt{2-\sqrt{2+\sqrt{3}}}\)
সমাধানঃ
\(L.S=\sin{\left(7\frac{1}{2}\right)^{o}}\)
\(=\sin{\left(\frac{15}{2}\right)^{o}}\)
\(=\frac{1}{2}\sqrt{4\sin^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\times2\sin^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\left\{1-\cos{2\left(\frac{15}{2}\right)^{o}}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\frac{1}{2}\sqrt{2(1-\cos{15^{o}})}\)
\(=\frac{1}{2}\sqrt{2-2\cos{15^{o}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{4\cos^2{15^{o}}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2\times2\cos^2{15^{o}}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2\{1+\cos{(2\times15^{o})}\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2\{1+\cos{30^{o}}\}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2\left(1+\frac{\sqrt{3}}{2}\right)}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\left(\frac{15}{2}\right)^{o}}\)
\(=\frac{1}{2}\sqrt{4\sin^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\times2\sin^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\left\{1-\cos{2\left(\frac{15}{2}\right)^{o}}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\frac{1}{2}\sqrt{2(1-\cos{15^{o}})}\)
\(=\frac{1}{2}\sqrt{2-2\cos{15^{o}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{4\cos^2{15^{o}}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2\times2\cos^2{15^{o}}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2\{1+\cos{(2\times15^{o})}\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2\{1+\cos{30^{o}}\}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2\left(1+\frac{\sqrt{3}}{2}\right)}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(2.\) প্রমাণ কর যে, \(\sin{\left(67\frac{1}{2}\right)^{o}}=\frac{1}{2}\sqrt{2+\sqrt{2}}\)
সমাধানঃ
\(L.S=\sin{\left(67\frac{1}{2}\right)^{o}}\)
\(=\sin{\left(\frac{135}{2}\right)^{o}}\)
\(=\frac{1}{2}\sqrt{4\sin^2{\left(\frac{135}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\times2\sin^2{\left(\frac{135}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\left\{1-\cos{2\left(\frac{135}{2}\right)^{o}}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\frac{1}{2}\sqrt{2(1-\cos{135^{o}})}\)
\(=\frac{1}{2}\sqrt{2-2\cos{(90^{o}\times2-45^{o})}}\) ➜ \(\because 135^{o}=90^{o}\times2-45^{o}\)
\(=\frac{1}{2}\sqrt{2+2\cos{45^{o}}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=\frac{1}{2}\sqrt{2+2\frac{1}{\sqrt{2}}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{2}\sqrt{2+\frac{2}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2+\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\left(\frac{135}{2}\right)^{o}}\)
\(=\frac{1}{2}\sqrt{4\sin^2{\left(\frac{135}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\times2\sin^2{\left(\frac{135}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\left\{1-\cos{2\left(\frac{135}{2}\right)^{o}}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\frac{1}{2}\sqrt{2(1-\cos{135^{o}})}\)
\(=\frac{1}{2}\sqrt{2-2\cos{(90^{o}\times2-45^{o})}}\) ➜ \(\because 135^{o}=90^{o}\times2-45^{o}\)
\(=\frac{1}{2}\sqrt{2+2\cos{45^{o}}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=\frac{1}{2}\sqrt{2+2\frac{1}{\sqrt{2}}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{2}\sqrt{2+\frac{2}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2+\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(3.\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{24}\right)}=\sqrt{2-\sqrt{2+\sqrt{3}}}\)
সমাধানঃ
\(L.S=2\sin{\left(\frac{\pi}{24}\right)}\)
\(=\sqrt{4\sin^2{\left(\frac{\pi}{24}\right)}}\)
\(=\sqrt{2\times2\sin^2{\left(\frac{\pi}{24}\right)}}\)
\(=\sqrt{2\left\{1-\cos{2\left(\frac{\pi}{24}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sqrt{2\left\{1-\cos{\left(\frac{\pi}{12}\right)}\right\}}\)
\(=\sqrt{2-2\cos{\left(\frac{\pi}{12}\right)}}\)
\(=\sqrt{2-\sqrt{4\cos^2{\left(\frac{\pi}{12}\right)}}}\)
\(=\sqrt{2-\sqrt{2\times2\cos^2{\left(\frac{\pi}{12}\right)}}}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{12}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{\left(\frac{\pi}{6}\right)}\right\}}}\)
\(=\sqrt{2-\sqrt{2+2\cos{\left(\frac{\pi}{6}\right)}}}\)
\(=\sqrt{2-\sqrt{2+2\times\frac{\sqrt{3}}{2}}}\) ➜ \(\because \cos{\left(\frac{\pi}{6}\right)}=\frac{\sqrt{3}}{2}\)
\(=\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sqrt{4\sin^2{\left(\frac{\pi}{24}\right)}}\)
\(=\sqrt{2\times2\sin^2{\left(\frac{\pi}{24}\right)}}\)
\(=\sqrt{2\left\{1-\cos{2\left(\frac{\pi}{24}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sqrt{2\left\{1-\cos{\left(\frac{\pi}{12}\right)}\right\}}\)
\(=\sqrt{2-2\cos{\left(\frac{\pi}{12}\right)}}\)
\(=\sqrt{2-\sqrt{4\cos^2{\left(\frac{\pi}{12}\right)}}}\)
\(=\sqrt{2-\sqrt{2\times2\cos^2{\left(\frac{\pi}{12}\right)}}}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{12}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{\left(\frac{\pi}{6}\right)}\right\}}}\)
\(=\sqrt{2-\sqrt{2+2\cos{\left(\frac{\pi}{6}\right)}}}\)
\(=\sqrt{2-\sqrt{2+2\times\frac{\sqrt{3}}{2}}}\) ➜ \(\because \cos{\left(\frac{\pi}{6}\right)}=\frac{\sqrt{3}}{2}\)
\(=\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(4.\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{32}\right)}=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\)
সমাধানঃ
\(L.S=2\sin{\left(\frac{\pi}{32}\right)}\)
\(=\sqrt{4\sin^2{\left(\frac{\pi}{32}\right)}}\)
\(=\sqrt{2\times2\sin^2{\left(\frac{\pi}{32}\right)}}\)
\(=\sqrt{2\left\{1-\cos{2\left(\frac{\pi}{32}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sqrt{2\left\{1-\cos{\left(\frac{\pi}{16}\right)}\right\}}\)
\(=\sqrt{2-2\cos{\left(\frac{\pi}{16}\right)}}\)
\(=\sqrt{2-\sqrt{4\cos^2{\left(\frac{\pi}{16}\right)}}}\)
\(=\sqrt{2-\sqrt{2\times2\cos^2{\left(\frac{\pi}{16}\right)}}}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{16}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{\left(\frac{\pi}{8}\right)}\right\}}}\)
\(=\sqrt{2-\sqrt{2+2\cos{\left(\frac{\pi}{8}\right)}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{4\cos^2{\left(\frac{\pi}{8}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2\times2\cos^2{\left(\frac{\pi}{8}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{8}\right)}\right\}}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+2\cos{\left(\frac{\pi}{4}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+2\times\frac{1}{\sqrt{2}}}}}\) ➜ \(\because \cos{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\frac{2}{\sqrt{2}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sqrt{4\sin^2{\left(\frac{\pi}{32}\right)}}\)
\(=\sqrt{2\times2\sin^2{\left(\frac{\pi}{32}\right)}}\)
\(=\sqrt{2\left\{1-\cos{2\left(\frac{\pi}{32}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sqrt{2\left\{1-\cos{\left(\frac{\pi}{16}\right)}\right\}}\)
\(=\sqrt{2-2\cos{\left(\frac{\pi}{16}\right)}}\)
\(=\sqrt{2-\sqrt{4\cos^2{\left(\frac{\pi}{16}\right)}}}\)
\(=\sqrt{2-\sqrt{2\times2\cos^2{\left(\frac{\pi}{16}\right)}}}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{16}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{\left(\frac{\pi}{8}\right)}\right\}}}\)
\(=\sqrt{2-\sqrt{2+2\cos{\left(\frac{\pi}{8}\right)}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{4\cos^2{\left(\frac{\pi}{8}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2\times2\cos^2{\left(\frac{\pi}{8}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{8}\right)}\right\}}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+2\cos{\left(\frac{\pi}{4}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+2\times\frac{1}{\sqrt{2}}}}}\) ➜ \(\because \cos{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\frac{2}{\sqrt{2}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(5.\) প্রমাণ কর যে, \(2\sin{\frac{\pi}{16}}=2\sin{11^{o}15^{\prime}}=\sqrt{2-\sqrt{2+\sqrt{2}}}\)
ঢাঃ ২০০৮;চঃ২০১৬,২০১৪; যঃ২০১৬,২০১৪,২০১০; দিঃ২০১২,২০১০; বঃ২০১৪,২০১০; রাঃ২০১৪,২০১২,২০০৫; কুঃ২০০৩; সিঃ ২০১৪; মাঃ ২০১১; বুটেক্সঃ২০০৭-৮; বুয়েটঃ২০১৩-২০১৪; চুয়েটঃ ২০০৫-২০০৬।
সমাধানঃ
\(L.S=2\sin{\frac{\pi}{16}}\)
\(=2\sin{\frac{180^{o}}{16}}\) ➜ \(\because \pi=180^{o}\)
\(=2\sin{11^{o}15^{\prime}}\)
\(=M.S\)
\(\therefore L.S=M.S\)
(প্রমাণিত)
আবার,
\(M.S=2\sin{11^{o}15^{\prime}}\)
\(=\sqrt{4\sin^2{\left(11^{o}15^{\prime}\right)}}\)
\(=\sqrt{2\times2\sin^2{\left(11^{o}15^{\prime}\right)}}\)
\(=\sqrt{2\left\{1-\cos{2\left(11^{o}15^{\prime}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sqrt{2\left\{1-\cos{\left(22^{o}30^{\prime}\right)}\right\}}\)
\(=\sqrt{2-2\cos{\left(22^{o}30^{\prime}\right)}}\)
\(=\sqrt{2-\sqrt{4\cos^2{\left(22^{o}30^{\prime}\right)}}}\)
\(=\sqrt{2-\sqrt{2\times2\cos^2{\left(22^{o}30^{\prime}\right)}}}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{2\left(22^{o}30^{\prime}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{\left(45^{o}\right)}\right\}}}\)
\(=\sqrt{2-\sqrt{2+2\cos{\left(45^{o}\right)}}}\)
\(=\sqrt{2-\sqrt{2+2\times\frac{1}{\sqrt{2}}}}\) ➜ \(\because \cos{\left(45^{o}\right)}=\frac{1}{\sqrt{2}}\)
\(=\sqrt{2-\sqrt{2+\frac{2}{\sqrt{2}}}}\)
\(=\sqrt{2-\sqrt{2+\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=R.S\)
\(\therefore M.S=R.S\)
(প্রমাণিত)
\(=2\sin{\frac{180^{o}}{16}}\) ➜ \(\because \pi=180^{o}\)
\(=2\sin{11^{o}15^{\prime}}\)
\(=M.S\)
\(\therefore L.S=M.S\)
(প্রমাণিত)
আবার,
\(M.S=2\sin{11^{o}15^{\prime}}\)
\(=\sqrt{4\sin^2{\left(11^{o}15^{\prime}\right)}}\)
\(=\sqrt{2\times2\sin^2{\left(11^{o}15^{\prime}\right)}}\)
\(=\sqrt{2\left\{1-\cos{2\left(11^{o}15^{\prime}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sqrt{2\left\{1-\cos{\left(22^{o}30^{\prime}\right)}\right\}}\)
\(=\sqrt{2-2\cos{\left(22^{o}30^{\prime}\right)}}\)
\(=\sqrt{2-\sqrt{4\cos^2{\left(22^{o}30^{\prime}\right)}}}\)
\(=\sqrt{2-\sqrt{2\times2\cos^2{\left(22^{o}30^{\prime}\right)}}}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{2\left(22^{o}30^{\prime}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{\left(45^{o}\right)}\right\}}}\)
\(=\sqrt{2-\sqrt{2+2\cos{\left(45^{o}\right)}}}\)
\(=\sqrt{2-\sqrt{2+2\times\frac{1}{\sqrt{2}}}}\) ➜ \(\because \cos{\left(45^{o}\right)}=\frac{1}{\sqrt{2}}\)
\(=\sqrt{2-\sqrt{2+\frac{2}{\sqrt{2}}}}\)
\(=\sqrt{2-\sqrt{2+\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=R.S\)
\(\therefore M.S=R.S\)
(প্রমাণিত)
উদাহরণ \(6.\) যদি \(\tan{\frac{\theta}{2}}=\sqrt{\frac{1-e}{1+e}}\tan{\frac{\phi}{2}}\) হয় তবে দেখাও যে, \(\cos{\phi}=\frac{\cos{\theta}-e}{1-e\cos{\theta}}\)
ঢাঃ ২০১৪,২০০৬; রাঃ২০১৫,২০০৯; দিঃ২০১৬;কুঃ ২০১৫; চঃ ২০০৮; সিঃ২০১৫,২০১২,২০০৮; বঃ২০১৫; মাঃ ২০১৩; বুয়েটঃ২০০১-২০০২।
সমাধানঃ
দেওয়া আছে,
\(\tan{\frac{\theta}{2}}=\sqrt{\frac{1-e}{1+e}}\tan{\frac{\phi}{2}}\)
\(\Rightarrow \tan^2{\frac{\theta}{2}}=\frac{1-e}{1+e}\tan^2{\frac{\phi}{2}}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{1-e}{1+e}\tan^2{\frac{\phi}{2}}=\tan^2{\frac{\theta}{2}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \tan^2{\frac{\phi}{2}}=\frac{1+e}{1-e}\tan^2{\frac{\theta}{2}}\) ➜ আবার পক্ষান্তর করে,
\(\Rightarrow \frac{\sin^2{\frac{\phi}{2}}}{\cos^2{\frac{\phi}{2}}}=\frac{(1+e)\sin^2{\frac{\theta}{2}}}{(1-e)\cos^2{\frac{\theta}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \frac{\cos^2{\frac{\phi}{2}}-\sin^2{\frac{\phi}{2}}}{\cos^2{\frac{\phi}{2}}+\sin^2{\frac{\phi}{2}}}=\frac{(1-e)\cos^2{\frac{\theta}{2}}-(1+e)\sin^2{\frac{\theta}{2}}}{(1-e)\cos^2{\frac{\theta}{2}}+(1+e)\sin^2{\frac{\theta}{2}}}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{\cos^2{\frac{\phi}{2}}-\sin^2{\frac{\phi}{2}}}{\cos^2{\frac{\phi}{2}}+\sin^2{\frac{\phi}{2}}}=\frac{\cos^2{\frac{\theta}{2}}-e\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}-e\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}-e\cos^2{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}+e\sin^2{\frac{\theta}{2}}}\)
\(\Rightarrow \frac{\cos{2\frac{\phi}{2}}}{1}=\frac{\left(\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}\right)-e\left(\cos^2{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}\right)}{\left(\cos^2{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}\right)-e\left(\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}\right)}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\cos^2{A}+\sin^2{A}=1\)
\(\Rightarrow \cos{\phi}=\frac{\cos{2\frac{\theta}{2}}-e.1}{1-e\cos{2\frac{\theta}{2}}}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\cos^2{A}+\sin^2{A}=1\)
\(\therefore \cos{\phi}=\frac{\cos{\theta}-e}{1-e\cos{\theta}}\)
(দেখানো হলো)
\(\tan{\frac{\theta}{2}}=\sqrt{\frac{1-e}{1+e}}\tan{\frac{\phi}{2}}\)
\(\Rightarrow \tan^2{\frac{\theta}{2}}=\frac{1-e}{1+e}\tan^2{\frac{\phi}{2}}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{1-e}{1+e}\tan^2{\frac{\phi}{2}}=\tan^2{\frac{\theta}{2}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \tan^2{\frac{\phi}{2}}=\frac{1+e}{1-e}\tan^2{\frac{\theta}{2}}\) ➜ আবার পক্ষান্তর করে,
\(\Rightarrow \frac{\sin^2{\frac{\phi}{2}}}{\cos^2{\frac{\phi}{2}}}=\frac{(1+e)\sin^2{\frac{\theta}{2}}}{(1-e)\cos^2{\frac{\theta}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \frac{\cos^2{\frac{\phi}{2}}-\sin^2{\frac{\phi}{2}}}{\cos^2{\frac{\phi}{2}}+\sin^2{\frac{\phi}{2}}}=\frac{(1-e)\cos^2{\frac{\theta}{2}}-(1+e)\sin^2{\frac{\theta}{2}}}{(1-e)\cos^2{\frac{\theta}{2}}+(1+e)\sin^2{\frac{\theta}{2}}}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{\cos^2{\frac{\phi}{2}}-\sin^2{\frac{\phi}{2}}}{\cos^2{\frac{\phi}{2}}+\sin^2{\frac{\phi}{2}}}=\frac{\cos^2{\frac{\theta}{2}}-e\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}-e\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}-e\cos^2{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}+e\sin^2{\frac{\theta}{2}}}\)
\(\Rightarrow \frac{\cos{2\frac{\phi}{2}}}{1}=\frac{\left(\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}\right)-e\left(\cos^2{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}\right)}{\left(\cos^2{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}\right)-e\left(\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}\right)}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\cos^2{A}+\sin^2{A}=1\)
\(\Rightarrow \cos{\phi}=\frac{\cos{2\frac{\theta}{2}}-e.1}{1-e\cos{2\frac{\theta}{2}}}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\cos^2{A}+\sin^2{A}=1\)
\(\therefore \cos{\phi}=\frac{\cos{\theta}-e}{1-e\cos{\theta}}\)
(দেখানো হলো)
উদাহরণ \(7.\) \(\sin{\left(22\frac{1}{2}\right)^{o}}\) এবং \(\cos{\left(22\frac{1}{2}\right)^{o}}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{1}{2}\sqrt{2-\sqrt{2}}, \ \frac{1}{2}\sqrt{2+\sqrt{2}}\)
উত্তরঃ \(\frac{1}{2}\sqrt{2-\sqrt{2}}, \ \frac{1}{2}\sqrt{2+\sqrt{2}}\)
সমাধানঃ
প্রদত্ত প্রথম রাশি,
\(\sin{\left(22\frac{1}{2}\right)^{o}}\)
\(=\sin{\left(\frac{45^{o}}{2}\right)}\)
\(=\frac{1}{2}\sqrt{4\sin^2{\left(\frac{45^{o}}{2}\right)}}\)
\(=\frac{1}{2}\sqrt{2\times2\sin^2{\left(\frac{45^{o}}{2}\right)}}\)
\(=\frac{1}{2}\sqrt{2\left\{1-\cos{45^{o}}\right\}}\) ➜ \(\because 2\sin^2{\left(\frac{A}{2}\right)}=1-\cos{A}\)
\(=\frac{1}{2}\sqrt{2\left\{1-\frac{1}{\sqrt{2}}\right\}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{2}\sqrt{2-\frac{2}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2-\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2}}\)
প্রদত্ত দ্বিতীয় রাশি,
\(\cos{\left(22\frac{1}{2}\right)^{o}}\)
\(=\cos{\left(\frac{45^{o}}{2}\right)}\)
\(=\frac{1}{2}\sqrt{4\cos^2{\left(\frac{45^{o}}{2}\right)}}\)
\(=\frac{1}{2}\sqrt{2\times2\cos^2{\left(\frac{45^{o}}{2}\right)}}\)
\(=\frac{1}{2}\sqrt{2\left\{1+\cos{45^{o}}\right\}}\) ➜ \(\because 2\cos^2{\left(\frac{A}{2}\right)}=1+\cos{A}\)
\(=\frac{1}{2}\sqrt{2\left\{1+\frac{1}{\sqrt{2}}\right\}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{2}\sqrt{2+\frac{2}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2+\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2}}\)
\(\sin{\left(22\frac{1}{2}\right)^{o}}\)
\(=\sin{\left(\frac{45^{o}}{2}\right)}\)
\(=\frac{1}{2}\sqrt{4\sin^2{\left(\frac{45^{o}}{2}\right)}}\)
\(=\frac{1}{2}\sqrt{2\times2\sin^2{\left(\frac{45^{o}}{2}\right)}}\)
\(=\frac{1}{2}\sqrt{2\left\{1-\cos{45^{o}}\right\}}\) ➜ \(\because 2\sin^2{\left(\frac{A}{2}\right)}=1-\cos{A}\)
\(=\frac{1}{2}\sqrt{2\left\{1-\frac{1}{\sqrt{2}}\right\}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{2}\sqrt{2-\frac{2}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2-\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2-\sqrt{2}}\)
প্রদত্ত দ্বিতীয় রাশি,
\(\cos{\left(22\frac{1}{2}\right)^{o}}\)
\(=\cos{\left(\frac{45^{o}}{2}\right)}\)
\(=\frac{1}{2}\sqrt{4\cos^2{\left(\frac{45^{o}}{2}\right)}}\)
\(=\frac{1}{2}\sqrt{2\times2\cos^2{\left(\frac{45^{o}}{2}\right)}}\)
\(=\frac{1}{2}\sqrt{2\left\{1+\cos{45^{o}}\right\}}\) ➜ \(\because 2\cos^2{\left(\frac{A}{2}\right)}=1+\cos{A}\)
\(=\frac{1}{2}\sqrt{2\left\{1+\frac{1}{\sqrt{2}}\right\}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=\frac{1}{2}\sqrt{2+\frac{2}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2+\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2}}\)
উদাহরণ \(8.\) দেখাও যে,
\((a)\) \(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\((b)\) \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\((c)\) \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\((d)\) \(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\((a)\) \(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\((b)\) \(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\((c)\) \(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\((d)\) \(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
সমাধানঃ
\((a)\)
ধরি,
\(\theta=18^{o}\)
\(\Rightarrow 5\theta=5\times18^{o}\)
\(\Rightarrow 5\theta=90^{o}\)
\(\Rightarrow 2\theta+3\theta=90^{o}\)
\(\Rightarrow 2\theta=90^{o}-3\theta\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}\times1-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\cos{3\theta}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(\Rightarrow 2\sin{\theta}\cos{\theta}=4\cos^3{\theta}-3\cos{\theta}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
এবং \(\cos{3A}=4\cos^3{A}-3\cos{A}\)
\(\Rightarrow 2\sin{\theta}\cos{\theta}=\cos{\theta}(4\cos^2{\theta}-3)\)
\(\Rightarrow 2\sin{\theta}=4\cos^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=4(1-\sin^2{\theta})-3\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 2\sin{\theta}=4-4\sin^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=1-4\sin^2{\theta}\)
\(\Rightarrow 4\sin^2{\theta}+2\sin{\theta}-1=0\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{2^2-4\times4\times(-1)}}}{2\times4}\) ➜ \(\because ax^2+bx+c=0\)
\(\Rightarrow x=\frac{-b\pm{\sqrt{b^2-4ac}}}{2a}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4+16}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{20}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4\times5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{2\sqrt{5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{2(-1\pm{\sqrt{5}})}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-1\pm{\sqrt{5}}}{4}\)
\(\Rightarrow \sin{18^{o}}=\frac{-1+\sqrt{5}}{4}\) ➜ \(\because 18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
তাই \(\sin{18^{o}}\) এর মান ধনাত্মক হবে।
\(\therefore \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\((b)\)
লেখা যায়,
\(\cos{36^{o}}=\sqrt{1-\sin^2{36^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(36^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}\sqrt{10-2\sqrt{5}}\right\}^2}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\sqrt{1-\frac{1}{16}(10-2\sqrt{5})}\)
\(=\sqrt{\frac{1}{16}\{16-(10-2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-10+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{5+1+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{(\sqrt{5}+1)^2}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
\(\therefore \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\((c)\)
লেখা যায়,
\(\cos{18^{o}}=\sqrt{1-\sin^2{18^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}(\sqrt{5}-1)\right\}^2}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\sqrt{1-\frac{1}{16}(\sqrt{5}-1)^2}\)
\(=\sqrt{\frac{1}{16}\{16-(\sqrt{5}-1)^2\}}\)
\(=\frac{1}{4}\sqrt{16-(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{4}\sqrt{16-(6-2\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{16-6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\therefore \cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\((d)\)
লেখা যায়,
\(\sin{36^{o}}=\sin{(2\times18^{o})}\)
\(=2\sin{18^{o}}\cos{18^{o}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2\times\frac{1}{4}(\sqrt{5}-1)\times\frac{1}{4}\sqrt{10+2\sqrt{5}}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}-1)^2}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(6-2\sqrt{5})}\)
\(=\frac{1}{8}\sqrt{4\sqrt{5}(\sqrt{5}+1)(3-\sqrt{5})}\)
\(=\frac{2}{8}\sqrt{\sqrt{5}(3\sqrt{5}+3-5-\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{\sqrt{5}(2\sqrt{5}-2)}\)
\(=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\therefore \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
ধরি,
\(\theta=18^{o}\)
\(\Rightarrow 5\theta=5\times18^{o}\)
\(\Rightarrow 5\theta=90^{o}\)
\(\Rightarrow 2\theta+3\theta=90^{o}\)
\(\Rightarrow 2\theta=90^{o}-3\theta\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\sin{(90^{o}\times1-3\theta)}\)
\(\Rightarrow \sin{2\theta}=\cos{3\theta}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(\Rightarrow 2\sin{\theta}\cos{\theta}=4\cos^3{\theta}-3\cos{\theta}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
এবং \(\cos{3A}=4\cos^3{A}-3\cos{A}\)
\(\Rightarrow 2\sin{\theta}\cos{\theta}=\cos{\theta}(4\cos^2{\theta}-3)\)
\(\Rightarrow 2\sin{\theta}=4\cos^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=4(1-\sin^2{\theta})-3\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow 2\sin{\theta}=4-4\sin^2{\theta}-3\)
\(\Rightarrow 2\sin{\theta}=1-4\sin^2{\theta}\)
\(\Rightarrow 4\sin^2{\theta}+2\sin{\theta}-1=0\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{2^2-4\times4\times(-1)}}}{2\times4}\) ➜ \(\because ax^2+bx+c=0\)
\(\Rightarrow x=\frac{-b\pm{\sqrt{b^2-4ac}}}{2a}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4+16}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{20}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{\sqrt{4\times5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-2\pm{2\sqrt{5}}}{8}\)
\(\Rightarrow \sin{\theta}=\frac{2(-1\pm{\sqrt{5}})}{8}\)
\(\Rightarrow \sin{\theta}=\frac{-1\pm{\sqrt{5}}}{4}\)
\(\Rightarrow \sin{18^{o}}=\frac{-1+\sqrt{5}}{4}\) ➜ \(\because 18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
তাই \(\sin{18^{o}}\) এর মান ধনাত্মক হবে।
\(\therefore \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\((b)\)
লেখা যায়,
\(\cos{36^{o}}=\sqrt{1-\sin^2{36^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(36^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}\sqrt{10-2\sqrt{5}}\right\}^2}\) ➜ \(\because \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(=\sqrt{1-\frac{1}{16}(10-2\sqrt{5})}\)
\(=\sqrt{\frac{1}{16}\{16-(10-2\sqrt{5})\}}\)
\(=\frac{1}{4}\sqrt{16-10+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{5+1+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{(\sqrt{5}+1)^2}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
\(\therefore \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(\cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\((c)\)
লেখা যায়,
\(\cos{18^{o}}=\sqrt{1-\sin^2{18^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(18^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left\{\frac{1}{4}(\sqrt{5}-1)\right\}^2}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=\sqrt{1-\frac{1}{16}(\sqrt{5}-1)^2}\)
\(=\sqrt{\frac{1}{16}\{16-(\sqrt{5}-1)^2\}}\)
\(=\frac{1}{4}\sqrt{16-(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{4}\sqrt{16-(6-2\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{16-6+2\sqrt{5}}\)
\(=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\therefore \cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\((d)\)
লেখা যায়,
\(\sin{36^{o}}=\sin{(2\times18^{o})}\)
\(=2\sin{18^{o}}\cos{18^{o}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2\times\frac{1}{4}(\sqrt{5}-1)\times\frac{1}{4}\sqrt{10+2\sqrt{5}}\) ➜ \(\because \sin{18^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(\cos{18^{o}}=\frac{1}{4}\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{10+2\sqrt{5}}\)
\(=\frac{1}{8}(\sqrt{5}-1)\sqrt{2\sqrt{5}(\sqrt{5}+1)}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(\sqrt{5}-1)^2}\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(5+1-2\sqrt{5})}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\frac{1}{8}\sqrt{2\sqrt{5}(\sqrt{5}+1)(6-2\sqrt{5})}\)
\(=\frac{1}{8}\sqrt{4\sqrt{5}(\sqrt{5}+1)(3-\sqrt{5})}\)
\(=\frac{2}{8}\sqrt{\sqrt{5}(3\sqrt{5}+3-5-\sqrt{5})}\)
\(=\frac{1}{4}\sqrt{\sqrt{5}(2\sqrt{5}-2)}\)
\(=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\therefore \sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
\(\sin{36^{o}}=\frac{1}{4}\sqrt{10-2\sqrt{5}}\)
উদাহরণ \(9.\) যদি \(\tan{\frac{\theta}{2}}=\tan^3{\frac{\phi}{2}}\) এবং \(\tan{\phi}=2\tan{\alpha}\) হয় তবে দেখাও যে, \(\theta+\phi=2\alpha\)
সমাধানঃ
দেওয়া আছে,
\(\tan{\frac{\theta}{2}}=\tan^3{\frac{\phi}{2}}\) এবং \(\tan{\phi}=2\tan{\alpha}\)
\(\Rightarrow \frac{2\tan{\frac{\phi}{2}}}{1-\tan^2{\frac{\phi}{2}}}=2\tan{\alpha}\) ➜ \(\because \tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\Rightarrow \frac{\tan{\frac{\phi}{2}}}{1-\tan^2{\frac{\phi}{2}}}=\tan{\alpha}\)
\(\Rightarrow \frac{\tan{\frac{\phi}{2}}\left(1+\tan^2{\frac{\phi}{2}}\right)}{\left(1+\tan^2{\frac{\phi}{2}}\right)\left(1-\tan^2{\frac{\phi}{2}}\right)}=\tan{\alpha}\) ➜ লব ও হরকে \(\left(1+\tan^2{\frac{\phi}{2}}\right)\) দ্বারা গুণ করে,
\(\Rightarrow \frac{\tan{\frac{\phi}{2}}+\tan^3{\frac{\phi}{2}}}{1-\tan^4{\frac{\phi}{2}}}=\tan{\alpha}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(\Rightarrow \frac{\tan^3{\frac{\phi}{2}}+\tan{\frac{\phi}{2}}}{1-\tan^3{\frac{\phi}{2}}\times\tan{\frac{\phi}{2}}}=\tan{\alpha}\)
\(\Rightarrow \frac{\tan{\frac{\theta}{2}}+\tan{\frac{\phi}{2}}}{1-\tan{\frac{\theta}{2}}\tan{\frac{\phi}{2}}}=\tan{\alpha}\) ➜ \(\because \tan{\frac{\theta}{2}}=\tan^3{\frac{\phi}{2}}\)
\(\Rightarrow \tan{\left(\frac{\theta}{2}+\frac{\phi}{2}\right)}=\tan{\alpha}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(\Rightarrow \frac{\theta}{2}+\frac{\phi}{2}=\alpha\)
\(\Rightarrow \frac{\theta+\phi}{2}=\alpha\)
\(\therefore \theta+\phi=2\alpha\)
(দেখানো হলো)
\(\tan{\frac{\theta}{2}}=\tan^3{\frac{\phi}{2}}\) এবং \(\tan{\phi}=2\tan{\alpha}\)
\(\Rightarrow \frac{2\tan{\frac{\phi}{2}}}{1-\tan^2{\frac{\phi}{2}}}=2\tan{\alpha}\) ➜ \(\because \tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\)
\(\Rightarrow \frac{\tan{\frac{\phi}{2}}}{1-\tan^2{\frac{\phi}{2}}}=\tan{\alpha}\)
\(\Rightarrow \frac{\tan{\frac{\phi}{2}}\left(1+\tan^2{\frac{\phi}{2}}\right)}{\left(1+\tan^2{\frac{\phi}{2}}\right)\left(1-\tan^2{\frac{\phi}{2}}\right)}=\tan{\alpha}\) ➜ লব ও হরকে \(\left(1+\tan^2{\frac{\phi}{2}}\right)\) দ্বারা গুণ করে,
\(\Rightarrow \frac{\tan{\frac{\phi}{2}}+\tan^3{\frac{\phi}{2}}}{1-\tan^4{\frac{\phi}{2}}}=\tan{\alpha}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(\Rightarrow \frac{\tan^3{\frac{\phi}{2}}+\tan{\frac{\phi}{2}}}{1-\tan^3{\frac{\phi}{2}}\times\tan{\frac{\phi}{2}}}=\tan{\alpha}\)
\(\Rightarrow \frac{\tan{\frac{\theta}{2}}+\tan{\frac{\phi}{2}}}{1-\tan{\frac{\theta}{2}}\tan{\frac{\phi}{2}}}=\tan{\alpha}\) ➜ \(\because \tan{\frac{\theta}{2}}=\tan^3{\frac{\phi}{2}}\)
\(\Rightarrow \tan{\left(\frac{\theta}{2}+\frac{\phi}{2}\right)}=\tan{\alpha}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(\Rightarrow \frac{\theta}{2}+\frac{\phi}{2}=\alpha\)
\(\Rightarrow \frac{\theta+\phi}{2}=\alpha\)
\(\therefore \theta+\phi=2\alpha\)
(দেখানো হলো)
উদাহরণ \(10.\) যদি \(\sin{\alpha}+\sin{\beta}=a\) এবং \(\cos{\alpha}+\cos{\beta}=b\) হয়, তবে দেখাও যে, \(\sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{4-a^2-b^2}\)
বঃ, দিঃ২০১৭;কুঃ ২০১৯ ।
সমাধানঃ
ধরি,
\(\sin{\alpha}+\sin{\beta}=a ........(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\alpha}+\sin{\beta})^2+(\cos{\alpha}+\cos{\beta})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\alpha}+\sin^2{\beta}+2\sin{\alpha}\sin{\beta}+\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}=a^2+b^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\alpha-\beta)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\alpha-\beta)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\alpha-\beta}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\alpha-\beta}{2}\right)}=a^2+b^2\)
\(\Rightarrow \cos^2{\left(\frac{\alpha-\beta}{2}\right)}=\frac{1}{4}(a^2+b^2)\)
\(\Rightarrow 1-\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=\frac{1}{4}(a^2+b^2)\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow -\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=-1+\frac{1}{4}(a^2+b^2)\)
\(\Rightarrow -\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=-\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin^2{\left(\frac{\alpha-\beta}{2}\right)}=\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin{\left(\frac{\alpha-\beta}{2}\right)}=\pm\sqrt{\frac{1}{4}(4-a^2-b^2)}\)
\(\therefore \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{(4-a^2-b^2)}\)
(প্রমাণিত)
\(\sin{\alpha}+\sin{\beta}=a ........(1)\)
এবং \(\cos{\alpha}+\cos{\beta}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\alpha}+\sin{\beta})^2+(\cos{\alpha}+\cos{\beta})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\alpha}+\sin^2{\beta}+2\sin{\alpha}\sin{\beta}+\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}=a^2+b^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\alpha-\beta)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\alpha-\beta)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\alpha-\beta}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\alpha-\beta}{2}\right)}=a^2+b^2\)
\(\Rightarrow \cos^2{\left(\frac{\alpha-\beta}{2}\right)}=\frac{1}{4}(a^2+b^2)\)
\(\Rightarrow 1-\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=\frac{1}{4}(a^2+b^2)\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(\Rightarrow -\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=-1+\frac{1}{4}(a^2+b^2)\)
\(\Rightarrow -\sin^2{\left(\frac{\alpha-\beta}{2}\right)}=-\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin^2{\left(\frac{\alpha-\beta}{2}\right)}=\frac{1}{4}(4-a^2-b^2)\)
\(\Rightarrow \sin{\left(\frac{\alpha-\beta}{2}\right)}=\pm\sqrt{\frac{1}{4}(4-a^2-b^2)}\)
\(\therefore \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{(4-a^2-b^2)}\)
(প্রমাণিত)
উদাহরণ \(11.\) দেখাও যে,
\((a)\) \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\((b)\) \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\((c)\) \(\tan{15^{o}}=2-\sqrt{3}\)
\((a)\) \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\((b)\) \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\((c)\) \(\tan{15^{o}}=2-\sqrt{3}\)
সমাধানঃ
\((a)\)
আমরা জানি,
\(\sin{15^{o}}=\sin{(45^{o}-30^{o})}\)
\(\Rightarrow \sin{15^{o}}=\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \sin{15^{o}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(\Rightarrow \sin{15^{o}}=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(\therefore \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
(দেখানো হলো)
\((b)\)
আবার,
\(\cos{15^{o}}=\sqrt{1-\sin^2{15^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(15^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\sqrt{1-\frac{(\sqrt{3}-1)^2}{(2\sqrt{2})^2}}\)
\(=\sqrt{1-\frac{3+1-2\sqrt{3}}{8}}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\sqrt{1-\frac{4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{8-4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{3+1+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{(\sqrt{3}+1)^2}{8}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\therefore \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
(দেখানো হলো)
\((c)\)
আবার,
\(\tan{15^{o}}=\frac{\sin{15^{o}}}{\cos{15^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{\sqrt{3}-1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
এবং \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
\(\tan{15^{o}}=\tan{(45^{o}-30^{o})}\)
\(=\frac{\tan{45^{o}}-\tan{30^{o}}}{1+\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
\(\tan{15^{o}}=2-\sqrt{3}\)
(দেখানো হলো)
আমরা জানি,
\(\sin{15^{o}}=\sin{(45^{o}-30^{o})}\)
\(\Rightarrow \sin{15^{o}}=\sin{45^{o}}\cos{30^{o}}-\cos{45^{o}}\sin{30^{o}}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \sin{15^{o}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}\) ➜ \(\because \sin{45^{o}}=\cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(\cos{30^{o}}=\frac{\sqrt{3}}{2}\)
এবং \(\sin{30^{o}}=\frac{1}{2}\)
\(\Rightarrow \sin{15^{o}}=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\)
\(\therefore \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
(দেখানো হলো)
\((b)\)
আবার,
\(\cos{15^{o}}=\sqrt{1-\sin^2{15^{o}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
এবং \(15^{o}\) কোণ ধনাত্মক ও সূক্ষ্ণ।
\(=\sqrt{1-\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\sqrt{1-\frac{(\sqrt{3}-1)^2}{(2\sqrt{2})^2}}\)
\(=\sqrt{1-\frac{3+1-2\sqrt{3}}{8}}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=\sqrt{1-\frac{4-2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{8-4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{4+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{3+1+2\sqrt{3}}{8}}\)
\(=\sqrt{\frac{(\sqrt{3}+1)^2}{8}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\therefore \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
(দেখানো হলো)
\((c)\)
আবার,
\(\tan{15^{o}}=\frac{\sin{15^{o}}}{\cos{15^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\frac{\sqrt{3}-1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
এবং \(\cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
বিকল্প পদ্ধতিঃ
আমরা জানি, \(\tan{15^{o}}=\tan{(45^{o}-30^{o})}\)
\(=\frac{\tan{45^{o}}-\tan{30^{o}}}{1+\tan{45^{o}}\tan{30^{o}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+1\times\frac{1}{\sqrt{3}}}\) ➜ \(\because \tan{45^{o}}=1\)
এবং \(\tan{30^{o}}=\frac{1}{\sqrt{3}}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(\sqrt{3}\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুণ করে।
\(=\frac{3+1-2\sqrt{3}}{3-1}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{4-2\sqrt{3}}{2}\)
\(=\frac{2(2-\sqrt{3})}{2}\)
\(=2-\sqrt{3}\)
\(\therefore \tan{15^{o}}=2-\sqrt{3}\)
\(\tan{15^{o}}=2-\sqrt{3}\)
(দেখানো হলো)
উদাহরণ \(12.\) প্রমাণ কর যে, \(\sec{x}=\frac{2}{\sqrt{2+\sqrt{2+2\cos{4x}}}}\)
ঢাঃ২০১৪; দিঃ২০০৯; যঃ২০০৫।
সমাধানঃ
\(L.S=\sec{x}\)
\(=\frac{1}{\cos{x}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{2}{2\cos{x}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2}{\sqrt{4\cos^2{x}}}\)
\(=\frac{2}{\sqrt{2\times2\cos^2{x}}}\)
\(=\frac{2}{\sqrt{2(1+\cos{2x})}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{2}{\sqrt{2+2\cos{2x}}}\)
\(=\frac{2}{\sqrt{2+\sqrt{4\cos^2{2x}}}}\)
\(=\frac{2}{\sqrt{2+\sqrt{2\times2\cos^2{2x}}}}\)
\(=\frac{2}{\sqrt{2+\sqrt{2(1+\cos{4x})}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{2}{\sqrt{2+\sqrt{2+2\cos{4x}}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{\cos{x}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(=\frac{2}{2\cos{x}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে।
\(=\frac{2}{\sqrt{4\cos^2{x}}}\)
\(=\frac{2}{\sqrt{2\times2\cos^2{x}}}\)
\(=\frac{2}{\sqrt{2(1+\cos{2x})}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{2}{\sqrt{2+2\cos{2x}}}\)
\(=\frac{2}{\sqrt{2+\sqrt{4\cos^2{2x}}}}\)
\(=\frac{2}{\sqrt{2+\sqrt{2\times2\cos^2{2x}}}}\)
\(=\frac{2}{\sqrt{2+\sqrt{2(1+\cos{4x})}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{2}{\sqrt{2+\sqrt{2+2\cos{4x}}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7E\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.1.(i)\) \(\frac{1+\sin{x}-\cos{x}}{1+\sin{x}+\cos{x}}=\tan{\frac{x}{2}}\)\(Q.1.(ii)\) \(\frac{1+\sin{\theta}}{1-\sin{\theta}}=\tan^2{\left(\frac{\pi}{4}+\frac{\theta}{2}\right)}\)
\(Q.1.(iii)\) \(\sec{x}+\tan{x}=\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\)
\(Q.1.(iv)\) \(\cot{\theta}=\frac{1}{2}\left(\cot{\frac{\theta}{2}}-\tan{\frac{\theta}{2}}\right)\)
\(Q.1.(v)\) \(\frac{\cos{\frac{\theta}{2}}-\sqrt{1+\sin{\theta}}}{\sin{\frac{\theta}{2}}-\sqrt{1+\sin{\theta}}}=\tan{\frac{\theta}{2}}\)
\(Q.1.(vi)\) \(\frac{2\cos{A}-\cos{2A}-1}{2\cos{A}+\cos{2A}+1}=\tan^2{\frac{A}{2}}\)
প্রমাণ করঃ
\(Q.1.(vii)\) \(\frac{1-\tan{\frac{A}{2}}}{1+\tan{\frac{A}{2}}}=\frac{\cos{A}}{1+\sin{A}}\)\(Q.1.(viii)\) \(\frac{\sec{\alpha}-\tan{\alpha}}{\sec{\alpha}+\tan{\alpha}}=\cot^2{\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)}\)
\(Q.1.(ix)\) \(\tan{\frac{\theta}{2}}+\cot{\frac{\theta}{2}}=2cosec \ {\theta}\)
\(Q.1.(x)\) \(\left(1+\tan{\frac{\alpha}{2}}-\sec{\frac{\alpha}{2}}\right)\left(1+\tan{\frac{\alpha}{2}}+\sec{\frac{\alpha}{2}}\right)=\sin{\alpha}\sec^2{\frac{\alpha}{2}}\)
\(Q.1.(xi)\) \(\frac{2\sin{\theta}-\sin{2\theta}}{2\sin{\theta}+\sin{2\theta}}=\tan^2{\frac{\theta}{2}}\)
প্রমাণ করঃ
\(Q.1.(i)\) \(\frac{1+\sin{x}-\cos{x}}{1+\sin{x}+\cos{x}}=\tan{\frac{x}{2}}\)সমাধানঃ
\(L.S=\frac{1+\sin{x}-\cos{x}}{1+\sin{x}+\cos{x}}\)
\(=\frac{1-\cos{x}+\sin{x}}{1+\cos{x}+\sin{x}}\)
\(=\frac{2\sin^2{\frac{x}{2}}+2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}{2\cos^2{\frac{x}{2}}+2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
এবং \(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(=\frac{2\sin{\frac{x}{2}}(\sin{\frac{x}{2}}+\cos{\frac{x}{2}})}{2\cos{\frac{x}{2}}(\cos{\frac{x}{2}}+\sin{\frac{x}{2}})}\)
\(=\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}\)
\(=\tan{\frac{x}{2}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1-\cos{x}+\sin{x}}{1+\cos{x}+\sin{x}}\)
\(=\frac{2\sin^2{\frac{x}{2}}+2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}{2\cos^2{\frac{x}{2}}+2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
এবং \(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(=\frac{2\sin{\frac{x}{2}}(\sin{\frac{x}{2}}+\cos{\frac{x}{2}})}{2\cos{\frac{x}{2}}(\cos{\frac{x}{2}}+\sin{\frac{x}{2}})}\)
\(=\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}\)
\(=\tan{\frac{x}{2}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(ii)\) \(\frac{1+\sin{\theta}}{1-\sin{\theta}}=\tan^2{\left(\frac{\pi}{4}+\frac{\theta}{2}\right)}\)সমাধানঃ
\(L.S=\frac{1+\sin{\theta}}{1-\sin{\theta}}\)
\(=\frac{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}-2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\) ➜ \(\because \sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}=1\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)^2}{\left(\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}\right)^2}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
এবং \(a^2+b^2-2ab=(a-b)^2\)
\(=\left(\frac{\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}}\right)^2\)
\(=\left(-\frac{\cos{\frac{\theta}{2}}+\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}}\right)^2\)
\(=\left(\frac{\frac{\cos{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}+\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}{\frac{\cos{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}-\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}\right)^2\) ➜ লব ও হরকে \(\cos{\frac{\theta}{2}}\) দ্বারা ভাগ করে।
\(=\left(\frac{1+\tan{\frac{\theta}{2}}}{1-\tan{\frac{\theta}{2}}}\right)^2\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\left(\frac{\tan{\frac{\pi}{4}}+\tan{\frac{\theta}{2}}}{1-\tan{\frac{\pi}{4}}\tan{\frac{\theta}{2}}}\right)^2\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=\left\{\tan{\left(\frac{\pi}{4}+\frac{\theta}{2}\right)}\right\}^2\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=\tan^2{\left(\frac{\pi}{4}+\frac{\theta}{2}\right)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}-2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\) ➜ \(\because \sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}=1\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)^2}{\left(\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}\right)^2}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
এবং \(a^2+b^2-2ab=(a-b)^2\)
\(=\left(\frac{\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}}\right)^2\)
\(=\left(-\frac{\cos{\frac{\theta}{2}}+\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}}\right)^2\)
\(=\left(\frac{\frac{\cos{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}+\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}{\frac{\cos{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}-\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}\right)^2\) ➜ লব ও হরকে \(\cos{\frac{\theta}{2}}\) দ্বারা ভাগ করে।
\(=\left(\frac{1+\tan{\frac{\theta}{2}}}{1-\tan{\frac{\theta}{2}}}\right)^2\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\left(\frac{\tan{\frac{\pi}{4}}+\tan{\frac{\theta}{2}}}{1-\tan{\frac{\pi}{4}}\tan{\frac{\theta}{2}}}\right)^2\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=\left\{\tan{\left(\frac{\pi}{4}+\frac{\theta}{2}\right)}\right\}^2\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=\tan^2{\left(\frac{\pi}{4}+\frac{\theta}{2}\right)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(iii)\) \(\sec{x}+\tan{x}=\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\)সমাধানঃ
\(L.S=\sec{x}+\tan{x}\)
\(=\frac{1}{\cos{x}}+\frac{\sin{x}}{\cos{x}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
এবং \(\tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{1+\sin{x}}{\cos{x}}\)
\(=\frac{\sin^2{\frac{x}{2}}+\cos^2{\frac{x}{2}}+2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}{\cos^2{\frac{x}{2}}-\sin^2{\frac{x}{2}}}\) ➜ \(\because \sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}=1\)
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
এবং \(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(=\frac{\left(\sin{\frac{x}{2}}+\cos{\frac{x}{2}}\right)^2}{\left(\cos{\frac{x}{2}}+\sin{\frac{x}{2}}\right)\left(\cos{\frac{x}{2}}-\sin{\frac{x}{2}}\right)}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
এবং \(a^2-b^2=(a+b)(a-b)\)
\(=\frac{\sin{\frac{x}{2}}+\cos{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}\)
\(=\frac{\cos{\frac{x}{2}}+\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}\)
\(=\frac{\frac{\cos{\frac{x}{2}}}{\cos{\frac{x}{2}}}+\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}}{\frac{\cos{\frac{x}{2}}}{\cos{\frac{x}{2}}}-\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}}\) ➜ লব ও হরকে \(\cos{\frac{x}{2}}\) দ্বারা ভাগ করে।
\(=\frac{1+\tan{\frac{x}{2}}}{1-\tan{\frac{x}{2}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{\frac{\pi}{4}}+\tan{\frac{x}{2}}}{1-\tan{\frac{\pi}{4}}\tan{\frac{x}{2}}}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{\cos{x}}+\frac{\sin{x}}{\cos{x}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
এবং \(\tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{1+\sin{x}}{\cos{x}}\)
\(=\frac{\sin^2{\frac{x}{2}}+\cos^2{\frac{x}{2}}+2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}{\cos^2{\frac{x}{2}}-\sin^2{\frac{x}{2}}}\) ➜ \(\because \sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}=1\)
\(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
এবং \(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
\(=\frac{\left(\sin{\frac{x}{2}}+\cos{\frac{x}{2}}\right)^2}{\left(\cos{\frac{x}{2}}+\sin{\frac{x}{2}}\right)\left(\cos{\frac{x}{2}}-\sin{\frac{x}{2}}\right)}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
এবং \(a^2-b^2=(a+b)(a-b)\)
\(=\frac{\sin{\frac{x}{2}}+\cos{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}\)
\(=\frac{\cos{\frac{x}{2}}+\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}\)
\(=\frac{\frac{\cos{\frac{x}{2}}}{\cos{\frac{x}{2}}}+\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}}{\frac{\cos{\frac{x}{2}}}{\cos{\frac{x}{2}}}-\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}}\) ➜ লব ও হরকে \(\cos{\frac{x}{2}}\) দ্বারা ভাগ করে।
\(=\frac{1+\tan{\frac{x}{2}}}{1-\tan{\frac{x}{2}}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=\frac{\tan{\frac{\pi}{4}}+\tan{\frac{x}{2}}}{1-\tan{\frac{\pi}{4}}\tan{\frac{x}{2}}}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\) ➜ \(\because \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=\tan{(A+B)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(iv)\) \(\cot{\theta}=\frac{1}{2}\left(\cot{\frac{\theta}{2}}-\tan{\frac{\theta}{2}}\right)\)সমাধানঃ
\(L.S=\cot{\theta}\)
\(=\frac{\cos{\theta}}{\sin{\theta}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}}{2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\) ➜ \(\because \cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{1}{2}\frac{\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\)
\(=\frac{1}{2}\left(\frac{\cos^2{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}-\frac{\sin^2{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\right)\)
\(=\frac{1}{2}\left(\frac{\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}}-\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}\right)\)
\(=\frac{1}{2}\left(\cot{\frac{\theta}{2}}-\tan{\frac{\theta}{2}}\right)\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{\theta}}{\sin{\theta}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}}{2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\) ➜ \(\because \cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{1}{2}\frac{\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\)
\(=\frac{1}{2}\left(\frac{\cos^2{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}-\frac{\sin^2{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\right)\)
\(=\frac{1}{2}\left(\frac{\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}}-\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}\right)\)
\(=\frac{1}{2}\left(\cot{\frac{\theta}{2}}-\tan{\frac{\theta}{2}}\right)\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং \(\frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(v)\) \(\frac{\cos{\frac{\theta}{2}}-\sqrt{1+\sin{\theta}}}{\sin{\frac{\theta}{2}}-\sqrt{1+\sin{\theta}}}=\tan{\frac{\theta}{2}}\)সমাধানঃ
\(L.S=\frac{\cos{\frac{\theta}{2}}-\sqrt{1+\sin{\theta}}}{\sin{\frac{\theta}{2}}-\sqrt{1+\sin{\theta}}}\)
\(=\frac{\cos{\frac{\theta}{2}}-\sqrt{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}}{\sin{\frac{\theta}{2}}-\sqrt{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}}\) ➜ \(\because \sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}=1\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{\cos{\frac{\theta}{2}}-\sqrt{\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)^2}}{\sin{\frac{\theta}{2}}-\sqrt{\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)^2}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{\cos{\frac{\theta}{2}}-\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)}{\sin{\frac{\theta}{2}}-\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)}\)
\(=\frac{\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}}\)
\(=\frac{-\sin{\frac{\theta}{2}}}{-\cos{\frac{\theta}{2}}}\)
\(=\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}\)
\(=\tan{\frac{\theta}{2}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\cos{\frac{\theta}{2}}-\sqrt{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}}{\sin{\frac{\theta}{2}}-\sqrt{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}}\) ➜ \(\because \sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}=1\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{\cos{\frac{\theta}{2}}-\sqrt{\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)^2}}{\sin{\frac{\theta}{2}}-\sqrt{\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)^2}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(=\frac{\cos{\frac{\theta}{2}}-\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)}{\sin{\frac{\theta}{2}}-\left(\sin{\frac{\theta}{2}}+\cos{\frac{\theta}{2}}\right)}\)
\(=\frac{\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}-\cos{\frac{\theta}{2}}}\)
\(=\frac{-\sin{\frac{\theta}{2}}}{-\cos{\frac{\theta}{2}}}\)
\(=\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}\)
\(=\tan{\frac{\theta}{2}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(vi)\) \(\frac{2\cos{A}-\cos{2A}-1}{2\cos{A}+\cos{2A}+1}=\tan^2{\frac{A}{2}}\)সমাধানঃ
\(L.S=\frac{2\cos{A}-\cos{2A}-1}{2\cos{A}+\cos{2A}+1}\)
\(=\frac{2\cos{A}-(1+\cos{2A})}{2\cos{A}+(1+\cos{2A})}\)
\(=\frac{2\cos{A}-2\cos^2{A}}{2\cos{A}+2\cos^2{A}}\) ➜ \(\because 1+\cos{2A}=2\cos^2{A}\)
\(=\frac{2\cos{A}(1-\cos{A})}{2\cos{A}(1+\cos{A})}\)
\(=\frac{1-\cos{A}}{1+\cos{A}}\)
\(=\frac{2\sin^2{\frac{A}{2}}}{2\cos^2{\frac{A}{2}}}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
এবং \(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(=\frac{\sin^2{\frac{A}{2}}}{\cos^2{\frac{A}{2}}}\)
\(=\tan^2{\frac{A}{2}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{2\cos{A}-(1+\cos{2A})}{2\cos{A}+(1+\cos{2A})}\)
\(=\frac{2\cos{A}-2\cos^2{A}}{2\cos{A}+2\cos^2{A}}\) ➜ \(\because 1+\cos{2A}=2\cos^2{A}\)
\(=\frac{2\cos{A}(1-\cos{A})}{2\cos{A}(1+\cos{A})}\)
\(=\frac{1-\cos{A}}{1+\cos{A}}\)
\(=\frac{2\sin^2{\frac{A}{2}}}{2\cos^2{\frac{A}{2}}}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
এবং \(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(=\frac{\sin^2{\frac{A}{2}}}{\cos^2{\frac{A}{2}}}\)
\(=\tan^2{\frac{A}{2}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(vii)\) \(\frac{1-\tan{\frac{A}{2}}}{1+\tan{\frac{A}{2}}}=\frac{\cos{A}}{1+\sin{A}}\)সমাধানঃ
\(R.S=\frac{\cos{A}}{1+\sin{A}}\)
\(=\frac{\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}}{1+\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}}\) ➜ \(\because \cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
এবং \(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}+2\tan{\frac{A}{2}}}\) ➜ লব ও হরকে \(\left(1+\tan^2{\frac{A}{2}}\right)\) দ্বারা গুণ করে,
\(=\frac{1-\tan^2{\frac{A}{2}}}{1+2\tan{\frac{A}{2}}+\tan^2{\frac{A}{2}}}\)
\(=\frac{\left(1+\tan{\frac{A}{2}}\right)\left(1-\tan{\frac{A}{2}}\right)}{\left(1+\tan{\frac{A}{2}}\right)^2}\) ➜ \(\because a^2-b^2=(a+b)(a+b)\)
\(a^2+2ab+b^2=(a+b)^2\)
\(=\frac{1-\tan{\frac{A}{2}}}{1+\tan{\frac{A}{2}}}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}}{1+\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}}\) ➜ \(\because \cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
এবং \(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}+2\tan{\frac{A}{2}}}\) ➜ লব ও হরকে \(\left(1+\tan^2{\frac{A}{2}}\right)\) দ্বারা গুণ করে,
\(=\frac{1-\tan^2{\frac{A}{2}}}{1+2\tan{\frac{A}{2}}+\tan^2{\frac{A}{2}}}\)
\(=\frac{\left(1+\tan{\frac{A}{2}}\right)\left(1-\tan{\frac{A}{2}}\right)}{\left(1+\tan{\frac{A}{2}}\right)^2}\) ➜ \(\because a^2-b^2=(a+b)(a+b)\)
\(a^2+2ab+b^2=(a+b)^2\)
\(=\frac{1-\tan{\frac{A}{2}}}{1+\tan{\frac{A}{2}}}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(viii)\) \(\frac{\sec{\alpha}-\tan{\alpha}}{\sec{\alpha}+\tan{\alpha}}=\cot^2{\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)}\)সমাধানঃ
\(L.S=\frac{\sec{\alpha}-\tan{\alpha}}{\sec{\alpha}+\tan{\alpha}}\)
\(=\frac{\frac{1}{\cos{\alpha}}-\frac{\sin{\alpha}}{\cos{\alpha}}}{\frac{1}{\cos{\alpha}}+\frac{\sin{\alpha}}{\cos{\alpha}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
এবং \(\tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{1-\sin{\alpha}}{1+\sin{\alpha}}\) ➜ লব ও হরকে \(\cos{\alpha}\) দ্বারা গুণ করে,
\(=\frac{\sin^2{\frac{\alpha}{2}}+\cos^2{\frac{\alpha}{2}}-2\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}}{\sin^2{\frac{\alpha}{2}}+\cos^2{\frac{\alpha}{2}}+2\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}}\) ➜ \(\because 1=\sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{\left(\sin{\frac{\alpha}{2}}-\cos{\frac{\alpha}{2}}\right)^2}{\left(\sin{\frac{\alpha}{2}}+\cos{\frac{\alpha}{2}}\right)^2}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)
এবং \(a^2+b^2+2ab=(a+b)^2\)
\(=\left(\frac{\sin{\frac{\alpha}{2}}-\cos{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}+\cos{\frac{\alpha}{2}}}\right)^2\)
\(=\left(\frac{\frac{\sin{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}}-\frac{\cos{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}}}{\frac{\sin{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}}+\frac{\cos{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}}}\right)^2\) ➜ লব ও হরকে \(\sin{\frac{\alpha}{2}}\) দ্বারা ভাগ করে,
\(=\left(\frac{1-\cot{\frac{\alpha}{2}}}{1+\cot{\frac{\alpha}{2}}}\right)^2\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(=\left(-\frac{\cot{\frac{\alpha}{2}}-1}{1+\cot{\frac{\alpha}{2}}}\right)^2\)
\(=\left(\frac{\cot{\frac{\alpha}{2}}\cot{\frac{\pi}{4}}-1}{\cot{\frac{\pi}{4}}+\cot{\frac{\alpha}{2}}}\right)^2\) ➜ \(\because \cot{\frac{\pi}{4}}=1\)
\(=\left\{\cot{\left(\frac{\alpha}{2}+\frac{\pi}{4}\right)}\right\}^2\) ➜ \(\because \frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}=\cot{(A+B)}\)
\(=\cot^2{\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\frac{1}{\cos{\alpha}}-\frac{\sin{\alpha}}{\cos{\alpha}}}{\frac{1}{\cos{\alpha}}+\frac{\sin{\alpha}}{\cos{\alpha}}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
এবং \(\tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{1-\sin{\alpha}}{1+\sin{\alpha}}\) ➜ লব ও হরকে \(\cos{\alpha}\) দ্বারা গুণ করে,
\(=\frac{\sin^2{\frac{\alpha}{2}}+\cos^2{\frac{\alpha}{2}}-2\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}}{\sin^2{\frac{\alpha}{2}}+\cos^2{\frac{\alpha}{2}}+2\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}}\) ➜ \(\because 1=\sin^2{\frac{A}{2}}+\cos^2{\frac{A}{2}}\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(=\frac{\left(\sin{\frac{\alpha}{2}}-\cos{\frac{\alpha}{2}}\right)^2}{\left(\sin{\frac{\alpha}{2}}+\cos{\frac{\alpha}{2}}\right)^2}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)
এবং \(a^2+b^2+2ab=(a+b)^2\)
\(=\left(\frac{\sin{\frac{\alpha}{2}}-\cos{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}+\cos{\frac{\alpha}{2}}}\right)^2\)
\(=\left(\frac{\frac{\sin{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}}-\frac{\cos{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}}}{\frac{\sin{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}}+\frac{\cos{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}}}\right)^2\) ➜ লব ও হরকে \(\sin{\frac{\alpha}{2}}\) দ্বারা ভাগ করে,
\(=\left(\frac{1-\cot{\frac{\alpha}{2}}}{1+\cot{\frac{\alpha}{2}}}\right)^2\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(=\left(-\frac{\cot{\frac{\alpha}{2}}-1}{1+\cot{\frac{\alpha}{2}}}\right)^2\)
\(=\left(\frac{\cot{\frac{\alpha}{2}}\cot{\frac{\pi}{4}}-1}{\cot{\frac{\pi}{4}}+\cot{\frac{\alpha}{2}}}\right)^2\) ➜ \(\because \cot{\frac{\pi}{4}}=1\)
\(=\left\{\cot{\left(\frac{\alpha}{2}+\frac{\pi}{4}\right)}\right\}^2\) ➜ \(\because \frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}=\cot{(A+B)}\)
\(=\cot^2{\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(ix)\) \(\tan{\frac{\theta}{2}}+\cot{\frac{\theta}{2}}=2cosec \ {\theta}\)সমাধানঃ
\(L.S=\tan{\frac{\theta}{2}}+\cot{\frac{\theta}{2}}\)
\(=\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}+\frac{\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
এবং \(\cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\)
\(=\frac{1}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(=\frac{2}{2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে,
\(=2\frac{1}{\sin{\theta}}\) ➜ \(\because 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(=2cosec \ {\theta}\) ➜ \(\because \frac{1}{\sin{A}}=cosec \ {A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}+\frac{\cos{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
এবং \(\cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\)
\(=\frac{1}{\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(=\frac{2}{2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}\) ➜ লব ও হরকে \(2\) দ্বারা গুণ করে,
\(=2\frac{1}{\sin{\theta}}\) ➜ \(\because 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(=2cosec \ {\theta}\) ➜ \(\because \frac{1}{\sin{A}}=cosec \ {A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(x)\) \(\left(1+\tan{\frac{\alpha}{2}}-\sec{\frac{\alpha}{2}}\right)\left(1+\tan{\frac{\alpha}{2}}+\sec{\frac{\alpha}{2}}\right)=\sin{\alpha}\sec^2{\frac{\alpha}{2}}\)সমাধানঃ
\(L.S=\left(1+\tan{\frac{\alpha}{2}}-\sec{\frac{\alpha}{2}}\right)\left(1+\tan{\frac{\alpha}{2}}+\sec{\frac{\alpha}{2}}\right)\)
\(=\left(1+\tan{\frac{\alpha}{2}}\right)^2-\sec^2{\frac{\alpha}{2}}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(=1+\tan^2{\frac{\alpha}{2}}+2\tan{\frac{\alpha}{2}}-\sec^2{\frac{\alpha}{2}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\sec^2{\frac{\alpha}{2}}+2\tan{\frac{\alpha}{2}}-\sec^2{\frac{\alpha}{2}}\) ➜ \(\because 1+\tan^2{A}=\sec^2{A}\)
\(=2\tan{\frac{\alpha}{2}}\)
\(=\frac{2\sin{\frac{\alpha}{2}}}{\cos{\frac{\alpha}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{2\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}}{\cos^2{\frac{\alpha}{2}}}\) ➜ লব ও হরকে \(\cos{\frac{\alpha}{2}}\) দ্বারা গুণ করে,
\(=\frac{\sin{\alpha}}{\cos^2{\frac{\alpha}{2}}}\) ➜ \(\because 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(=\sin{\alpha}\frac{1}{\cos^2{\frac{\alpha}{2}}}\)
\(=\sin{\alpha}\sec^2{\frac{\alpha}{2}}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\left(1+\tan{\frac{\alpha}{2}}\right)^2-\sec^2{\frac{\alpha}{2}}\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
\(=1+\tan^2{\frac{\alpha}{2}}+2\tan{\frac{\alpha}{2}}-\sec^2{\frac{\alpha}{2}}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(=\sec^2{\frac{\alpha}{2}}+2\tan{\frac{\alpha}{2}}-\sec^2{\frac{\alpha}{2}}\) ➜ \(\because 1+\tan^2{A}=\sec^2{A}\)
\(=2\tan{\frac{\alpha}{2}}\)
\(=\frac{2\sin{\frac{\alpha}{2}}}{\cos{\frac{\alpha}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{2\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}}{\cos^2{\frac{\alpha}{2}}}\) ➜ লব ও হরকে \(\cos{\frac{\alpha}{2}}\) দ্বারা গুণ করে,
\(=\frac{\sin{\alpha}}{\cos^2{\frac{\alpha}{2}}}\) ➜ \(\because 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(=\sin{\alpha}\frac{1}{\cos^2{\frac{\alpha}{2}}}\)
\(=\sin{\alpha}\sec^2{\frac{\alpha}{2}}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xi)\) \(\frac{2\sin{\theta}-\sin{2\theta}}{2\sin{\theta}+\sin{2\theta}}=\tan^2{\frac{\theta}{2}}\)সমাধানঃ
\(L.S=\frac{2\sin{\theta}-\sin{2\theta}}{2\sin{\theta}+\sin{2\theta}}\)
\(=\frac{2\sin{\theta}-2\sin{\theta}\cos{\theta}}{2\sin{\theta}+2\sin{\theta}\cos{\theta}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=\frac{2\sin{\theta}(1-\cos{\theta})}{2\sin{\theta}(1+\cos{\theta})}\)
\(=\frac{1-\cos{\theta}}{1+\cos{\theta}}\)
\(=\frac{2\sin^2{\frac{\theta}{2}}}{2\cos^2{\frac{\theta}{2}}}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
এবং \(1+\cos{\theta}=2\cos^2{\frac{A}{2}}\)
\(=\frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}\)
\(=\tan^2{\frac{\theta}{2}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{2\sin{\theta}-2\sin{\theta}\cos{\theta}}{2\sin{\theta}+2\sin{\theta}\cos{\theta}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=\frac{2\sin{\theta}(1-\cos{\theta})}{2\sin{\theta}(1+\cos{\theta})}\)
\(=\frac{1-\cos{\theta}}{1+\cos{\theta}}\)
\(=\frac{2\sin^2{\frac{\theta}{2}}}{2\cos^2{\frac{\theta}{2}}}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
এবং \(1+\cos{\theta}=2\cos^2{\frac{A}{2}}\)
\(=\frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}\)
\(=\tan^2{\frac{\theta}{2}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7E\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.2.(i)\) \(\cos^4{\frac{\theta}{2}}+\sin^4{\frac{\theta}{2}}=\frac{1}{4}(3+\cos{2\theta})\)\(Q.2.(ii)\) \(\cos^2{\frac{\theta}{2}}+\cos^2{\left(\frac{\theta}{2}+60^{o}\right)}+\cos^2{\left(\frac{\theta}{2}-60^{o}\right)}=\frac{3}{2}\)
\(Q.2.(iii)\) \(\sin^2{\frac{\theta}{2}}+\sin^2{\left(\frac{\theta}{2}+60^{o}\right)}+\sin^2{\left(\frac{\theta}{2}-60^{o}\right)}=\frac{3}{2}\)
\(Q.2.(iv)\) \(\cos^4{\frac{\pi}{8}}+\cos^4{\frac{3\pi}{8}}+\cos^4{\frac{5\pi}{8}}+\cos^4{\frac{7\pi}{8}}=\frac{3}{2}\)
\(Q.2.(v)\) \(\sin^4{\frac{\pi}{8}}+\sin^4{\frac{3\pi}{8}}+\sin^4{\frac{5\pi}{8}}+\sin^4{\frac{7\pi}{8}}=\frac{3}{2}\)
\(Q.2.(vi)\) \(\sin^2{\frac{A}{2}}+\sin^2{\left(\frac{A}{2}+\frac{\pi}{3}\right)}+\sin^2{\left(\frac{A}{2}-\frac{\pi}{3}\right)}=\frac{3}{2}\)
প্রমাণ করঃ
\(Q.2.(vii)\) \(\sin^2{\left(\frac{\alpha}{2}-36^{o}\right)}+\sin^2{\left(\frac{\alpha}{2}+36^{o}\right)}=\frac{1}{4}\left\{4-(\sqrt{5}-1)\cos{\alpha}\right\}\)\(Q.2.(viii)\) \(\cos^2{\left(\frac{\alpha}{2}-18^{o}\right)}+\cos^2{\left(\frac{\alpha}{2}+18^{o}\right)}=\frac{1}{4}\left\{4+(\sqrt{5}+1)\cos{\alpha}\right\}\)
\(Q.2.(ix)\) \(\cos{2\theta}=8\cos^4{\frac{\theta}{2}}-8\cos^2{\frac{\theta}{2}}+1\)
\(Q.2.(x)\) \(\cos{2\theta}=8\sin^4{\frac{\theta}{2}}-8\sin^2{\frac{\theta}{2}}+1\)
\(Q.2.(xi)\) \(\cos^2{\frac{\theta}{2}}\left(1+\tan{\frac{\theta}{2}}\right)^2=1+\sin{\theta}\)
প্রমাণ করঃ
\(Q.2.(i)\) \(\cos^4{\frac{\theta}{2}}+\sin^4{\frac{\theta}{2}}=\frac{1}{4}(3+\cos{2\theta})\)সমাধানঃ
\(L.S=\cos^4{\frac{\theta}{2}}+\sin^4{\frac{\theta}{2}}\)
\(=\left(\sin^2{\frac{\theta}{2}}\right)^2+\left(\cos^2{\frac{\theta}{2}}\right)^2\)
\(=\left(\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}\right)^2-2\sin^2{\frac{\theta}{2}}\cos^2{\frac{\theta}{2}}\) ➜ \(\because a^2+b^2=(a+b)^2-2ab\)
\(=(1)^2-\frac{1}{2}\left(2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}\right)^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(=1-\frac{1}{2}(\sin{2\times\frac{\theta}{2}})^2\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=1-\frac{1}{2}\sin^2{\theta}\)
\(=1-\frac{1}{2}(1-\cos^2{\theta})\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
\(=1-\frac{1}{2}+\frac{1}{2}\cos^2{\theta}\)
\(=\frac{2-1}{2}+\frac{1}{4}\times2\cos^2{\theta}\)
\(=\frac{1}{2}+\frac{1}{4}(1+\cos{2\theta})\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{4}(2+1+\cos{2\theta})\)
\(=\frac{1}{4}(3+\cos{2\theta})\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\left(\sin^2{\frac{\theta}{2}}\right)^2+\left(\cos^2{\frac{\theta}{2}}\right)^2\)
\(=\left(\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}\right)^2-2\sin^2{\frac{\theta}{2}}\cos^2{\frac{\theta}{2}}\) ➜ \(\because a^2+b^2=(a+b)^2-2ab\)
\(=(1)^2-\frac{1}{2}\left(2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}\right)^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(=1-\frac{1}{2}(\sin{2\times\frac{\theta}{2}})^2\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=1-\frac{1}{2}\sin^2{\theta}\)
\(=1-\frac{1}{2}(1-\cos^2{\theta})\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
\(=1-\frac{1}{2}+\frac{1}{2}\cos^2{\theta}\)
\(=\frac{2-1}{2}+\frac{1}{4}\times2\cos^2{\theta}\)
\(=\frac{1}{2}+\frac{1}{4}(1+\cos{2\theta})\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{4}(2+1+\cos{2\theta})\)
\(=\frac{1}{4}(3+\cos{2\theta})\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(ii)\) \(\cos^2{\frac{\theta}{2}}+\cos^2{\left(\frac{\theta}{2}+60^{o}\right)}+\cos^2{\left(\frac{\theta}{2}-60^{o}\right)}=\frac{3}{2}\)সমাধানঃ
\(L.S=\cos^2{\frac{\theta}{2}}+\cos^2{\left(\frac{\theta}{2}+60^{o}\right)}+\cos^2{\left(\frac{\theta}{2}-60^{o}\right)}\)
\(=\frac{1}{2}\left\{2\cos^2{\frac{\theta}{2}}+2\cos^2{\left(\frac{\theta}{2}+60^{o}\right)}+2\cos^2{\left(\frac{\theta}{2}-60^{o}\right)}\right\}\)
\(=\frac{1}{2}\left\{1+\cos{2\frac{\theta}{2}}+1+\cos{2\left(\frac{\theta}{2}+60^{o}\right)}+1+\cos{2\left(\frac{\theta}{2}-60^{o}\right)}\right\}\) ➜ \(\because 2\cos^2{P}=1+\cos{2P}\)
\(=\frac{1}{2}\{3+\cos{\theta}+\cos{(\theta+120^{o})}+\cos{(\theta-120^{o})}\}\)
\(=\frac{1}{2}\{3+\cos{\theta}+2\cos{\theta}\cos{120^{o}}\}\) ➜ \(\because \cos{(A+B)}+\cos{(A-B)}=2\cos{A}\cos{B}\)
\(=\frac{3}{2}+\frac{1}{2}\cos{\theta}+\cos{\theta}\cos{120^{o}}\)
\(=\frac{3}{2}+\frac{1}{2}\cos{\theta}+\cos{\theta}\times-\frac{1}{2}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{3}{2}+\frac{1}{2}\cos{\theta}-\frac{1}{2}\cos{\theta}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\left\{2\cos^2{\frac{\theta}{2}}+2\cos^2{\left(\frac{\theta}{2}+60^{o}\right)}+2\cos^2{\left(\frac{\theta}{2}-60^{o}\right)}\right\}\)
\(=\frac{1}{2}\left\{1+\cos{2\frac{\theta}{2}}+1+\cos{2\left(\frac{\theta}{2}+60^{o}\right)}+1+\cos{2\left(\frac{\theta}{2}-60^{o}\right)}\right\}\) ➜ \(\because 2\cos^2{P}=1+\cos{2P}\)
\(=\frac{1}{2}\{3+\cos{\theta}+\cos{(\theta+120^{o})}+\cos{(\theta-120^{o})}\}\)
\(=\frac{1}{2}\{3+\cos{\theta}+2\cos{\theta}\cos{120^{o}}\}\) ➜ \(\because \cos{(A+B)}+\cos{(A-B)}=2\cos{A}\cos{B}\)
\(=\frac{3}{2}+\frac{1}{2}\cos{\theta}+\cos{\theta}\cos{120^{o}}\)
\(=\frac{3}{2}+\frac{1}{2}\cos{\theta}+\cos{\theta}\times-\frac{1}{2}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{3}{2}+\frac{1}{2}\cos{\theta}-\frac{1}{2}\cos{\theta}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(iii)\) \(\sin^2{\frac{\theta}{2}}+\sin^2{\left(\frac{\theta}{2}+60^{o}\right)}+\sin^2{\left(\frac{\theta}{2}-60^{o}\right)}=\frac{3}{2}\)সমাধানঃ
\(L.S=\sin^2{\frac{\theta}{2}}+\sin^2{\left(\frac{\theta}{2}+60^{o}\right)}+\sin^2{\left(\frac{\theta}{2}-60^{o}\right)}\)
\(=\frac{1}{2}\left\{2\sin^2{\frac{\theta}{2}}+2\sin^2{\left(\frac{\theta}{2}+60^{o}\right)}+2\sin^2{\left(\frac{\theta}{2}-60^{o}\right)}\right\}\)
\(=\frac{1}{2}\{1-\cos{2\left(\frac{\theta}{2}\right)}+1-\cos{2\left(\frac{\theta}{2}+60^{o}\right)}+1-\cos{2\left(\frac{\theta}{2}-60^{o}\right)}\}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{1}{2}\{3-\cos{\theta}-\cos{(\theta+120^{o})}-\cos{(\theta-120^{o})}\}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{\theta}-\frac{1}{2}\{\cos{(\theta-120^{o})}+\cos{(\theta+120^{o})}\}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{\theta}-\frac{1}{2}\times2\cos{\theta}\cos{120^{o}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{\theta}-\frac{1}{2}\times2\cos{\theta}\times-\frac{1}{2}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{\theta}+\frac{1}{2}\cos{\theta}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\left\{2\sin^2{\frac{\theta}{2}}+2\sin^2{\left(\frac{\theta}{2}+60^{o}\right)}+2\sin^2{\left(\frac{\theta}{2}-60^{o}\right)}\right\}\)
\(=\frac{1}{2}\{1-\cos{2\left(\frac{\theta}{2}\right)}+1-\cos{2\left(\frac{\theta}{2}+60^{o}\right)}+1-\cos{2\left(\frac{\theta}{2}-60^{o}\right)}\}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{1}{2}\{3-\cos{\theta}-\cos{(\theta+120^{o})}-\cos{(\theta-120^{o})}\}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{\theta}-\frac{1}{2}\{\cos{(\theta-120^{o})}+\cos{(\theta+120^{o})}\}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{\theta}-\frac{1}{2}\times2\cos{\theta}\cos{120^{o}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{\theta}-\frac{1}{2}\times2\cos{\theta}\times-\frac{1}{2}\) ➜ \(\because \cos{120^{o}}=-\frac{1}{2}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{\theta}+\frac{1}{2}\cos{\theta}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(iv)\) \(\cos^4{\frac{\pi}{8}}+\cos^4{\frac{3\pi}{8}}+\cos^4{\frac{5\pi}{8}}+\cos^4{\frac{7\pi}{8}}=\frac{3}{2}\)সমাধানঃ
\(L.S=\cos^4{\frac{\pi}{8}}+\cos^4{\frac{3\pi}{8}}+\cos^4{\frac{5\pi}{8}}+\cos^4{\frac{7\pi}{8}}\)
\(=\cos^4{\frac{\pi}{8}}+\cos^4{\left(\frac{\pi}{2}-\frac{\pi}{8}\right)}+\cos^4{\left(\frac{\pi}{2}+\frac{\pi}{8}\right)}+\cos^4{\left(\pi-\frac{\pi}{8}\right)}\)
\(=\cos^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}+(-1)^4\sin^4{\frac{\pi}{8}}+(-1)^4\cos^4{\frac{\pi}{8}}\)
\(=\cos^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}+\cos^4{\frac{\pi}{8}}\)
\(=2\cos^4{\frac{\pi}{8}}+2\sin^4{\frac{\pi}{8}}\)
\(=2\left\{\cos^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}\right\}\)
\(=2\left\{\left(\cos^2{\frac{\pi}{8}}\right)^2+\left(\sin^2{\frac{\pi}{8}}\right)^2\right\}\)
\(=2\left\{\left(\cos^2{\frac{\pi}{8}}+\sin^2{\frac{\pi}{8}}\right)^2-2\cos^2{\frac{\pi}{8}}\sin^2{\frac{\pi}{8}}\right\}\) ➜ \(\because a^2+b^2=(a+b)^2-2ab\)
\(=2\left\{1^2-\frac{1}{2}\left(2\cos{\frac{\pi}{8}}\sin{\frac{\pi}{8}}\right)^2\right\}\) ➜ \(\because \cos^2{A}+\sin^2{A}=1\)
\(=2\left\{1-\frac{1}{2}\sin^2{2\times\frac{\pi}{8}}\right\}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=2-\sin^2{\frac{\pi}{4}}\)
\(=2-\left(\frac{1}{\sqrt{2}}\right)^2\) ➜ \(\because \sin{\frac{\pi}{4}}=\frac{1}{\sqrt{2}}\)
\(=2-\frac{1}{2}\)
\(=\frac{4-1}{2}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^4{\frac{\pi}{8}}+\cos^4{\left(\frac{\pi}{2}-\frac{\pi}{8}\right)}+\cos^4{\left(\frac{\pi}{2}+\frac{\pi}{8}\right)}+\cos^4{\left(\pi-\frac{\pi}{8}\right)}\)
\(=\cos^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}+(-1)^4\sin^4{\frac{\pi}{8}}+(-1)^4\cos^4{\frac{\pi}{8}}\)
\(=\cos^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}+\cos^4{\frac{\pi}{8}}\)
\(=2\cos^4{\frac{\pi}{8}}+2\sin^4{\frac{\pi}{8}}\)
\(=2\left\{\cos^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}\right\}\)
\(=2\left\{\left(\cos^2{\frac{\pi}{8}}\right)^2+\left(\sin^2{\frac{\pi}{8}}\right)^2\right\}\)
\(=2\left\{\left(\cos^2{\frac{\pi}{8}}+\sin^2{\frac{\pi}{8}}\right)^2-2\cos^2{\frac{\pi}{8}}\sin^2{\frac{\pi}{8}}\right\}\) ➜ \(\because a^2+b^2=(a+b)^2-2ab\)
\(=2\left\{1^2-\frac{1}{2}\left(2\cos{\frac{\pi}{8}}\sin{\frac{\pi}{8}}\right)^2\right\}\) ➜ \(\because \cos^2{A}+\sin^2{A}=1\)
\(=2\left\{1-\frac{1}{2}\sin^2{2\times\frac{\pi}{8}}\right\}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=2-\sin^2{\frac{\pi}{4}}\)
\(=2-\left(\frac{1}{\sqrt{2}}\right)^2\) ➜ \(\because \sin{\frac{\pi}{4}}=\frac{1}{\sqrt{2}}\)
\(=2-\frac{1}{2}\)
\(=\frac{4-1}{2}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(v)\) \(\sin^4{\frac{\pi}{8}}+\sin^4{\frac{3\pi}{8}}+\sin^4{\frac{5\pi}{8}}+\sin^4{\frac{7\pi}{8}}=\frac{3}{2}\)সমাধানঃ
\(L.S=\sin^4{\frac{\pi}{8}}+\sin^4{\frac{3\pi}{8}}+\sin^4{\frac{5\pi}{8}}+\sin^4{\frac{7\pi}{8}}\)
\(=\sin^4{\frac{\pi}{8}}+\sin^4{\left(\frac{\pi}{2}-\frac{\pi}{8}\right)}+\sin^4{\left(\frac{\pi}{2}+\frac{\pi}{8}\right)}+\sin^4{\left(\pi-\frac{\pi}{8}\right)}\)
\(=\sin^4{\frac{\pi}{8}}+\cos^4{\frac{\pi}{8}}+\cos^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}\)
\(=2\sin^4{\frac{\pi}{8}}+2\cos^4{\frac{\pi}{8}}\)
\(=2\left\{\sin^4{\frac{\pi}{8}}+\cos^4{\frac{\pi}{8}}\right\}\)
\(=2\left\{\left(\sin^2{\frac{\pi}{8}}\right)^2+\left(\cos^2{\frac{\pi}{8}}\right)^2\right\}\)
\(=2\left\{\left(\sin^2{\frac{\pi}{8}}+\cos^2{\frac{\pi}{8}}\right)^2-2\sin^2{\frac{\pi}{8}}\cos^2{\frac{\pi}{8}}\right\}\) ➜ \(\because a^2+b^2=(a+b)^2-2ab\)
\(=2\left\{1^2-\frac{1}{2}\left(2\sin{\frac{\pi}{8}}\cos{\frac{\pi}{8}}\right)^2\right\}\) ➜ \(\because \cos^2{A}+\sin^2{A}=1\)
\(=2\left\{1-\frac{1}{2}\sin^2{2\times\frac{\pi}{8}}\right\}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=2-\sin^2{\frac{\pi}{4}}\)
\(=2-\left(\frac{1}{\sqrt{2}}\right)^2\) ➜ \(\because \sin{\frac{\pi}{4}}=\frac{1}{\sqrt{2}}\)
\(=2-\frac{1}{2}\)
\(=\frac{4-1}{2}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin^4{\frac{\pi}{8}}+\sin^4{\left(\frac{\pi}{2}-\frac{\pi}{8}\right)}+\sin^4{\left(\frac{\pi}{2}+\frac{\pi}{8}\right)}+\sin^4{\left(\pi-\frac{\pi}{8}\right)}\)
\(=\sin^4{\frac{\pi}{8}}+\cos^4{\frac{\pi}{8}}+\cos^4{\frac{\pi}{8}}+\sin^4{\frac{\pi}{8}}\)
\(=2\sin^4{\frac{\pi}{8}}+2\cos^4{\frac{\pi}{8}}\)
\(=2\left\{\sin^4{\frac{\pi}{8}}+\cos^4{\frac{\pi}{8}}\right\}\)
\(=2\left\{\left(\sin^2{\frac{\pi}{8}}\right)^2+\left(\cos^2{\frac{\pi}{8}}\right)^2\right\}\)
\(=2\left\{\left(\sin^2{\frac{\pi}{8}}+\cos^2{\frac{\pi}{8}}\right)^2-2\sin^2{\frac{\pi}{8}}\cos^2{\frac{\pi}{8}}\right\}\) ➜ \(\because a^2+b^2=(a+b)^2-2ab\)
\(=2\left\{1^2-\frac{1}{2}\left(2\sin{\frac{\pi}{8}}\cos{\frac{\pi}{8}}\right)^2\right\}\) ➜ \(\because \cos^2{A}+\sin^2{A}=1\)
\(=2\left\{1-\frac{1}{2}\sin^2{2\times\frac{\pi}{8}}\right\}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(=2-\sin^2{\frac{\pi}{4}}\)
\(=2-\left(\frac{1}{\sqrt{2}}\right)^2\) ➜ \(\because \sin{\frac{\pi}{4}}=\frac{1}{\sqrt{2}}\)
\(=2-\frac{1}{2}\)
\(=\frac{4-1}{2}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(vi)\) \(\sin^2{\frac{A}{2}}+\sin^2{\left(\frac{A}{2}+\frac{\pi}{3}\right)}+\sin^2{\left(\frac{A}{2}-\frac{\pi}{3}\right)}=\frac{3}{2}\)সমাধানঃ
\(L.S=\sin^2{\frac{A}{2}}+\sin^2{\left(\frac{A}{2}+\frac{\pi}{3}\right)}+\sin^2{\left(\frac{A}{2}-\frac{\pi}{3}\right)}\)
\(=\frac{1}{2}\left\{2\sin^2{\frac{A}{2}}+2\sin^2{\left(\frac{A}{2}+\frac{\pi}{3}\right)}+2\sin^2{\left(\frac{A}{2}-\frac{\pi}{3}\right)}\right\}\)
\(=\frac{1}{2}\{1-\cos{2\left(\frac{A}{2}\right)}+1-\cos{2\left(\frac{A}{2}+\frac{\pi}{3}\right)}+1-\cos{2\left(\frac{A}{2}-\frac{\pi}{3}\right)}\}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{1}{2}\{3-\cos{A}-\cos{\left(A+\frac{2\pi}{3}\right)}-\cos{\left(A-\frac{2\pi}{3}\right)}\}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{A}-\frac{1}{2}\{\cos{\left(A-\frac{2\pi}{3}\right)}+\cos{\left(A+\frac{2\pi}{3}\right)}\}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{A}-\frac{1}{2}\times2\cos{A}\cos{\frac{2\pi}{3}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{A}-\frac{1}{2}\times2\cos{A}\times-\frac{1}{2}\) ➜ \(\because \cos{\frac{2\pi}{3}}=-\frac{1}{2}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{A}+\frac{1}{2}\cos{A}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\left\{2\sin^2{\frac{A}{2}}+2\sin^2{\left(\frac{A}{2}+\frac{\pi}{3}\right)}+2\sin^2{\left(\frac{A}{2}-\frac{\pi}{3}\right)}\right\}\)
\(=\frac{1}{2}\{1-\cos{2\left(\frac{A}{2}\right)}+1-\cos{2\left(\frac{A}{2}+\frac{\pi}{3}\right)}+1-\cos{2\left(\frac{A}{2}-\frac{\pi}{3}\right)}\}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{1}{2}\{3-\cos{A}-\cos{\left(A+\frac{2\pi}{3}\right)}-\cos{\left(A-\frac{2\pi}{3}\right)}\}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{A}-\frac{1}{2}\{\cos{\left(A-\frac{2\pi}{3}\right)}+\cos{\left(A+\frac{2\pi}{3}\right)}\}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{A}-\frac{1}{2}\times2\cos{A}\cos{\frac{2\pi}{3}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{A}-\frac{1}{2}\times2\cos{A}\times-\frac{1}{2}\) ➜ \(\because \cos{\frac{2\pi}{3}}=-\frac{1}{2}\)
\(=\frac{3}{2}-\frac{1}{2}\cos{A}+\frac{1}{2}\cos{A}\)
\(=\frac{3}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(vii)\) \(\sin^2{\left(\frac{\alpha}{2}-36^{o}\right)}+\sin^2{\left(\frac{\alpha}{2}+36^{o}\right)}=\frac{1}{4}\left\{4-(\sqrt{5}-1)\cos{\alpha}\right\}\)সমাধানঃ
\(L.S=\sin^2{\left(\frac{\alpha}{2}-36^{o}\right)}+\sin^2{\left(\frac{\alpha}{2}+36^{o}\right)}\)
\(=\frac{1}{2}\left\{2\sin^2{\left(\frac{\alpha}{2}-36^{o}\right)}+2\sin^2{\left(\frac{\alpha}{2}+36^{o}\right)}\right\}\)
\(=\frac{1}{2}\{1-\cos{2\left(\frac{\alpha}{2}-36^{o}\right)}+1-\cos{2\left(\frac{\alpha}{2}+36^{o}\right)}\}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{1}{2}\{2-\cos{\left(\alpha-72^{o}\right)}-\cos{\left(\alpha+72^{o}\right)}\}\)
\(=1-\frac{1}{2}\{\cos{\left(\alpha-72^{o}\right)}+\cos{\left(\alpha+72^{o}\right)}\}\)
\(=1-\frac{1}{2}\times2\cos{\alpha}\cos{72^{o}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=1-\cos{\alpha}\times\frac{1}{4}(\sqrt{5}-1)\) ➜ \(\because \cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=1-\frac{1}{4}(\sqrt{5}-1)\cos{\alpha}\)
\(=\frac{1}{4}\left\{4-(\sqrt{5}-1)\cos{\alpha}\right\}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\left\{2\sin^2{\left(\frac{\alpha}{2}-36^{o}\right)}+2\sin^2{\left(\frac{\alpha}{2}+36^{o}\right)}\right\}\)
\(=\frac{1}{2}\{1-\cos{2\left(\frac{\alpha}{2}-36^{o}\right)}+1-\cos{2\left(\frac{\alpha}{2}+36^{o}\right)}\}\) ➜ \(\because 2\sin^2{P}=1-\cos{2P}\)
\(=\frac{1}{2}\{2-\cos{\left(\alpha-72^{o}\right)}-\cos{\left(\alpha+72^{o}\right)}\}\)
\(=1-\frac{1}{2}\{\cos{\left(\alpha-72^{o}\right)}+\cos{\left(\alpha+72^{o}\right)}\}\)
\(=1-\frac{1}{2}\times2\cos{\alpha}\cos{72^{o}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=1-\cos{\alpha}\times\frac{1}{4}(\sqrt{5}-1)\) ➜ \(\because \cos{72^{o}}=\frac{1}{4}(\sqrt{5}-1)\)
\(=1-\frac{1}{4}(\sqrt{5}-1)\cos{\alpha}\)
\(=\frac{1}{4}\left\{4-(\sqrt{5}-1)\cos{\alpha}\right\}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(viii)\) \(\cos^2{\left(\frac{\alpha}{2}-18^{o}\right)}+\cos^2{\left(\frac{\alpha}{2}+18^{o}\right)}=\frac{1}{4}\left\{4+(\sqrt{5}+1)\cos{\alpha}\right\}\)সমাধানঃ
\(L.S=\cos^2{\left(\frac{\alpha}{2}-18^{o}\right)}+\cos^2{\left(\frac{\alpha}{2}+18^{o}\right)}\)
\(=\frac{1}{2}\left\{2\cos^2{\left(\frac{\alpha}{2}-18^{o}\right)}+2\cos^2{\left(\frac{\alpha}{2}+18^{o}\right)}\right\}\)
\(=\frac{1}{2}\{1+\cos{2\left(\frac{\alpha}{2}-18^{o}\right)}+1+\cos{2\left(\frac{\alpha}{2}+18^{o}\right)}\}\) ➜ \(\because 2\cos^2{P}=1+\cos{2P}\)
\(=\frac{1}{2}\{2+\cos{\left(\alpha-36^{o}\right)}+\cos{\left(\alpha+36^{o}\right)}\}\)
\(=1+\frac{1}{2}\{\cos{\left(\alpha-36^{o}\right)}+\cos{\left(\alpha+36^{o}\right)}\}\)
\(=1+\frac{1}{2}\times2\cos{\alpha}\cos{36^{o}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=1+\cos{\alpha}\times\frac{1}{4}(\sqrt{5}+1)\) ➜ \(\because \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=1+\frac{1}{4}(\sqrt{5}+1)\cos{\alpha}\)
\(=\frac{1}{4}\left\{4+(\sqrt{5}+1)\cos{\alpha}\right\}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\left\{2\cos^2{\left(\frac{\alpha}{2}-18^{o}\right)}+2\cos^2{\left(\frac{\alpha}{2}+18^{o}\right)}\right\}\)
\(=\frac{1}{2}\{1+\cos{2\left(\frac{\alpha}{2}-18^{o}\right)}+1+\cos{2\left(\frac{\alpha}{2}+18^{o}\right)}\}\) ➜ \(\because 2\cos^2{P}=1+\cos{2P}\)
\(=\frac{1}{2}\{2+\cos{\left(\alpha-36^{o}\right)}+\cos{\left(\alpha+36^{o}\right)}\}\)
\(=1+\frac{1}{2}\{\cos{\left(\alpha-36^{o}\right)}+\cos{\left(\alpha+36^{o}\right)}\}\)
\(=1+\frac{1}{2}\times2\cos{\alpha}\cos{36^{o}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(=1+\cos{\alpha}\times\frac{1}{4}(\sqrt{5}+1)\) ➜ \(\because \cos{36^{o}}=\frac{1}{4}(\sqrt{5}+1)\)
\(=1+\frac{1}{4}(\sqrt{5}+1)\cos{\alpha}\)
\(=\frac{1}{4}\left\{4+(\sqrt{5}+1)\cos{\alpha}\right\}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(ix)\) \(\cos{2\theta}=8\cos^4{\frac{\theta}{2}}-8\cos^2{\frac{\theta}{2}}+1\)সমাধানঃ
\(L.S=\cos{2\theta}\)
\(=2\cos^2{\theta}-1\) ➜ \(\because \cos{2P}=2\cos^2{P}-1\)
\(=2(\cos{\theta})^2-1\)
\(=2\left(2\cos^2{\frac{\theta}{2}}-1\right)^2-1\) ➜ \(\because \cos{P}=2\cos^2{\frac{P}{2}}-1\)
\(=2\left(4\cos^4{\frac{\theta}{2}}-4\cos^2{\frac{\theta}{2}}+1\right)-1\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(=8\cos^4{\frac{\theta}{2}}-8\cos^2{\frac{\theta}{2}}+2-1\)
\(=8\cos^4{\frac{\theta}{2}}-8\cos^2{\frac{\theta}{2}}+1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\cos^2{\theta}-1\) ➜ \(\because \cos{2P}=2\cos^2{P}-1\)
\(=2(\cos{\theta})^2-1\)
\(=2\left(2\cos^2{\frac{\theta}{2}}-1\right)^2-1\) ➜ \(\because \cos{P}=2\cos^2{\frac{P}{2}}-1\)
\(=2\left(4\cos^4{\frac{\theta}{2}}-4\cos^2{\frac{\theta}{2}}+1\right)-1\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(=8\cos^4{\frac{\theta}{2}}-8\cos^2{\frac{\theta}{2}}+2-1\)
\(=8\cos^4{\frac{\theta}{2}}-8\cos^2{\frac{\theta}{2}}+1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(x)\) \(\cos{2\theta}=8\sin^4{\frac{\theta}{2}}-8\sin^2{\frac{\theta}{2}}+1\)সমাধানঃ
\(L.S=\cos{2\theta}\)
\(=2\cos^2{\theta}-1\) ➜ \(\because \cos{2P}=2\cos^2{P}-1\)
\(=2(\cos{\theta})^2-1\)
\(=2\left(1-2\sin^2{\frac{\theta}{2}}\right)^2-1\) ➜ \(\because \cos{P}=1-2\sin^2{\frac{P}{2}}\)
\(=2\left(1-4\sin^2{\frac{\theta}{2}}+4\sin^4{\frac{\theta}{2}}\right)-1\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(=2-8\sin^2{\frac{\theta}{2}}+8\sin^4{\frac{\theta}{2}}-1\)
\(=8\sin^4{\frac{\theta}{2}}-8\sin^2{\frac{\theta}{2}}+1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\cos^2{\theta}-1\) ➜ \(\because \cos{2P}=2\cos^2{P}-1\)
\(=2(\cos{\theta})^2-1\)
\(=2\left(1-2\sin^2{\frac{\theta}{2}}\right)^2-1\) ➜ \(\because \cos{P}=1-2\sin^2{\frac{P}{2}}\)
\(=2\left(1-4\sin^2{\frac{\theta}{2}}+4\sin^4{\frac{\theta}{2}}\right)-1\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(=2-8\sin^2{\frac{\theta}{2}}+8\sin^4{\frac{\theta}{2}}-1\)
\(=8\sin^4{\frac{\theta}{2}}-8\sin^2{\frac{\theta}{2}}+1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.2.(xi)\) \(\cos^2{\frac{\theta}{2}}\left(1+\tan{\frac{\theta}{2}}\right)^2=1+\sin{\theta}\)সমাধানঃ
\(L.S=\cos^2{\frac{\theta}{2}}\left(1+\tan{\frac{\theta}{2}}\right)^2\)
\(=\cos^2{\frac{\theta}{2}}\left(1+2\tan{\frac{\theta}{2}}+\tan^2{\frac{\theta}{2}}\right)\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
\(=\cos^2{\frac{\theta}{2}}\left(1+\frac{2\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}+\frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}\right)\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}\)
\(=\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}\)
\(=1+\sin{\theta}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^2{\frac{\theta}{2}}\left(1+2\tan{\frac{\theta}{2}}+\tan^2{\frac{\theta}{2}}\right)\) ➜ \(\because (a+b)^2=a^2+2ab+b^2\)
\(=\cos^2{\frac{\theta}{2}}\left(1+\frac{2\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}+\frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}\right)\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}\)
\(=\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}+2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}\)
\(=1+\sin{\theta}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7E\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.3.(i)\) \(2\cos{\frac{\pi}{16}}=\sqrt{2+\sqrt{2+\sqrt{2}}}\) কুঃ ২০১৩,২০০৭।
\(Q.3.(ii)\) \(2\cos{\left(7\frac{1}{2}\right)^{o}}=\sqrt{2+\sqrt{2+\sqrt{3}}}\)
কুঃ, চঃ ২০১০; রাঃ২০০৩।
\(Q.3.(iii)\) \((\cos{\alpha}+\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2=4\cos^2{\frac{\alpha+\beta}{2}}\)
যঃ ২০১২।
\(Q.3.(iv)\) \(\tan{6^{o}}\tan{42^{o}}\tan{66^{o}}\tan{78^{o}}=1\)
\(Q.3.(v)\) \(\tan{\left(7\frac{1}{2}\right)^{o}}=\sqrt{6}-\sqrt{3}+\sqrt{2}-2\)
প্রমাণ করঃ
\(Q.3.(vi)\) \(\tan{\left(82\frac{1}{2}\right)^{o}}=\sqrt{6}+\sqrt{3}+\sqrt{2}+2\)\(Q.3.(vii)\) \((\cos{\alpha}-\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2=4\sin^2{\frac{(\alpha-\beta)}{2}}\)
যঃ ২০১২।
\(Q.3.(viii)\) \(\sin{(292.5)^{o}}=-\frac{1}{2}\sqrt{2+\sqrt{2}}\)
\(Q.3.(ix)\) \(\cot{(142.5)^{o}}=\sqrt{2}+\sqrt{3}-2-\sqrt{6}\)
\(Q.3.(x)\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{64}\right)}=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}\)
প্রমাণ করঃ
\(Q.3.(i)\) \(2\cos{\frac{\pi}{16}}=\sqrt{2+\sqrt{2+\sqrt{2}}}\) কুঃ ২০১৩,২০০৭।
সমাধানঃ
\(L.S=2\cos{\frac{\pi}{16}}\)
\(=\sqrt{4\cos^2{\left(\frac{\pi}{16}\right)}}\)
\(=\sqrt{2\times2\cos^2{\left(\frac{\pi}{16}\right)}}\)
\(=\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{16}\right)}\right\}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2\left\{1+\cos{\left(\frac{\pi}{8}\right)}\right\}}\)
\(=\sqrt{2+2\cos{\left(\frac{\pi}{8}\right)}}\)
\(=\sqrt{2+\sqrt{4\cos^2{\left(\frac{\pi}{8}\right)}}}\)
\(=\sqrt{2+\sqrt{2\times2\cos^2{\left(\frac{\pi}{8}\right)}}}\)
\(=\sqrt{2+\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{8}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2+\sqrt{2\left\{1+\cos{\left(\frac{\pi}{4}\right)}\right\}}}\)
\(=\sqrt{2+\sqrt{2+2\cos{\left(\frac{\pi}{4}\right)}}}\)
\(=\sqrt{2+\sqrt{2+2\times\frac{1}{\sqrt{2}}}}\) ➜ \(\because \cos{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\sqrt{2+\sqrt{2+\frac{2}{\sqrt{2}}}}\)
\(=\sqrt{2+\sqrt{2+\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}}\)
\(=\sqrt{2+\sqrt{2+\sqrt{2}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sqrt{4\cos^2{\left(\frac{\pi}{16}\right)}}\)
\(=\sqrt{2\times2\cos^2{\left(\frac{\pi}{16}\right)}}\)
\(=\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{16}\right)}\right\}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2\left\{1+\cos{\left(\frac{\pi}{8}\right)}\right\}}\)
\(=\sqrt{2+2\cos{\left(\frac{\pi}{8}\right)}}\)
\(=\sqrt{2+\sqrt{4\cos^2{\left(\frac{\pi}{8}\right)}}}\)
\(=\sqrt{2+\sqrt{2\times2\cos^2{\left(\frac{\pi}{8}\right)}}}\)
\(=\sqrt{2+\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{8}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2+\sqrt{2\left\{1+\cos{\left(\frac{\pi}{4}\right)}\right\}}}\)
\(=\sqrt{2+\sqrt{2+2\cos{\left(\frac{\pi}{4}\right)}}}\)
\(=\sqrt{2+\sqrt{2+2\times\frac{1}{\sqrt{2}}}}\) ➜ \(\because \cos{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\sqrt{2+\sqrt{2+\frac{2}{\sqrt{2}}}}\)
\(=\sqrt{2+\sqrt{2+\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}}\)
\(=\sqrt{2+\sqrt{2+\sqrt{2}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(ii)\) \(2\cos{\left(7\frac{1}{2}\right)^{o}}=\sqrt{2+\sqrt{2+\sqrt{3}}}\) কুঃ, চঃ ২০১০; রাঃ২০০৩।
সমাধানঃ
\(L.S=2\cos{\left(7\frac{1}{2}\right)^{o}}\)
\(=2\cos{\left(\frac{15}{2}\right)^{o}}\)
\(=\sqrt{4\cos^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\sqrt{2\times2\cos^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\sqrt{2\left\{1+\cos{2\left(\frac{15}{2}\right)^{o}}\right\}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2(1+\cos{15^{o}})}\)
\(=\sqrt{2+2\cos{15^{o}}}\)
\(=\sqrt{2+\sqrt{4\cos^2{15^{o}}}}\)
\(=\sqrt{2+\sqrt{2\times2\cos^2{15^{o}}}}\)
\(=\sqrt{2+\sqrt{2\{1+\cos{(2\times15^{o})}\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2+\sqrt{2\{1+\cos{30^{o}}\}}}\)
\(=\sqrt{2+\sqrt{2\left(1+\frac{\sqrt{3}}{2}\right)}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\sqrt{2+\sqrt{2+\sqrt{3}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\cos{\left(\frac{15}{2}\right)^{o}}\)
\(=\sqrt{4\cos^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\sqrt{2\times2\cos^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\sqrt{2\left\{1+\cos{2\left(\frac{15}{2}\right)^{o}}\right\}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2(1+\cos{15^{o}})}\)
\(=\sqrt{2+2\cos{15^{o}}}\)
\(=\sqrt{2+\sqrt{4\cos^2{15^{o}}}}\)
\(=\sqrt{2+\sqrt{2\times2\cos^2{15^{o}}}}\)
\(=\sqrt{2+\sqrt{2\{1+\cos{(2\times15^{o})}\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2+\sqrt{2\{1+\cos{30^{o}}\}}}\)
\(=\sqrt{2+\sqrt{2\left(1+\frac{\sqrt{3}}{2}\right)}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\sqrt{2+\sqrt{2+\sqrt{3}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(iii)\) \((\cos{\alpha}+\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2=4\cos^2{\frac{\alpha+\beta}{2}}\) যঃ ২০১২।
সমাধানঃ
\(L.S=(\cos{\alpha}+\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2\)
\(=\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}+\sin^2{\alpha}+\sin^2{\beta}-2\sin{\alpha}\sin{\beta}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a-b)^2=a^2+b^2-2ab\)
\(=(\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta})\)
\(=1+1+2\cos{(\alpha+\beta)}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=2+2\cos{(\alpha+\beta)}\)
\(=2\{1+\cos{(\alpha+\beta)}\}\)
\(=2\times2\cos^2{\frac{\alpha+\beta}{2}}\}\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(=4\cos^2{\frac{\alpha+\beta}{2}}\}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^2{\alpha}+\cos^2{\beta}+2\cos{\alpha}\cos{\beta}+\sin^2{\alpha}+\sin^2{\beta}-2\sin{\alpha}\sin{\beta}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a-b)^2=a^2+b^2-2ab\)
\(=(\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})+2(\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta})\)
\(=1+1+2\cos{(\alpha+\beta)}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(=2+2\cos{(\alpha+\beta)}\)
\(=2\{1+\cos{(\alpha+\beta)}\}\)
\(=2\times2\cos^2{\frac{\alpha+\beta}{2}}\}\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(=4\cos^2{\frac{\alpha+\beta}{2}}\}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(iv)\) \(\tan{6^{o}}\tan{42^{o}}\tan{66^{o}}\tan{78^{o}}=1\)সমাধানঃ
\(L.S=\tan{6^{o}}\tan{42^{o}}\tan{66^{o}}\tan{78^{o}}\)
\(=\frac{\sin{6^{o}}\sin{42^{o}}\sin{66^{o}}\sin{78^{o}}}{\cos{6^{o}}\cos{42^{o}}\cos{66^{o}}\cos{78^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{4\sin{6^{o}}\sin{42^{o}}\sin{66^{o}}\sin{78^{o}}}{4\cos{6^{o}}\cos{42^{o}}\cos{66^{o}}\cos{78^{o}}}\) ➜ লব ও হরকে \(4\) দ্বারা গুণ করে,
\(=\frac{2\sin{66^{o}}\sin{6^{o}}\times2\sin{78^{o}}\sin{42^{o}}}{2\cos{66^{o}}\cos{6^{o}}\times2\cos{78^{o}}\cos{42^{o}}}\)
\(=\frac{\{\cos{(66^{o}-6^{o})}-\cos{(66^{o}+6^{o})}\}\{\cos{(78^{o}-42^{o})}-\cos{(78^{o}+42^{o})}\}}{\{\cos{(66^{o}-6^{o})}+\cos{(66^{o}+6^{o})}\}\{\cos{(78^{o}-42^{o})}+\cos{(78^{o}+42^{o})}\}}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
এবং \(2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{\{\cos{60^{o}}-\cos{72^{o}}\}\{\cos{36^{o}}-\cos{120^{o}}\}}{\{\cos{60^{o}}+\cos{72^{o}}\}\{\cos{36^{o}}+\cos{120^{o}}\}}\)
\(=\frac{\left\{\frac{1}{2}-\frac{\sqrt{5}-1}{4}\right\}\left\{\frac{\sqrt{5}+1}{4}+\frac{1}{2}\right\}}{\left\{\frac{1}{2}+\frac{\sqrt{5}-1}{4}\right\}\left\{\frac{\sqrt{5}+1}{4}-\frac{1}{2}\right\}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(\cos{120^{o}}=-\frac{1}{2}\)
\(\cos{72^{o}}=\frac{\sqrt{5}-1}{4}\)
এবং \(\cos{36^{o}}=\frac{\sqrt{5}+1}{4}\)
\(=\frac{4\left\{\frac{1}{2}-\frac{\sqrt{5}-1}{4}\right\}4\left\{\frac{\sqrt{5}+1}{4}+\frac{1}{2}\right\}}{4\left\{\frac{1}{2}+\frac{\sqrt{5}-1}{4}\right\}4\left\{\frac{\sqrt{5}+1}{4}-\frac{1}{2}\right\}}\) ➜ লব ও হরকে \(16\) দ্বারা গুণ করে,
\(=\frac{(2-\sqrt{5}+1)(\sqrt{5}+1+2)}{(2+\sqrt{5}-1)(\sqrt{5}+1-2)}\)
\(=\frac{(3-\sqrt{5})(3+\sqrt{5})}{(\sqrt{5}+1)(\sqrt{5}-1)}\)
\(=\frac{3^2-(\sqrt{5})^2}{(\sqrt{5})^2-1^2}\) ➜ \((a+b)(a-b)=a^2-b^2\)
\(=\frac{9-5}{5-1}\)
\(=\frac{4}{4}\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\sin{6^{o}}\sin{42^{o}}\sin{66^{o}}\sin{78^{o}}}{\cos{6^{o}}\cos{42^{o}}\cos{66^{o}}\cos{78^{o}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{4\sin{6^{o}}\sin{42^{o}}\sin{66^{o}}\sin{78^{o}}}{4\cos{6^{o}}\cos{42^{o}}\cos{66^{o}}\cos{78^{o}}}\) ➜ লব ও হরকে \(4\) দ্বারা গুণ করে,
\(=\frac{2\sin{66^{o}}\sin{6^{o}}\times2\sin{78^{o}}\sin{42^{o}}}{2\cos{66^{o}}\cos{6^{o}}\times2\cos{78^{o}}\cos{42^{o}}}\)
\(=\frac{\{\cos{(66^{o}-6^{o})}-\cos{(66^{o}+6^{o})}\}\{\cos{(78^{o}-42^{o})}-\cos{(78^{o}+42^{o})}\}}{\{\cos{(66^{o}-6^{o})}+\cos{(66^{o}+6^{o})}\}\{\cos{(78^{o}-42^{o})}+\cos{(78^{o}+42^{o})}\}}\) ➜ \(\because 2\sin{A}\sin{B}=\cos{(A-B)}-\cos{(A+B)}\)
এবং \(2\cos{A}\cos{B}=\cos{(A-B)}+\cos{(A+B)}\)
\(=\frac{\{\cos{60^{o}}-\cos{72^{o}}\}\{\cos{36^{o}}-\cos{120^{o}}\}}{\{\cos{60^{o}}+\cos{72^{o}}\}\{\cos{36^{o}}+\cos{120^{o}}\}}\)
\(=\frac{\left\{\frac{1}{2}-\frac{\sqrt{5}-1}{4}\right\}\left\{\frac{\sqrt{5}+1}{4}+\frac{1}{2}\right\}}{\left\{\frac{1}{2}+\frac{\sqrt{5}-1}{4}\right\}\left\{\frac{\sqrt{5}+1}{4}-\frac{1}{2}\right\}}\) ➜ \(\because \cos{60^{o}}=\frac{1}{2}\)
\(\cos{120^{o}}=-\frac{1}{2}\)
\(\cos{72^{o}}=\frac{\sqrt{5}-1}{4}\)
এবং \(\cos{36^{o}}=\frac{\sqrt{5}+1}{4}\)
\(=\frac{4\left\{\frac{1}{2}-\frac{\sqrt{5}-1}{4}\right\}4\left\{\frac{\sqrt{5}+1}{4}+\frac{1}{2}\right\}}{4\left\{\frac{1}{2}+\frac{\sqrt{5}-1}{4}\right\}4\left\{\frac{\sqrt{5}+1}{4}-\frac{1}{2}\right\}}\) ➜ লব ও হরকে \(16\) দ্বারা গুণ করে,
\(=\frac{(2-\sqrt{5}+1)(\sqrt{5}+1+2)}{(2+\sqrt{5}-1)(\sqrt{5}+1-2)}\)
\(=\frac{(3-\sqrt{5})(3+\sqrt{5})}{(\sqrt{5}+1)(\sqrt{5}-1)}\)
\(=\frac{3^2-(\sqrt{5})^2}{(\sqrt{5})^2-1^2}\) ➜ \((a+b)(a-b)=a^2-b^2\)
\(=\frac{9-5}{5-1}\)
\(=\frac{4}{4}\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(v)\) \(\tan{\left(7\frac{1}{2}\right)^{o}}=\sqrt{6}-\sqrt{3}+\sqrt{2}-2\)সমাধানঃ
\(L.S=\tan{\left(7\frac{1}{2}\right)^{o}}\)
\(=\tan{\left(\frac{15^{o}}{2}\right)}\)
\(=\frac{\sin{\left(\frac{15^{o}}{2}\right)}}{\cos{\left(\frac{15^{o}}{2}\right)}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{2\sin^2{\left(\frac{15^{o}}{2}\right)}}{2\sin{\left(\frac{15^{o}}{2}\right)}\cos{\left(\frac{15^{o}}{2}\right)}}\) ➜ লব ও হরকে \(2\sin{\left(\frac{15^{o}}{2}\right)}\) দ্বারা গুণ করে,
\(=\frac{1-\cos{15^{o}}}{\sin{15^{o}}}\) ➜ \(\because 2\sin^2{\left(\frac{A}{2}\right)}=1-\cos{A}\)
এবং \(2\sin{\left(\frac{A}{2}\right)}\cos{\left(\frac{A}{2}\right)}=\sin{A}\)
\(=\frac{1-\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
এবং \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}-\sqrt{3}-1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে,
\(=\frac{(\sqrt{3}+1)(2\sqrt{2}-\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে,
\(=\frac{2\sqrt{6}-3-\sqrt{3}+2\sqrt{2}-\sqrt{3}-1}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{6}-2\sqrt{3}+2\sqrt{2}-4}{2}\)
\(=\frac{2(\sqrt{6}-\sqrt{3}+\sqrt{2}-2)}{2}\)
\(=\sqrt{6}-\sqrt{3}+\sqrt{2}-2\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{\left(\frac{15^{o}}{2}\right)}\)
\(=\frac{\sin{\left(\frac{15^{o}}{2}\right)}}{\cos{\left(\frac{15^{o}}{2}\right)}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{2\sin^2{\left(\frac{15^{o}}{2}\right)}}{2\sin{\left(\frac{15^{o}}{2}\right)}\cos{\left(\frac{15^{o}}{2}\right)}}\) ➜ লব ও হরকে \(2\sin{\left(\frac{15^{o}}{2}\right)}\) দ্বারা গুণ করে,
\(=\frac{1-\cos{15^{o}}}{\sin{15^{o}}}\) ➜ \(\because 2\sin^2{\left(\frac{A}{2}\right)}=1-\cos{A}\)
এবং \(2\sin{\left(\frac{A}{2}\right)}\cos{\left(\frac{A}{2}\right)}=\sin{A}\)
\(=\frac{1-\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
এবং \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}-\sqrt{3}-1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে,
\(=\frac{(\sqrt{3}+1)(2\sqrt{2}-\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে,
\(=\frac{2\sqrt{6}-3-\sqrt{3}+2\sqrt{2}-\sqrt{3}-1}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{6}-2\sqrt{3}+2\sqrt{2}-4}{2}\)
\(=\frac{2(\sqrt{6}-\sqrt{3}+\sqrt{2}-2)}{2}\)
\(=\sqrt{6}-\sqrt{3}+\sqrt{2}-2\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(vi)\) \(\tan{\left(82\frac{1}{2}\right)^{o}}=\sqrt{6}+\sqrt{3}+\sqrt{2}+2\)সমাধানঃ
\(L.S=\tan{\left(82\frac{1}{2}\right)^{o}}\)
\(=\tan{\left(\frac{165^{o}}{2}\right)}\)
\(=\tan{\left(90^{o}\times1-\frac{15^{o}}{2}\right)}\)
\(=\cot{\left(\frac{15^{o}}{2}\right)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(=\frac{\cos{\left(\frac{15^{o}}{2}\right)}}{\sin{\left(\frac{15^{o}}{2}\right)}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{2\cos^2{\left(\frac{15^{o}}{2}\right)}}{2\sin{\left(\frac{15^{o}}{2}\right)}\cos{\left(\frac{15^{o}}{2}\right)}}\) ➜ লব ও হরকে \(2\cos{\left(\frac{15^{o}}{2}\right)}\) দ্বারা গুণ করে,
\(=\frac{1+\cos{15^{o}}}{\sin{15^{o}}}\) ➜ \(\because 2\cos^2{\left(\frac{A}{2}\right)}=1+\cos{A}\)
এবং \(2\sin{\left(\frac{A}{2}\right)}\cos{\left(\frac{A}{2}\right)}=\sin{A}\)
\(=\frac{1+\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
এবং \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}+\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে,
\(=\frac{(\sqrt{3}+1)(2\sqrt{2}+\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে,
\(=\frac{2\sqrt{6}+3+\sqrt{3}+2\sqrt{2}+\sqrt{3}+1}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{6}+2\sqrt{3}+2\sqrt{2}+4}{2}\)
\(=\frac{2(\sqrt{6}+\sqrt{3}+\sqrt{2}+2)}{2}\)
\(=\sqrt{6}+\sqrt{3}+\sqrt{2}+2\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{\left(\frac{165^{o}}{2}\right)}\)
\(=\tan{\left(90^{o}\times1-\frac{15^{o}}{2}\right)}\)
\(=\cot{\left(\frac{15^{o}}{2}\right)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ধনাত্মক।
আবার, \(90^{o}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং ট্যানজেন্ট অনুপাতের পরিবর্তন হয়ে কোট্যানজেন্ট হয়েছে।
\(=\frac{\cos{\left(\frac{15^{o}}{2}\right)}}{\sin{\left(\frac{15^{o}}{2}\right)}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=\frac{2\cos^2{\left(\frac{15^{o}}{2}\right)}}{2\sin{\left(\frac{15^{o}}{2}\right)}\cos{\left(\frac{15^{o}}{2}\right)}}\) ➜ লব ও হরকে \(2\cos{\left(\frac{15^{o}}{2}\right)}\) দ্বারা গুণ করে,
\(=\frac{1+\cos{15^{o}}}{\sin{15^{o}}}\) ➜ \(\because 2\cos^2{\left(\frac{A}{2}\right)}=1+\cos{A}\)
এবং \(2\sin{\left(\frac{A}{2}\right)}\cos{\left(\frac{A}{2}\right)}=\sin{A}\)
\(=\frac{1+\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}\) ➜ \(\because \cos{15^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
এবং \(\sin{15^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(=\frac{2\sqrt{2}+\sqrt{3}+1}{\sqrt{3}-1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুণ করে,
\(=\frac{(\sqrt{3}+1)(2\sqrt{2}+\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}+1)\) দ্বারা গুণ করে,
\(=\frac{2\sqrt{6}+3+\sqrt{3}+2\sqrt{2}+\sqrt{3}+1}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=\frac{2\sqrt{6}+2\sqrt{3}+2\sqrt{2}+4}{2}\)
\(=\frac{2(\sqrt{6}+\sqrt{3}+\sqrt{2}+2)}{2}\)
\(=\sqrt{6}+\sqrt{3}+\sqrt{2}+2\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(vii)\) \((\cos{\alpha}-\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2=4\sin^2{\frac{(\alpha-\beta)}{2}}\)যঃ ২০১২।
সমাধানঃ
\(L.S=(\cos{\alpha}-\cos{\beta})^2+(\sin{\alpha}-\sin{\beta})^2\)
\(=\cos^2{\alpha}+\cos^2{\beta}-2\cos{\alpha}\cos{\beta}+\sin^2{\alpha}+\sin^2{\beta}-2\sin{\alpha}\sin{\beta}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=(\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})-2(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})\)
\(=1+1-2\cos{(\alpha+\beta)}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=2-2\cos{(\alpha-\beta)}\)
\(=2\{1-\cos{(\alpha-\beta)}\}\)
\(=2\times2\sin^2{\frac{(\alpha-\beta)}{2}}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(=4\sin^2{\frac{(\alpha-\beta)}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^2{\alpha}+\cos^2{\beta}-2\cos{\alpha}\cos{\beta}+\sin^2{\alpha}+\sin^2{\beta}-2\sin{\alpha}\sin{\beta}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=(\sin^2{\alpha}+\cos^2{\alpha})+(\sin^2{\beta}+\cos^2{\beta})-2(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})\)
\(=1+1-2\cos{(\alpha+\beta)}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(=2-2\cos{(\alpha-\beta)}\)
\(=2\{1-\cos{(\alpha-\beta)}\}\)
\(=2\times2\sin^2{\frac{(\alpha-\beta)}{2}}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(=4\sin^2{\frac{(\alpha-\beta)}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(viii)\) \(\sin{(292.5)^{o}}=-\frac{1}{2}\sqrt{2+\sqrt{2}}\)সমাধানঃ
\(L.S=\sin{(292.5)^{o}}\)
\(=\sin{\{90^{o}\times3+(22.5)^{o}\}}\) ➜ \(\because (292.5)^{o}=90^{o}\times3+(22.5)^{o}\)
\(=-\cos{(22.5)^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি চতুর্থ চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(3\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=-\frac{1}{2}\sqrt{4\cos^2{(22.5)^{o}}}\)
\(=-\frac{1}{2}\sqrt{2\times2\cos^2{(22.5)^{o}}}\)
\(=-\frac{1}{2}\sqrt{2\{1+\cos{2\times(22.5)^{o}}\}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=-\frac{1}{2}\sqrt{2+2\cos{45^{o}}}\)
\(=-\frac{1}{2}\sqrt{2+2\times\frac{1}{\sqrt{2}}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=-\frac{1}{2}\sqrt{2+\frac{2}{\sqrt{2}}}\)
\(=-\frac{1}{2}\sqrt{2+\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}\)
\(=-\frac{1}{2}\sqrt{2+\sqrt{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\{90^{o}\times3+(22.5)^{o}\}}\) ➜ \(\because (292.5)^{o}=90^{o}\times3+(22.5)^{o}\)
\(=-\cos{(22.5)^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি চতুর্থ চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(3\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(=-\frac{1}{2}\sqrt{4\cos^2{(22.5)^{o}}}\)
\(=-\frac{1}{2}\sqrt{2\times2\cos^2{(22.5)^{o}}}\)
\(=-\frac{1}{2}\sqrt{2\{1+\cos{2\times(22.5)^{o}}\}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=-\frac{1}{2}\sqrt{2+2\cos{45^{o}}}\)
\(=-\frac{1}{2}\sqrt{2+2\times\frac{1}{\sqrt{2}}}\) ➜ \(\because \cos{45^{o}}=\frac{1}{\sqrt{2}}\)
\(=-\frac{1}{2}\sqrt{2+\frac{2}{\sqrt{2}}}\)
\(=-\frac{1}{2}\sqrt{2+\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}\)
\(=-\frac{1}{2}\sqrt{2+\sqrt{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(ix)\) \(\cot{(142.5)^{o}}=\sqrt{2}+\sqrt{3}-2-\sqrt{6}\)সমাধানঃ
\(L.S=\cot{(142.5)^{o}}\)
\(=\cot{\{90^{o}\times2-(37.5)^{o}\}}\) ➜ \(\because (142.5)^{o}=90^{o}\times2-(37.5)^{o}\)
\(=-\cot{(37.5)^{o}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(=-\frac{\cos{(37.5)^{o}}}{\sin{(37.5)^{o}}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=-\frac{2\cos^2{(37.5)^{o}}}{2\sin{(37.5)^{o}}\cos{(37.5)^{o}}}\) ➜ লব ও হরকে \(2\cos{(37.5)^{o}}\) দ্বারা গুন করে,
\(=-\frac{1+\cos{2\times(37.5)^{o}}}{\sin{2\times(37.5)^{o}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
এবং \(2\sin{A}\cos{A}=\sin{2A}\)
\(=-\frac{1+\cos{75^{o}}}{\sin{75^{o}}}\)
\(=-\frac{1+\frac{\sqrt{3}-1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
এবং \(\sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=-\frac{2\sqrt{2}+\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুন করে,
\(=-\frac{(\sqrt{3}-1)(2\sqrt{2}+\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুন করে,
\(=-\frac{2\sqrt{6}+3-\sqrt{3}-2\sqrt{2}-\sqrt{3}+1}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=-\frac{2\sqrt{6}-2\sqrt{3}-2\sqrt{2}+4}{2}\)
\(=-\frac{2(\sqrt{6}-\sqrt{3}-\sqrt{2}+2)}{2}\)
\(=\sqrt{2}+\sqrt{3}-2-\sqrt{6}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cot{\{90^{o}\times2-(37.5)^{o}\}}\) ➜ \(\because (142.5)^{o}=90^{o}\times2-(37.5)^{o}\)
\(=-\cot{(37.5)^{o}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোট্যানজেন্ট অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(=-\frac{\cos{(37.5)^{o}}}{\sin{(37.5)^{o}}}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
\(=-\frac{2\cos^2{(37.5)^{o}}}{2\sin{(37.5)^{o}}\cos{(37.5)^{o}}}\) ➜ লব ও হরকে \(2\cos{(37.5)^{o}}\) দ্বারা গুন করে,
\(=-\frac{1+\cos{2\times(37.5)^{o}}}{\sin{2\times(37.5)^{o}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
এবং \(2\sin{A}\cos{A}=\sin{2A}\)
\(=-\frac{1+\cos{75^{o}}}{\sin{75^{o}}}\)
\(=-\frac{1+\frac{\sqrt{3}-1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}}\) ➜ \(\because \cos{75^{o}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
এবং \(\sin{75^{o}}=\frac{\sqrt{3}+1}{2\sqrt{2}}\)
\(=-\frac{2\sqrt{2}+\sqrt{3}-1}{\sqrt{3}+1}\) ➜ লব ও হরকে \(2\sqrt{2}\) দ্বারা গুন করে,
\(=-\frac{(\sqrt{3}-1)(2\sqrt{2}+\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}\) ➜ আবার, লব ও হরকে \((\sqrt{3}-1)\) দ্বারা গুন করে,
\(=-\frac{2\sqrt{6}+3-\sqrt{3}-2\sqrt{2}-\sqrt{3}+1}{3-1}\) ➜ \(\because (a+b)(a-b)=a^2-b^2\)
\(=-\frac{2\sqrt{6}-2\sqrt{3}-2\sqrt{2}+4}{2}\)
\(=-\frac{2(\sqrt{6}-\sqrt{3}-\sqrt{2}+2)}{2}\)
\(=\sqrt{2}+\sqrt{3}-2-\sqrt{6}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(x)\) প্রমাণ কর যে, \(2\sin{\left(\frac{\pi}{64}\right)}=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}\)সমাধানঃ
\(L.S=2\sin{\left(\frac{\pi}{64}\right)}\)
\(=\sqrt{4\sin^2{\left(\frac{\pi}{64}\right)}}\)
\(=\sqrt{2\times2\sin^2{\left(\frac{\pi}{64}\right)}}\)
\(=\sqrt{2\left\{1-\cos{2\left(\frac{\pi}{64}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sqrt{2\left\{1-\cos{\left(\frac{\pi}{32}\right)}\right\}}\)
\(=\sqrt{2-2\cos{\left(\frac{\pi}{32}\right)}}\)
\(=\sqrt{2-\sqrt{4\cos^2{\left(\frac{\pi}{32}\right)}}}\)
\(=\sqrt{2-\sqrt{2\times2\cos^2{\left(\frac{\pi}{32}\right)}}}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{32}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{\left(\frac{\pi}{16}\right)}\right\}}}\)
\(=\sqrt{2-\sqrt{2+2\cos{\left(\frac{\pi}{16}\right)}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{4\cos^2{\left(\frac{\pi}{16}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2\times2\cos^2{\left(\frac{\pi}{16}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{16}\right)}\right\}}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+2\cos{\left(\frac{\pi}{8}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{4\cos^2{\left(\frac{\pi}{8}\right)}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2\times2\cos^2{\left(\frac{\pi}{8}\right)}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{8}\right)}\right\}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2\left\{1+\cos{\left(\frac{\pi}{4}\right)}\right\}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+2\cos{\left(\frac{\pi}{4}\right)}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+2\times\frac{1}{\sqrt{2}}}}}}\) ➜ \(\because \cos{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\frac{2}{\sqrt{2}}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sqrt{4\sin^2{\left(\frac{\pi}{64}\right)}}\)
\(=\sqrt{2\times2\sin^2{\left(\frac{\pi}{64}\right)}}\)
\(=\sqrt{2\left\{1-\cos{2\left(\frac{\pi}{64}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sqrt{2\left\{1-\cos{\left(\frac{\pi}{32}\right)}\right\}}\)
\(=\sqrt{2-2\cos{\left(\frac{\pi}{32}\right)}}\)
\(=\sqrt{2-\sqrt{4\cos^2{\left(\frac{\pi}{32}\right)}}}\)
\(=\sqrt{2-\sqrt{2\times2\cos^2{\left(\frac{\pi}{32}\right)}}}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{32}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2\left\{1+\cos{\left(\frac{\pi}{16}\right)}\right\}}}\)
\(=\sqrt{2-\sqrt{2+2\cos{\left(\frac{\pi}{16}\right)}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{4\cos^2{\left(\frac{\pi}{16}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2\times2\cos^2{\left(\frac{\pi}{16}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{16}\right)}\right\}}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+2\cos{\left(\frac{\pi}{8}\right)}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{4\cos^2{\left(\frac{\pi}{8}\right)}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2\times2\cos^2{\left(\frac{\pi}{8}\right)}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2\left\{1+\cos{2\left(\frac{\pi}{8}\right)}\right\}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2\left\{1+\cos{\left(\frac{\pi}{4}\right)}\right\}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+2\cos{\left(\frac{\pi}{4}\right)}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+2\times\frac{1}{\sqrt{2}}}}}}\) ➜ \(\because \cos{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\frac{2}{\sqrt{2}}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}}}}}\)
\(=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7E\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
\(Q.4.(i)\) যদি \(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\) হয়, তবে দেখাও যে,
\((a) \ \cos{(\theta+\phi)}=\frac{b^2-a^2}{b^2+a^2}\)
\((c) \ \tan{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
\(Q.4.(ii)\) যদি \(a\sin{\alpha}+b\sin{\beta}=c\) এবং \(a\cos{\alpha}+b\cos{\beta}=c\) হয়, তবে প্রমাণ কর যে,
\((a) \ \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{(a+b)^2-2c^2}{ab}}\)
\((b) \ \cos{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{2c^2-(a-b)^2}{ab}}\)
\(Q.4.(iii)\) \(\sqrt{1+n}\tan{\frac{\alpha}{2}}=\sqrt{1-n}\tan{\frac{\beta}{2}}\) তবে দেখাও যে, \(\cos{\beta}=\frac{\cos{\alpha}-n}{1-n\cos{\alpha}}\)
\(Q.4.(iv)\) যদি \(A+B\ne{0}\) এবং \(\sin{A}+\sin{B}=2\sin{(A+B)}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{A}{2}}\tan{\frac{B}{2}}=\frac{1}{3}\)
\(Q.4.(v)\) \(\triangle{ABC}\) এর \(A=75^{o}\) ও \(B-C=15^{o}\) হলে দেখাও যে, \(\cos{\frac{C}{6}}=\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{3}}}\)
\(Q.4.(vi)\) \(\angle{E}+\angle{F}=65^{0}, \ \angle{F}-\angle{E}=25^{0}\) হলে দেখাও যে, \(2\sin{\left(\pi+\frac{F}{4}\right)}=-\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\((a) \ \cos{(\theta+\phi)}=\frac{b^2-a^2}{b^2+a^2}\)
রাঃ২০০৮,২০০৩; কুঃ২০১৪; সিঃ২০১৬,২০১১; বুয়েটঃ২০১১-২০১২।
\((b) \ \cos{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{a^2+b^2}\)\((c) \ \tan{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
কুঃ২০১১।
\(Q.4.(ii)\) যদি \(a\sin{\alpha}+b\sin{\beta}=c\) এবং \(a\cos{\alpha}+b\cos{\beta}=c\) হয়, তবে প্রমাণ কর যে,
\((a) \ \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{(a+b)^2-2c^2}{ab}}\)
\((b) \ \cos{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{2c^2-(a-b)^2}{ab}}\)
\(Q.4.(iii)\) \(\sqrt{1+n}\tan{\frac{\alpha}{2}}=\sqrt{1-n}\tan{\frac{\beta}{2}}\) তবে দেখাও যে, \(\cos{\beta}=\frac{\cos{\alpha}-n}{1-n\cos{\alpha}}\)
যঃ২০১৭।
\(Q.4.(iv)\) যদি \(A+B\ne{0}\) এবং \(\sin{A}+\sin{B}=2\sin{(A+B)}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{A}{2}}\tan{\frac{B}{2}}=\frac{1}{3}\)
যঃ২০১৭।
\(Q.4.(v)\) \(\triangle{ABC}\) এর \(A=75^{o}\) ও \(B-C=15^{o}\) হলে দেখাও যে, \(\cos{\frac{C}{6}}=\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{3}}}\)
যঃ২০১৯; কুঃ,চঃ ২০১০।
\(Q.4.(vi)\) \(\angle{E}+\angle{F}=65^{0}, \ \angle{F}-\angle{E}=25^{0}\) হলে দেখাও যে, \(2\sin{\left(\pi+\frac{F}{4}\right)}=-\sqrt{2-\sqrt{2+\sqrt{2}}}\)
যঃ২০১৭।
\(Q.4.(vii)\) \(x=\sin{\frac{\pi}{18}}\) হলে দেখাও যে, \(8x^4+4x^3-6x^2-2x+\frac{1}{2}=0\)
\(Q.4.(viii)\) \(\cos{\theta}=\frac{a\cos{\phi}-b}{a-b\cos{\phi}}\) হলে দেখাও যে, \(\frac{\tan{\frac{1}{2}\theta}}{\sqrt{a+b}}=\frac{\tan{\frac{1}{2}\phi}}{\sqrt{a-b}}\)
\(Q.4.(ix)\) \(\cos{36^{o}}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{1}{4}(\sqrt{5}+1)\)
\(Q.4.(x)\) \(\sec{(\theta+\alpha)}+\sec{(\theta-\alpha)}=2\sec{\theta}\) হলে দেখাও যে, \(\cos{\theta}=\pm{\sqrt{2}\cos{\frac{\alpha}{2}}}\)
\(Q.4.(xi)\) \(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\) হলে দেখাও যে, \(\tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
\(Q.4.(xii)\) \(a\cos{\theta}+b\sin{\theta}=c\) সমীকরণটি \(\theta\) এর দুইটি ভিন্ন মান \(\alpha\) ও \(\beta\) দ্বারা সিদ্ধ হলে দেখাও যে, \(\sin{(\alpha+\beta)}=\frac{2ab}{a^2+b^2}\)
\(Q.4.(xiii)\) দেখাও যে, \(\sin{x}=2^n\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\cos{\frac{x}{2^3}} ...... \cos{\frac{x}{2^n}}\sin{\frac{x}{2^2}}\)
\(Q.4.(xiv)\) যদি \(\sin{\theta}=\frac{a-b}{a+b}\) হয় তবে প্রমাণ কর যে, \(\tan{\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}=\pm{\sqrt{\frac{b}{a}}}\)
\(Q.4.(xv)\) যদি \(\cos{\theta}=\frac{\cos{\alpha}-\cos{\beta}}{1-\cos{\alpha}\cos{\beta}}\) হয় তবে প্রমাণ কর যে, \(\tan{\frac{\theta}{2}}\) অনুপাতের একটি মান হবে \(\tan{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\)
\(Q.4.(xvi)\) \(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\) হলে দেখাও যে, \(\frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
\(Q.4.(viii)\) \(\cos{\theta}=\frac{a\cos{\phi}-b}{a-b\cos{\phi}}\) হলে দেখাও যে, \(\frac{\tan{\frac{1}{2}\theta}}{\sqrt{a+b}}=\frac{\tan{\frac{1}{2}\phi}}{\sqrt{a-b}}\)
\(Q.4.(ix)\) \(\cos{36^{o}}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{1}{4}(\sqrt{5}+1)\)
\(Q.4.(x)\) \(\sec{(\theta+\alpha)}+\sec{(\theta-\alpha)}=2\sec{\theta}\) হলে দেখাও যে, \(\cos{\theta}=\pm{\sqrt{2}\cos{\frac{\alpha}{2}}}\)
\(Q.4.(xi)\) \(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\) হলে দেখাও যে, \(\tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
\(Q.4.(xii)\) \(a\cos{\theta}+b\sin{\theta}=c\) সমীকরণটি \(\theta\) এর দুইটি ভিন্ন মান \(\alpha\) ও \(\beta\) দ্বারা সিদ্ধ হলে দেখাও যে, \(\sin{(\alpha+\beta)}=\frac{2ab}{a^2+b^2}\)
\(Q.4.(xiii)\) দেখাও যে, \(\sin{x}=2^n\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\cos{\frac{x}{2^3}} ...... \cos{\frac{x}{2^n}}\sin{\frac{x}{2^2}}\)
\(Q.4.(xiv)\) যদি \(\sin{\theta}=\frac{a-b}{a+b}\) হয় তবে প্রমাণ কর যে, \(\tan{\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}=\pm{\sqrt{\frac{b}{a}}}\)
\(Q.4.(xv)\) যদি \(\cos{\theta}=\frac{\cos{\alpha}-\cos{\beta}}{1-\cos{\alpha}\cos{\beta}}\) হয় তবে প্রমাণ কর যে, \(\tan{\frac{\theta}{2}}\) অনুপাতের একটি মান হবে \(\tan{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\)
\(Q.4.(xvi)\) \(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\) হলে দেখাও যে, \(\frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
\(Q.4.(i)\) যদি \(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\) হয়, তবে দেখাও যে,
\((a) \ \cos{(\theta+\phi)}=\frac{b^2-a^2}{b^2+a^2}\)
\((c) \ \tan{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
\((a) \ \cos{(\theta+\phi)}=\frac{b^2-a^2}{b^2+a^2}\)
রাঃ২০০৮,২০০৩; কুঃ২০১৪; সিঃ২০১৬,২০১১; বুয়েটঃ২০১১-২০১২।
\((b) \ \cos{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{a^2+b^2}\)\((c) \ \tan{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
কুঃ২০১১।
সমাধানঃ
দেওয়া আছে,
\(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\)
\((a)\)
ধরি,
\(\sin{\theta}+\sin{\phi}=a ........(1)\)
এবং \(\cos{\theta}+\cos{\phi}=b ......(2)\)
\((2)\) কে \((1)\) দ্বারা ভাগ করে ,
\(\frac{\cos{\theta}+\cos{\phi}}{\sin{\theta}+\sin{\phi}}=\frac{b}{a}\)
\(\Rightarrow \frac{(\cos{\theta}+\cos{\phi})^2}{(\sin{\theta}+\sin{\phi})^2}=\frac{b^2}{a^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{(\cos{\theta}+\cos{\phi})^2-(\sin{\theta}+\sin{\phi})^2}{(\cos{\theta}+\cos{\phi})^2+(\sin{\theta}+\sin{\phi})^2}=\frac{b^2-a^2}{b^2+a^2}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}-\sin^2{\theta}-\sin^2{\phi}-2\sin{\theta}\sin{\phi}}{\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}+\sin^2{\theta}+\sin^2{\phi}+2\sin{\theta}\sin{\phi}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow \frac{(\cos^2{\theta}-\sin^2{\theta})+(\cos^2{\phi}-\sin^2{\phi})+2(\cos{\theta}\cos{\phi}-\sin{\theta}\sin{\phi})}{(\sin^2{\theta}+\cos^2{\theta})+(\sin^2{\phi}+\cos^2{\phi})+2(\cos{\theta}\cos{\phi}+\sin{\theta}\sin{\phi})}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \frac{\cos{2\theta}+\cos{2\phi}+2\cos{(\theta+\phi)}}{1+1+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
\(\cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(\sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow \frac{\cos{2\theta}+\cos{2\phi}+2\cos{(\theta+\phi)}}{2+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \frac{2\cos{\frac{2\theta+2\phi}{2}}\cos{\frac{2\theta-2\phi}{2}}+2\cos{(\theta+\phi)}}{2+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because \cos{C}+\cos{D}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{2\cos{\frac{2(\theta+\phi)}{2}}\cos{\frac{2(\theta-\phi)}{2}}+2\cos{(\theta+\phi)}}{2+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \frac{2\cos{(\theta+\phi)}\cos{(\theta-\phi)}+2\cos{(\theta+\phi)}}{2+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \frac{2\cos{(\theta+\phi)}\{1+\cos{(\theta-\phi)}\}}{2\{1+\cos{(\theta-\phi)}\}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\therefore \cos{(\theta+\phi)}=\frac{b^2-a^2}{b^2+a^2}\)
(প্রমাণিত)
\((b)\)
ধরি,
\(\sin{\theta}+\sin{\phi}=a ........(1)\)
এবং \(\cos{\theta}+\cos{\phi}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\theta}+\sin{\phi})^2+(\cos{\theta}+\cos{\phi})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\theta}+\sin^2{\phi}+2\sin{\theta}\sin{\phi}+\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}=a^2+b^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{\theta}+\cos^2{\theta})+(\sin^2{\phi}+\cos^2{\phi})+2(\cos{\theta}\cos{\phi}+\sin{\theta}\sin{\phi})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\theta-\phi)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\theta-\phi)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\theta-\phi)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\theta-\phi}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\theta-\phi}{2}\right)}=a^2+b^2\)
\(\Rightarrow \cos^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{1}{4}(a^2+b^2)\)
\(\Rightarrow \cos{\left(\frac{\theta-\phi}{2}\right)}=\pm\sqrt{\frac{1}{4}(a^2+b^2)}\)
\(\therefore \cos{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{a^2+b^2}\)
(প্রমাণিত)
\((c)\)
ধরি,
\(\sin{\theta}+\sin{\phi}=a .....(1)\)
এবং \(\cos{\theta}+\cos{\phi}=b .....(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\theta}+\sin{\phi})^2+(\cos{\theta}+\cos{\phi})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\theta}+\sin^2{\phi}+2\sin{\theta}\sin{\phi}+\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}=a^2+b^2\) ➜ \(\because (p+q)^2=p^2+q^2+2pq\)
\(\Rightarrow (\sin^2{\theta}+\cos^2{\theta})+(\sin^2{\phi}+\cos^2{\phi})+2(\cos{\theta}\cos{\phi}+\sin{\theta}\sin{\phi})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\theta-\phi)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\theta-\phi)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\theta-\phi}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\theta-\phi}{2}\right)}=a^2+b^2\)
\(\Rightarrow \cos^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{a^2+b^2}{4}\)
\(\Rightarrow \frac{1}{\cos^2{\left(\frac{\theta-\phi}{2}\right)}}=\frac{4}{a^2+b^2}\) ➜ ব্যাস্তকরণ করে,
\(\Rightarrow \sec^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(\Rightarrow 1+\tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}\) ➜ \(\because \sec^2{A}=1+tan^2{A}\)
\(\Rightarrow \tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}-1\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4-a^2-b^2}{a^2+b^2}\)
\(\therefore \tan{\frac{1}{2}(\theta-\phi)}=\pm\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
(প্রমাণিত)
\(\sin{\theta}+\sin{\phi}=a\) এবং \(\cos{\theta}+\cos{\phi}=b\)
\((a)\)
ধরি,
\(\sin{\theta}+\sin{\phi}=a ........(1)\)
এবং \(\cos{\theta}+\cos{\phi}=b ......(2)\)
\((2)\) কে \((1)\) দ্বারা ভাগ করে ,
\(\frac{\cos{\theta}+\cos{\phi}}{\sin{\theta}+\sin{\phi}}=\frac{b}{a}\)
\(\Rightarrow \frac{(\cos{\theta}+\cos{\phi})^2}{(\sin{\theta}+\sin{\phi})^2}=\frac{b^2}{a^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{(\cos{\theta}+\cos{\phi})^2-(\sin{\theta}+\sin{\phi})^2}{(\cos{\theta}+\cos{\phi})^2+(\sin{\theta}+\sin{\phi})^2}=\frac{b^2-a^2}{b^2+a^2}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}-\sin^2{\theta}-\sin^2{\phi}-2\sin{\theta}\sin{\phi}}{\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}+\sin^2{\theta}+\sin^2{\phi}+2\sin{\theta}\sin{\phi}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow \frac{(\cos^2{\theta}-\sin^2{\theta})+(\cos^2{\phi}-\sin^2{\phi})+2(\cos{\theta}\cos{\phi}-\sin{\theta}\sin{\phi})}{(\sin^2{\theta}+\cos^2{\theta})+(\sin^2{\phi}+\cos^2{\phi})+2(\cos{\theta}\cos{\phi}+\sin{\theta}\sin{\phi})}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \frac{\cos{2\theta}+\cos{2\phi}+2\cos{(\theta+\phi)}}{1+1+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
\(\cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(\sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow \frac{\cos{2\theta}+\cos{2\phi}+2\cos{(\theta+\phi)}}{2+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \frac{2\cos{\frac{2\theta+2\phi}{2}}\cos{\frac{2\theta-2\phi}{2}}+2\cos{(\theta+\phi)}}{2+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\) ➜ \(\because \cos{C}+\cos{D}=2\cos{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(\Rightarrow \frac{2\cos{\frac{2(\theta+\phi)}{2}}\cos{\frac{2(\theta-\phi)}{2}}+2\cos{(\theta+\phi)}}{2+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \frac{2\cos{(\theta+\phi)}\cos{(\theta-\phi)}+2\cos{(\theta+\phi)}}{2+2\cos{(\theta-\phi)}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\Rightarrow \frac{2\cos{(\theta+\phi)}\{1+\cos{(\theta-\phi)}\}}{2\{1+\cos{(\theta-\phi)}\}}=\frac{b^2-a^2}{b^2+a^2}\)
\(\therefore \cos{(\theta+\phi)}=\frac{b^2-a^2}{b^2+a^2}\)
(প্রমাণিত)
\((b)\)
ধরি,
\(\sin{\theta}+\sin{\phi}=a ........(1)\)
এবং \(\cos{\theta}+\cos{\phi}=b ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\theta}+\sin{\phi})^2+(\cos{\theta}+\cos{\phi})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\theta}+\sin^2{\phi}+2\sin{\theta}\sin{\phi}+\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}=a^2+b^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow (\sin^2{\theta}+\cos^2{\theta})+(\sin^2{\phi}+\cos^2{\phi})+2(\cos{\theta}\cos{\phi}+\sin{\theta}\sin{\phi})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\theta-\phi)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\theta-\phi)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\theta-\phi)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\theta-\phi}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\theta-\phi}{2}\right)}=a^2+b^2\)
\(\Rightarrow \cos^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{1}{4}(a^2+b^2)\)
\(\Rightarrow \cos{\left(\frac{\theta-\phi}{2}\right)}=\pm\sqrt{\frac{1}{4}(a^2+b^2)}\)
\(\therefore \cos{\frac{1}{2}(\theta-\phi)}=\pm\frac{1}{2}\sqrt{a^2+b^2}\)
(প্রমাণিত)
\((c)\)
ধরি,
\(\sin{\theta}+\sin{\phi}=a .....(1)\)
এবং \(\cos{\theta}+\cos{\phi}=b .....(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((\sin{\theta}+\sin{\phi})^2+(\cos{\theta}+\cos{\phi})^2=a^2+b^2\)
\(\Rightarrow \sin^2{\theta}+\sin^2{\phi}+2\sin{\theta}\sin{\phi}+\cos^2{\theta}+\cos^2{\phi}+2\cos{\theta}\cos{\phi}=a^2+b^2\) ➜ \(\because (p+q)^2=p^2+q^2+2pq\)
\(\Rightarrow (\sin^2{\theta}+\cos^2{\theta})+(\sin^2{\phi}+\cos^2{\phi})+2(\cos{\theta}\cos{\phi}+\sin{\theta}\sin{\phi})=a^2+b^2\)
\(\Rightarrow 1+1+2\cos{(\alpha-\beta)}=a^2+b^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow 2+2\cos{(\theta-\phi)}=a^2+b^2\)
\(\Rightarrow 2\{1+\cos{(\theta-\phi)}\}=a^2+b^2\)
\(\Rightarrow 2\{2\cos^2{\left(\frac{\theta-\phi}{2}\right)}\}=a^2+b^2\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow 4\cos^2{\left(\frac{\theta-\phi}{2}\right)}=a^2+b^2\)
\(\Rightarrow \cos^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{a^2+b^2}{4}\)
\(\Rightarrow \frac{1}{\cos^2{\left(\frac{\theta-\phi}{2}\right)}}=\frac{4}{a^2+b^2}\) ➜ ব্যাস্তকরণ করে,
\(\Rightarrow \sec^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}\) ➜ \(\because \frac{1}{\cos{A}}=\sec{A}\)
\(\Rightarrow 1+\tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}\) ➜ \(\because \sec^2{A}=1+tan^2{A}\)
\(\Rightarrow \tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4}{a^2+b^2}-1\) ➜ পক্ষান্তর করে।
\(\Rightarrow \tan^2{\left(\frac{\theta-\phi}{2}\right)}=\frac{4-a^2-b^2}{a^2+b^2}\)
\(\therefore \tan{\frac{1}{2}(\theta-\phi)}=\pm\sqrt{\frac{4-a^2-b^2}{a^2+b^2}}\)
(প্রমাণিত)
\(Q.4.(ii)\) যদি \(a\sin{\alpha}+b\sin{\beta}=c\) এবং \(a\cos{\alpha}+b\cos{\beta}=c\) হয়, তবে প্রমাণ কর যে,
\((a) \ \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{(a+b)^2-2c^2}{ab}}\)
\((b) \ \cos{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{2c^2-(a-b)^2}{ab}}\)
\((a) \ \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{(a+b)^2-2c^2}{ab}}\)
\((b) \ \cos{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{2c^2-(a-b)^2}{ab}}\)
সমাধানঃ
দেওয়া আছে,
\(a\sin{\alpha}+b\sin{\beta}=c\) এবং \(a\cos{\alpha}+b\cos{\beta}=c\)
\((a)\)
ধরি,
\(a\sin{\alpha}+b\sin{\beta}=c ........(1)\)
এবং \(a\cos{\alpha}+b\cos{\beta}=c ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((a\sin{\alpha}+b\sin{\beta})^2+(a\cos{\alpha}+b\cos{\beta})^2=c^2+c^2\)
\(\Rightarrow a^2\sin^2{\alpha}+b^2\sin^2{\beta}+2ab\sin{\alpha}\sin{\beta}+a^2\cos^2{\alpha}+b^2\cos^2{\beta}+2ab\cos{\alpha}\cos{\beta}=2c^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow a^2(\sin^2{\alpha}+\cos^2{\alpha})+b^2(\sin^2{\beta}+\cos^2{\beta})+2ab(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=2c^2\)
\(\Rightarrow a^2.1+b^2.1+2ab\cos{(\alpha-\beta)}=2c^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow a^2+b^2+2ab\cos{(\alpha-\beta)}=2c^2\)
\(\Rightarrow 2ab\cos{(\alpha-\beta)}=2c^2-(a^2+b^2)\)
\(\Rightarrow \cos{(\alpha-\beta)}=\frac{2c^2-(a^2+b^2)}{2ab}\)
\(\Rightarrow 1-2\sin^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a^2+b^2)}{2ab}\) ➜ \(\because \cos{A}=1-2\sin^2{\frac{A}{2}}\)
\(\Rightarrow 1-\frac{2c^2-(a^2+b^2)}{2ab}=2\sin^2{\frac{\alpha-\beta}{2}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \frac{2ab-2c^2+(a^2+b^2)}{2ab}=2\sin^2{\frac{\alpha-\beta}{2}}\)
\(\Rightarrow \frac{a^2+b^2+2ab-2c^2}{2ab}=2\sin^2{\frac{\alpha-\beta}{2}}\)
\(\Rightarrow \frac{(a+b)^2-2c^2}{2ab}=2\sin^2{\frac{\alpha-\beta}{2}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(\Rightarrow 2\sin^2{\frac{\alpha-\beta}{2}}=\frac{(a+b)^2-2c^2}{2ab}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \sin^2{\frac{\alpha-\beta}{2}}=\frac{(a+b)^2-2c^2}{4ab}\)
\(\Rightarrow \sin^2{\frac{\alpha-\beta}{2}}=\frac{(a+b)^2-2c^2}{4ab}\)
\(\Rightarrow \sin{\frac{\alpha-\beta}{2}}=\pm\sqrt{\frac{(a+b)^2-2c^2}{4ab}}\)
\(\therefore \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{(a+b)^2-2c^2}{ab}}\)
(দেখানো হলো)
\((b)\)
ধরি,
\(a\sin{\alpha}+b\sin{\beta}=c ........(1)\)
এবং \(a\cos{\alpha}+b\cos{\beta}=c ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((a\sin{\alpha}+b\sin{\beta})^2+(a\cos{\alpha}+b\cos{\beta})^2=c^2+c^2\)
\(\Rightarrow a^2\sin^2{\alpha}+b^2\sin^2{\beta}+2ab\sin{\alpha}\sin{\beta}+a^2\cos^2{\alpha}+b^2\cos^2{\beta}+2ab\cos{\alpha}\cos{\beta}=2c^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow a^2(\sin^2{\alpha}+\cos^2{\alpha})+b^2(\sin^2{\beta}+\cos^2{\beta})+2ab(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=2c^2\)
\(\Rightarrow a^2.1+b^2.1+2ab\cos{(\alpha-\beta)}=2c^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow a^2+b^2+2ab\cos{(\alpha-\beta)}=2c^2\)
\(\Rightarrow 2ab\cos{(\alpha-\beta)}=2c^2-(a^2+b^2)\)
\(\Rightarrow \cos{(\alpha-\beta)}=\frac{2c^2-(a^2+b^2)}{2ab}\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}-1=\frac{2c^2-(a^2+b^2)}{2ab}\) ➜ \(\because \cos{A}=2\cos^2{\frac{A}{2}}-1\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a^2+b^2)}{2ab}+1\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a^2+b^2)+2ab}{2ab}\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a^2+b^2-2ab)}{2ab}\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a-b)^2}{2ab}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)
\(\Rightarrow \cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a-b)^2}{4ab}\)
\(\Rightarrow \cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a-b)^2}{4ab}\)
\(\Rightarrow \cos{\frac{\alpha-\beta}{2}}=\pm\sqrt{\frac{2c^2-(a-b)^2}{4ab}}\)
\(\therefore \cos{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{2c^2-(a-b)^2}{ab}}\)
(দেখানো হলো)
\(a\sin{\alpha}+b\sin{\beta}=c\) এবং \(a\cos{\alpha}+b\cos{\beta}=c\)
\((a)\)
ধরি,
\(a\sin{\alpha}+b\sin{\beta}=c ........(1)\)
এবং \(a\cos{\alpha}+b\cos{\beta}=c ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((a\sin{\alpha}+b\sin{\beta})^2+(a\cos{\alpha}+b\cos{\beta})^2=c^2+c^2\)
\(\Rightarrow a^2\sin^2{\alpha}+b^2\sin^2{\beta}+2ab\sin{\alpha}\sin{\beta}+a^2\cos^2{\alpha}+b^2\cos^2{\beta}+2ab\cos{\alpha}\cos{\beta}=2c^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow a^2(\sin^2{\alpha}+\cos^2{\alpha})+b^2(\sin^2{\beta}+\cos^2{\beta})+2ab(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=2c^2\)
\(\Rightarrow a^2.1+b^2.1+2ab\cos{(\alpha-\beta)}=2c^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow a^2+b^2+2ab\cos{(\alpha-\beta)}=2c^2\)
\(\Rightarrow 2ab\cos{(\alpha-\beta)}=2c^2-(a^2+b^2)\)
\(\Rightarrow \cos{(\alpha-\beta)}=\frac{2c^2-(a^2+b^2)}{2ab}\)
\(\Rightarrow 1-2\sin^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a^2+b^2)}{2ab}\) ➜ \(\because \cos{A}=1-2\sin^2{\frac{A}{2}}\)
\(\Rightarrow 1-\frac{2c^2-(a^2+b^2)}{2ab}=2\sin^2{\frac{\alpha-\beta}{2}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \frac{2ab-2c^2+(a^2+b^2)}{2ab}=2\sin^2{\frac{\alpha-\beta}{2}}\)
\(\Rightarrow \frac{a^2+b^2+2ab-2c^2}{2ab}=2\sin^2{\frac{\alpha-\beta}{2}}\)
\(\Rightarrow \frac{(a+b)^2-2c^2}{2ab}=2\sin^2{\frac{\alpha-\beta}{2}}\) ➜ \(\because a^2+b^2+2ab=(a+b)^2\)
\(\Rightarrow 2\sin^2{\frac{\alpha-\beta}{2}}=\frac{(a+b)^2-2c^2}{2ab}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \sin^2{\frac{\alpha-\beta}{2}}=\frac{(a+b)^2-2c^2}{4ab}\)
\(\Rightarrow \sin^2{\frac{\alpha-\beta}{2}}=\frac{(a+b)^2-2c^2}{4ab}\)
\(\Rightarrow \sin{\frac{\alpha-\beta}{2}}=\pm\sqrt{\frac{(a+b)^2-2c^2}{4ab}}\)
\(\therefore \sin{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{(a+b)^2-2c^2}{ab}}\)
(দেখানো হলো)
\((b)\)
ধরি,
\(a\sin{\alpha}+b\sin{\beta}=c ........(1)\)
এবং \(a\cos{\alpha}+b\cos{\beta}=c ......(2)\)
\((1)\) ও \((2)\) বর্গ করে যোগ করি,
\((a\sin{\alpha}+b\sin{\beta})^2+(a\cos{\alpha}+b\cos{\beta})^2=c^2+c^2\)
\(\Rightarrow a^2\sin^2{\alpha}+b^2\sin^2{\beta}+2ab\sin{\alpha}\sin{\beta}+a^2\cos^2{\alpha}+b^2\cos^2{\beta}+2ab\cos{\alpha}\cos{\beta}=2c^2\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
\(\Rightarrow a^2(\sin^2{\alpha}+\cos^2{\alpha})+b^2(\sin^2{\beta}+\cos^2{\beta})+2ab(\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta})=2c^2\)
\(\Rightarrow a^2.1+b^2.1+2ab\cos{(\alpha-\beta)}=2c^2\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(\cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\(\Rightarrow a^2+b^2+2ab\cos{(\alpha-\beta)}=2c^2\)
\(\Rightarrow 2ab\cos{(\alpha-\beta)}=2c^2-(a^2+b^2)\)
\(\Rightarrow \cos{(\alpha-\beta)}=\frac{2c^2-(a^2+b^2)}{2ab}\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}-1=\frac{2c^2-(a^2+b^2)}{2ab}\) ➜ \(\because \cos{A}=2\cos^2{\frac{A}{2}}-1\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a^2+b^2)}{2ab}+1\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a^2+b^2)+2ab}{2ab}\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a^2+b^2-2ab)}{2ab}\)
\(\Rightarrow 2\cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a-b)^2}{2ab}\) ➜ \(\because a^2+b^2-2ab=(a-b)^2\)
\(\Rightarrow \cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a-b)^2}{4ab}\)
\(\Rightarrow \cos^2{\frac{\alpha-\beta}{2}}=\frac{2c^2-(a-b)^2}{4ab}\)
\(\Rightarrow \cos{\frac{\alpha-\beta}{2}}=\pm\sqrt{\frac{2c^2-(a-b)^2}{4ab}}\)
\(\therefore \cos{\frac{1}{2}(\alpha-\beta)}=\pm\frac{1}{2}\sqrt{\frac{2c^2-(a-b)^2}{ab}}\)
(দেখানো হলো)
\(Q.4.(iii)\) \(\sqrt{1+n}\tan{\frac{\alpha}{2}}=\sqrt{1-n}\tan{\frac{\beta}{2}}\) তবে দেখাও যে, \(\cos{\beta}=\frac{\cos{\alpha}-n}{1-n\cos{\alpha}}\)
যঃ২০১৭।
সমাধানঃ
দেওয়া আছে,
\(\sqrt{1+n}\tan{\frac{\alpha}{2}}=\sqrt{1-n}\tan{\frac{\beta}{2}}\)
\(\Rightarrow \tan{\frac{\alpha}{2}}=\sqrt{\frac{1-n}{1+n}}\tan{\frac{\beta}{2}}\)
\(\Rightarrow \tan^2{\frac{\alpha}{2}}=\frac{1-n}{1+n}\tan^2{\frac{\beta}{2}}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{1+n}{1-n}\tan^2{\frac{\alpha}{2}}=\tan^2{\frac{\beta}{2}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \tan^2{\frac{\beta}{2}}=\frac{1+n}{1-n}\tan^2{\frac{\alpha}{2}}\) ➜ আবার পক্ষান্তর করে,
\(\Rightarrow \frac{\sin^2{\frac{\beta}{2}}}{\cos^2{\frac{\beta}{2}}}=\frac{(1+n)\sin^2{\frac{\alpha}{2}}}{(1-n)\cos^2{\frac{\alpha}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \frac{\cos^2{\frac{\beta}{2}}}{\sin^2{\frac{\beta}{2}}}=\frac{(1-n)\cos^2{\frac{\alpha}{2}}}{(1+n)\sin^2{\frac{\alpha}{2}}}\) ➜ ব্যাস্তকরণ করে,
\(\Rightarrow \frac{\cos^2{\frac{\beta}{2}}-\sin^2{\frac{\beta}{2}}}{\cos^2{\frac{\beta}{2}}+\sin^2{\frac{\beta}{2}}}=\frac{(1-n)\cos^2{\frac{\alpha}{2}}-(1+n)\sin^2{\frac{\alpha}{2}}}{(1-n)\cos^2{\frac{\alpha}{2}}+(1+n)\sin^2{\frac{\alpha}{2}}}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{\cos{2\left(\frac{\beta}{2}\right)}}{1}=\frac{\cos^2{\frac{\alpha}{2}}-n\cos^2{\frac{\alpha}{2}}-\sin^2{\frac{\alpha}{2}}-n\sin^2{\frac{\alpha}{2}}}{\cos^2{\frac{\alpha}{2}}-n\cos^2{\frac{\alpha}{2}}+\sin^2{\frac{\alpha}{2}}+n\sin^2{\frac{\alpha}{2}}}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow \cos{\beta}=\frac{\left(\cos^2{\frac{\alpha}{2}}-\sin^2{\frac{\alpha}{2}}\right)-n\left(\cos^2{\frac{\alpha}{2}}+\sin^2{\frac{\alpha}{2}}\right)}{\left(\cos^2{\frac{\alpha}{2}}+\sin^2{\frac{\alpha}{2}}\right)-n\left(\cos^2{\frac{\alpha}{2}}-\sin^2{\frac{\alpha}{2}}\right)}\)
\(\Rightarrow \cos{\beta}=\frac{\cos{2\left(\frac{\alpha}{2}\right)}-n.1}{1-n\cos{2\left(\frac{\alpha}{2}\right)}}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\cos^2{A}+\sin^2{A}=1\)
\(\therefore \cos{\beta}=\frac{\cos{\alpha}-n}{1-n\cos{\alpha}}\)
(দেখানো হলো)
\(\sqrt{1+n}\tan{\frac{\alpha}{2}}=\sqrt{1-n}\tan{\frac{\beta}{2}}\)
\(\Rightarrow \tan{\frac{\alpha}{2}}=\sqrt{\frac{1-n}{1+n}}\tan{\frac{\beta}{2}}\)
\(\Rightarrow \tan^2{\frac{\alpha}{2}}=\frac{1-n}{1+n}\tan^2{\frac{\beta}{2}}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{1+n}{1-n}\tan^2{\frac{\alpha}{2}}=\tan^2{\frac{\beta}{2}}\) ➜ পক্ষান্তর করে,
\(\Rightarrow \tan^2{\frac{\beta}{2}}=\frac{1+n}{1-n}\tan^2{\frac{\alpha}{2}}\) ➜ আবার পক্ষান্তর করে,
\(\Rightarrow \frac{\sin^2{\frac{\beta}{2}}}{\cos^2{\frac{\beta}{2}}}=\frac{(1+n)\sin^2{\frac{\alpha}{2}}}{(1-n)\cos^2{\frac{\alpha}{2}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \frac{\cos^2{\frac{\beta}{2}}}{\sin^2{\frac{\beta}{2}}}=\frac{(1-n)\cos^2{\frac{\alpha}{2}}}{(1+n)\sin^2{\frac{\alpha}{2}}}\) ➜ ব্যাস্তকরণ করে,
\(\Rightarrow \frac{\cos^2{\frac{\beta}{2}}-\sin^2{\frac{\beta}{2}}}{\cos^2{\frac{\beta}{2}}+\sin^2{\frac{\beta}{2}}}=\frac{(1-n)\cos^2{\frac{\alpha}{2}}-(1+n)\sin^2{\frac{\alpha}{2}}}{(1-n)\cos^2{\frac{\alpha}{2}}+(1+n)\sin^2{\frac{\alpha}{2}}}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{\cos{2\left(\frac{\beta}{2}\right)}}{1}=\frac{\cos^2{\frac{\alpha}{2}}-n\cos^2{\frac{\alpha}{2}}-\sin^2{\frac{\alpha}{2}}-n\sin^2{\frac{\alpha}{2}}}{\cos^2{\frac{\alpha}{2}}-n\cos^2{\frac{\alpha}{2}}+\sin^2{\frac{\alpha}{2}}+n\sin^2{\frac{\alpha}{2}}}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\sin^2{A}+\cos^2{A}=1\)
\(\Rightarrow \cos{\beta}=\frac{\left(\cos^2{\frac{\alpha}{2}}-\sin^2{\frac{\alpha}{2}}\right)-n\left(\cos^2{\frac{\alpha}{2}}+\sin^2{\frac{\alpha}{2}}\right)}{\left(\cos^2{\frac{\alpha}{2}}+\sin^2{\frac{\alpha}{2}}\right)-n\left(\cos^2{\frac{\alpha}{2}}-\sin^2{\frac{\alpha}{2}}\right)}\)
\(\Rightarrow \cos{\beta}=\frac{\cos{2\left(\frac{\alpha}{2}\right)}-n.1}{1-n\cos{2\left(\frac{\alpha}{2}\right)}}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
এবং \(\cos^2{A}+\sin^2{A}=1\)
\(\therefore \cos{\beta}=\frac{\cos{\alpha}-n}{1-n\cos{\alpha}}\)
(দেখানো হলো)
\(Q.4.(iv)\) যদি \(A+B\ne{0}\) এবং \(\sin{A}+\sin{B}=2\sin{(A+B)}\) হয়, তবে প্রমাণ কর যে, \(\tan{\frac{A}{2}}\tan{\frac{B}{2}}=\frac{1}{3}\)
যঃ২০১৭।
সমাধানঃ
দেওয়া আছে,
\(A+B\ne{0}\) এবং \(\sin{A}+\sin{B}=2\sin{(A+B)}\)
\(\Rightarrow 2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}=2\times2\sin{\frac{A+B}{2}}\cos{\frac{A+B}{2}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(\Rightarrow 2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}-4\sin{\frac{A+B}{2}}\cos{\frac{A+B}{2}}=0\)
\(\Rightarrow 2\sin{\frac{A+B}{2}}\left(\cos{\frac{A-B}{2}}-2\cos{\frac{A+B}{2}}\right)=0\)
\(\Rightarrow \cos{\frac{A-B}{2}}-2\cos{\frac{A+B}{2}}=0 \ \because A+B\ne{0} \ \therefore \sin{\frac{A+B}{2}}\ne{0}\)
\(\Rightarrow \cos{\frac{A-B}{2}}=2\cos{\frac{A+B}{2}}\)
\(\Rightarrow \frac{\cos{\frac{A-B}{2}}}{\cos{\frac{A+B}{2}}}=2\)
\(\Rightarrow \frac{\cos{\frac{A-B}{2}}-\cos{\frac{A+B}{2}}}{\cos{\frac{A-B}{2}}+\cos{\frac{A+B}{2}}}=\frac{2-1}{2+1}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{\cos{\left(\frac{A}{2}-\frac{B}{2}\right)}-\cos{\left(\frac{A}{2}+\frac{B}{2}\right)}}{\cos{\left(\frac{A}{2}-\frac{B}{2}\right)}+\cos{\left(\frac{A}{2}+\frac{B}{2}\right)}}=\frac{1}{3}\)
\(\Rightarrow \frac{2\sin{\frac{A}{2}}\sin{\frac{B}{2}}}{2\cos{\frac{A}{2}}\cos{\frac{B}{2}}}=\frac{1}{3}\) ➜ \(\because \cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
এবং \(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(\Rightarrow \frac{\sin{\frac{A}{2}}\sin{\frac{B}{2}}}{\cos{\frac{A}{2}}\cos{\frac{B}{2}}}=\frac{1}{3}\)
\(\therefore \tan{\frac{A}{2}}\tan{\frac{B}{2}}=\frac{1}{3}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
(প্রমাণিত)
\(A+B\ne{0}\) এবং \(\sin{A}+\sin{B}=2\sin{(A+B)}\)
\(\Rightarrow 2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}=2\times2\sin{\frac{A+B}{2}}\cos{\frac{A+B}{2}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)
\(\Rightarrow 2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}-4\sin{\frac{A+B}{2}}\cos{\frac{A+B}{2}}=0\)
\(\Rightarrow 2\sin{\frac{A+B}{2}}\left(\cos{\frac{A-B}{2}}-2\cos{\frac{A+B}{2}}\right)=0\)
\(\Rightarrow \cos{\frac{A-B}{2}}-2\cos{\frac{A+B}{2}}=0 \ \because A+B\ne{0} \ \therefore \sin{\frac{A+B}{2}}\ne{0}\)
\(\Rightarrow \cos{\frac{A-B}{2}}=2\cos{\frac{A+B}{2}}\)
\(\Rightarrow \frac{\cos{\frac{A-B}{2}}}{\cos{\frac{A+B}{2}}}=2\)
\(\Rightarrow \frac{\cos{\frac{A-B}{2}}-\cos{\frac{A+B}{2}}}{\cos{\frac{A-B}{2}}+\cos{\frac{A+B}{2}}}=\frac{2-1}{2+1}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{\cos{\left(\frac{A}{2}-\frac{B}{2}\right)}-\cos{\left(\frac{A}{2}+\frac{B}{2}\right)}}{\cos{\left(\frac{A}{2}-\frac{B}{2}\right)}+\cos{\left(\frac{A}{2}+\frac{B}{2}\right)}}=\frac{1}{3}\)
\(\Rightarrow \frac{2\sin{\frac{A}{2}}\sin{\frac{B}{2}}}{2\cos{\frac{A}{2}}\cos{\frac{B}{2}}}=\frac{1}{3}\) ➜ \(\because \cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
এবং \(\cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
\(\Rightarrow \frac{\sin{\frac{A}{2}}\sin{\frac{B}{2}}}{\cos{\frac{A}{2}}\cos{\frac{B}{2}}}=\frac{1}{3}\)
\(\therefore \tan{\frac{A}{2}}\tan{\frac{B}{2}}=\frac{1}{3}\) ➜ \(\because \frac{\sin{P}}{\cos{P}}=\tan{P}\)
(প্রমাণিত)
\(Q.4.(v)\) \(\triangle{ABC}\) এর \(A=75^{o}\) ও \(B-C=15^{o}\) হলে দেখাও যে, \(\cos{\frac{C}{6}}=\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{3}}}\)
যঃ২০১৯; কুঃ,চঃ ২০১০।
সমাধানঃ
দেওয়া আছে,
\(\triangle{ABC}\) এর \(A=75^{o}\) ও \(B-C=15^{o}\)
ধরি,
\(B-C=15^{o} ......(1)\)
\(\triangle{ABC}\) এ
\(A+B+C=180^{o}\)
\(\Rightarrow 75^{o}+B+C=180^{o}\) ➜ \(\because A=75^{o}\)
\(\Rightarrow B+C=180^{o}-75^{o}\)
\(\therefore B+C=105^{o} ......(2)\)
\((2)-(1)\) এর সাহায্যে,
\(B+C-B+C=105^{o}-15^{o}\)
\(\Rightarrow 2C=90^{o}\)
\(\Rightarrow C=\frac{90^{o}}{2}\)
\(\therefore C=45^{o}\)
\(L.S=\cos{\frac{C}{6}}\)
\(=\cos{\frac{45^{o}}{6}}\) ➜ \(\because C=45^{o}\)
\(=\cos{\frac{15^{o}}{2}}\)
\(=\frac{1}{2}\sqrt{4\cos^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\times2\cos^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\left\{1+\cos{2\left(\frac{15}{2}\right)^{o}}\right\}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{2}\sqrt{2(1+\cos{15^{o}})}\)
\(=\frac{1}{2}\sqrt{2+2\cos{15^{o}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{4\cos^2{15^{o}}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2\times2\cos^2{15^{o}}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2\{1+\cos{(2\times15^{o})}\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2\{1+\cos{30^{o}}\}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2\left(1+\frac{\sqrt{3}}{2}\right)}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{3}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\triangle{ABC}\) এর \(A=75^{o}\) ও \(B-C=15^{o}\)
ধরি,
\(B-C=15^{o} ......(1)\)
\(\triangle{ABC}\) এ
\(A+B+C=180^{o}\)
\(\Rightarrow 75^{o}+B+C=180^{o}\) ➜ \(\because A=75^{o}\)
\(\Rightarrow B+C=180^{o}-75^{o}\)
\(\therefore B+C=105^{o} ......(2)\)
\((2)-(1)\) এর সাহায্যে,
\(B+C-B+C=105^{o}-15^{o}\)
\(\Rightarrow 2C=90^{o}\)
\(\Rightarrow C=\frac{90^{o}}{2}\)
\(\therefore C=45^{o}\)
\(L.S=\cos{\frac{C}{6}}\)
\(=\cos{\frac{45^{o}}{6}}\) ➜ \(\because C=45^{o}\)
\(=\cos{\frac{15^{o}}{2}}\)
\(=\frac{1}{2}\sqrt{4\cos^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\times2\cos^2{\left(\frac{15}{2}\right)^{o}}}\)
\(=\frac{1}{2}\sqrt{2\left\{1+\cos{2\left(\frac{15}{2}\right)^{o}}\right\}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{2}\sqrt{2(1+\cos{15^{o}})}\)
\(=\frac{1}{2}\sqrt{2+2\cos{15^{o}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{4\cos^2{15^{o}}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2\times2\cos^2{15^{o}}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2\{1+\cos{(2\times15^{o})}\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2\{1+\cos{30^{o}}\}}}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2\left(1+\frac{\sqrt{3}}{2}\right)}}\) ➜ \(\because \cos{30^{o}}=\frac{\sqrt{3}}{2}\)
\(=\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{3}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(vi)\) \(\angle{E}+\angle{F}=65^{0}, \ \angle{F}-\angle{E}=25^{0}\) হলে দেখাও যে, \(2\sin{\left(\pi+\frac{F}{4}\right)}=-\sqrt{2-\sqrt{2+\sqrt{2}}}\)
যঃ২০১৭।
সমাধানঃ
দেওয়া আছে,
\(\angle{E}+\angle{F}=65^{o}, \ \angle{F}-\angle{E}=25^{o}\)
ধরি,
\(\angle{E}+\angle{F}=65^{o}........(1)\)
\(\angle{F}-\angle{E}=25^{o} ........(2)\)
\((1)\) ও \((2)\) যোগ করে।
\(\angle{E}+\angle{F}+\angle{F}-\angle{E}=65^{o}+25^{o}\)
\(\Rightarrow 2\angle{F}=90^{o}\)
\(\Rightarrow \angle{F}=\frac{90^{o}}{2}\)
\(\therefore \angle{F}=45^{o}\)
\(L.S=2\sin{\left(\pi+\frac{F}{4}\right)}\)
\(=2\sin{\left(\frac{\pi}{2}\times2+\frac{45^{o}}{4}\right)}\)
\(=-2\sin{\left(\frac{45^{o}}{4}\right)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি তৃতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=-2\sin{11^{o}15^{\prime}}\)
\(=-\sqrt{4\sin^2{\left(\frac{45^{o}}{4}\right)}}\)
\(=-\sqrt{2\times2\sin^2{\left(\frac{45^{o}}{4}\right)}}\)
\(=-\sqrt{2\left\{1-\cos{2\left(\frac{45^{o}}{4}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=-\sqrt{2\left\{1-\cos{\left(\frac{45^{o}}{2}\right)}\right\}}\)
\(=-\sqrt{2-2\cos{\left(\frac{45^{o}}{2}\right)}}\)
\(=-\sqrt{2-\sqrt{4\cos^2{\left(\frac{45^{o}}{2}\right)}}}\)
\(=-\sqrt{2-\sqrt{2\times2\cos^2{\left(\frac{45^{o}}{2}\right)}}}\)
\(=-\sqrt{2-\sqrt{2\left\{1+\cos{2\left(\frac{45^{o}}{2}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=-\sqrt{2-\sqrt{2\left\{1+\cos{\left(45^{o}\right)}\right\}}}\)
\(=-\sqrt{2-\sqrt{2+2\cos{\left(45^{o}\right)}}}\)
\(=-\sqrt{2-\sqrt{2+2\times\frac{1}{\sqrt{2}}}}\) ➜ \(\because \cos{\left(45^{o}\right)}=\frac{1}{\sqrt{2}}\)
\(=-\sqrt{2-\sqrt{2+\frac{2}{\sqrt{2}}}}\)
\(=-\sqrt{2-\sqrt{2+\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}}}\)
\(=-\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\angle{E}+\angle{F}=65^{o}, \ \angle{F}-\angle{E}=25^{o}\)
ধরি,
\(\angle{E}+\angle{F}=65^{o}........(1)\)
\(\angle{F}-\angle{E}=25^{o} ........(2)\)
\((1)\) ও \((2)\) যোগ করে।
\(\angle{E}+\angle{F}+\angle{F}-\angle{E}=65^{o}+25^{o}\)
\(\Rightarrow 2\angle{F}=90^{o}\)
\(\Rightarrow \angle{F}=\frac{90^{o}}{2}\)
\(\therefore \angle{F}=45^{o}\)
\(L.S=2\sin{\left(\pi+\frac{F}{4}\right)}\)
\(=2\sin{\left(\frac{\pi}{2}\times2+\frac{45^{o}}{4}\right)}\)
\(=-2\sin{\left(\frac{45^{o}}{4}\right)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি তৃতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
তাই অনুপাতের পরিবর্তন হয়নি।
\(=-2\sin{11^{o}15^{\prime}}\)
\(=-\sqrt{4\sin^2{\left(\frac{45^{o}}{4}\right)}}\)
\(=-\sqrt{2\times2\sin^2{\left(\frac{45^{o}}{4}\right)}}\)
\(=-\sqrt{2\left\{1-\cos{2\left(\frac{45^{o}}{4}\right)}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=-\sqrt{2\left\{1-\cos{\left(\frac{45^{o}}{2}\right)}\right\}}\)
\(=-\sqrt{2-2\cos{\left(\frac{45^{o}}{2}\right)}}\)
\(=-\sqrt{2-\sqrt{4\cos^2{\left(\frac{45^{o}}{2}\right)}}}\)
\(=-\sqrt{2-\sqrt{2\times2\cos^2{\left(\frac{45^{o}}{2}\right)}}}\)
\(=-\sqrt{2-\sqrt{2\left\{1+\cos{2\left(\frac{45^{o}}{2}\right)}\right\}}}\) ➜ \(\because 2\cos^2{A}=1+\cos{2A}\)
\(=-\sqrt{2-\sqrt{2\left\{1+\cos{\left(45^{o}\right)}\right\}}}\)
\(=-\sqrt{2-\sqrt{2+2\cos{\left(45^{o}\right)}}}\)
\(=-\sqrt{2-\sqrt{2+2\times\frac{1}{\sqrt{2}}}}\) ➜ \(\because \cos{\left(45^{o}\right)}=\frac{1}{\sqrt{2}}\)
\(=-\sqrt{2-\sqrt{2+\frac{2}{\sqrt{2}}}}\)
\(=-\sqrt{2-\sqrt{2+\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}}}\)
\(=-\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(vii)\) \(x=\sin{\frac{\pi}{18}}\) হলে দেখাও যে, \(8x^4+4x^3-6x^2-2x+\frac{1}{2}=0\)
সমাধানঃ
দেওয়া আছে,
\(x=\sin{\frac{\pi}{18}}\)
আমরা জানি,
\(3\sin{A}-4\sin^3{A}=\sin{3A}\)
\(\Rightarrow 3\sin{\frac{\pi}{18}}-4\sin^3{\frac{\pi}{18}}=\sin{\left(3\times\frac{\pi}{18}\right)}\) ➜ \(A=\frac{\pi}{18}\) বসিয়ে,
\(\Rightarrow 3x-4x^3=\sin{\frac{\pi}{6}}\) ➜ \(\because x=\sin{\frac{\pi}{18}}\)
\(\Rightarrow 3x-4x^3=\frac{1}{2}\) ➜ \(\because \sin{\frac{\pi}{6}}=\frac{1}{2}\)
\(\Rightarrow 6x-8x^3=1\)
\(\Rightarrow 6x-8x^3-1=0\)
\(\therefore 8x^3-6x+1=0\)
এখন, \(L.S=8x^4+4x^3-6x^2-2x+\frac{1}{2}\)
\(=8x^4-6x^2+x+4x^3-3x+\frac{1}{2}\)
\(=x(8x^3-6x+1)+\frac{1}{2}(8x^3-6x+1)\)
\(=x(0)+\frac{1}{2}(0)\) ➜ \(\because 8x^3-6x+1=0\)
\(=0+0\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(x=\sin{\frac{\pi}{18}}\)
আমরা জানি,
\(3\sin{A}-4\sin^3{A}=\sin{3A}\)
\(\Rightarrow 3\sin{\frac{\pi}{18}}-4\sin^3{\frac{\pi}{18}}=\sin{\left(3\times\frac{\pi}{18}\right)}\) ➜ \(A=\frac{\pi}{18}\) বসিয়ে,
\(\Rightarrow 3x-4x^3=\sin{\frac{\pi}{6}}\) ➜ \(\because x=\sin{\frac{\pi}{18}}\)
\(\Rightarrow 3x-4x^3=\frac{1}{2}\) ➜ \(\because \sin{\frac{\pi}{6}}=\frac{1}{2}\)
\(\Rightarrow 6x-8x^3=1\)
\(\Rightarrow 6x-8x^3-1=0\)
\(\therefore 8x^3-6x+1=0\)
এখন, \(L.S=8x^4+4x^3-6x^2-2x+\frac{1}{2}\)
\(=8x^4-6x^2+x+4x^3-3x+\frac{1}{2}\)
\(=x(8x^3-6x+1)+\frac{1}{2}(8x^3-6x+1)\)
\(=x(0)+\frac{1}{2}(0)\) ➜ \(\because 8x^3-6x+1=0\)
\(=0+0\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(Q.4.(viii)\) \(\cos{\theta}=\frac{a\cos{\phi}-b}{a-b\cos{\phi}}\) হলে দেখাও যে, \(\frac{\tan{\frac{1}{2}\theta}}{\sqrt{a+b}}=\frac{\tan{\frac{1}{2}\phi}}{\sqrt{a-b}}\)
সমাধানঃ
দেওয়া আছে,
\(\cos{\theta}=\frac{a\cos{\phi}-b}{a-b\cos{\phi}}\)
\(\Rightarrow \frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}=\frac{a\frac{1-\tan^2{\frac{\phi}{2}}}{1+\tan^2{\frac{\phi}{2}}}-b}{a-b\frac{1-\tan^2{\frac{\phi}{2}}}{1+\tan^2{\frac{\phi}{2}}}}\) ➜ \(\because \cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\Rightarrow \frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}=\frac{a-a\tan^2{\frac{\phi}{2}}-b-b\tan^2{\frac{\phi}{2}}}{a+a\tan^2{\frac{\phi}{2}}-b+b\tan^2{\frac{\phi}{2}}}\) ➜ ডান পাশের লব ও হরকে \(\left(1+\tan^2{\frac{\phi}{2}}\right)\) দ্বারা গুণ করে,
\(\Rightarrow \frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}=\frac{(a-b)-(a+b)\tan^2{\frac{\phi}{2}}}{(a-b)+(a+b)\tan^2{\frac{\phi}{2}}}\)
\(\Rightarrow \frac{1-\tan^2{\frac{\theta}{2}}+1+\tan^2{\frac{\theta}{2}}}{1-\tan^2{\frac{\theta}{2}}-1-\tan^2{\frac{\theta}{2}}}=\frac{(a-b)-(a+b)\tan^2{\frac{\phi}{2}}+(a-b)+(a+b)\tan^2{\frac{\phi}{2}}}{(a-b)-(a+b)\tan^2{\frac{\phi}{2}}-(a-b)-(a+b)\tan^2{\frac{\phi}{2}}}\) ➜ যোজন-বিয়োজন করে,
\(\Rightarrow \frac{2}{-2\tan^2{\frac{\theta}{2}}}=\frac{2(a-b)}{-2(a+b)\tan^2{\frac{\phi}{2}}}\)
\(\Rightarrow \frac{1}{\tan^2{\frac{\theta}{2}}}=\frac{(a-b)}{(a+b)\tan^2{\frac{\phi}{2}}}\)
\(\Rightarrow \frac{1}{(a-b)\tan^2{\frac{\theta}{2}}}=\frac{1}{(a+b)\tan^2{\frac{\phi}{2}}}\)
\(\Rightarrow \frac{\tan^2{\frac{\phi}{2}}}{a-b}=\frac{\tan^2{\frac{\theta}{2}}}{a+b}\)
\(\Rightarrow \left(\frac{\tan{\frac{\phi}{2}}}{\sqrt{a-b}}\right)^2=\left(\frac{\tan{\frac{\theta}{2}}}{\sqrt{a+b}}\right)^2\)
\(\Rightarrow \frac{\tan{\frac{\phi}{2}}}{\sqrt{a-b}}=\frac{\tan{\frac{\theta}{2}}}{\sqrt{a+b}}\)
\(\therefore \frac{\tan{\frac{\theta}{2}}}{\sqrt{a+b}}=\frac{\tan{\frac{\phi}{2}}}{\sqrt{a-b}}\) ➜ পক্ষান্তর করে,
(দেখানো হলো)
\(\cos{\theta}=\frac{a\cos{\phi}-b}{a-b\cos{\phi}}\)
\(\Rightarrow \frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}=\frac{a\frac{1-\tan^2{\frac{\phi}{2}}}{1+\tan^2{\frac{\phi}{2}}}-b}{a-b\frac{1-\tan^2{\frac{\phi}{2}}}{1+\tan^2{\frac{\phi}{2}}}}\) ➜ \(\because \cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(\Rightarrow \frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}=\frac{a-a\tan^2{\frac{\phi}{2}}-b-b\tan^2{\frac{\phi}{2}}}{a+a\tan^2{\frac{\phi}{2}}-b+b\tan^2{\frac{\phi}{2}}}\) ➜ ডান পাশের লব ও হরকে \(\left(1+\tan^2{\frac{\phi}{2}}\right)\) দ্বারা গুণ করে,
\(\Rightarrow \frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}=\frac{(a-b)-(a+b)\tan^2{\frac{\phi}{2}}}{(a-b)+(a+b)\tan^2{\frac{\phi}{2}}}\)
\(\Rightarrow \frac{1-\tan^2{\frac{\theta}{2}}+1+\tan^2{\frac{\theta}{2}}}{1-\tan^2{\frac{\theta}{2}}-1-\tan^2{\frac{\theta}{2}}}=\frac{(a-b)-(a+b)\tan^2{\frac{\phi}{2}}+(a-b)+(a+b)\tan^2{\frac{\phi}{2}}}{(a-b)-(a+b)\tan^2{\frac{\phi}{2}}-(a-b)-(a+b)\tan^2{\frac{\phi}{2}}}\) ➜ যোজন-বিয়োজন করে,
\(\Rightarrow \frac{2}{-2\tan^2{\frac{\theta}{2}}}=\frac{2(a-b)}{-2(a+b)\tan^2{\frac{\phi}{2}}}\)
\(\Rightarrow \frac{1}{\tan^2{\frac{\theta}{2}}}=\frac{(a-b)}{(a+b)\tan^2{\frac{\phi}{2}}}\)
\(\Rightarrow \frac{1}{(a-b)\tan^2{\frac{\theta}{2}}}=\frac{1}{(a+b)\tan^2{\frac{\phi}{2}}}\)
\(\Rightarrow \frac{\tan^2{\frac{\phi}{2}}}{a-b}=\frac{\tan^2{\frac{\theta}{2}}}{a+b}\)
\(\Rightarrow \left(\frac{\tan{\frac{\phi}{2}}}{\sqrt{a-b}}\right)^2=\left(\frac{\tan{\frac{\theta}{2}}}{\sqrt{a+b}}\right)^2\)
\(\Rightarrow \frac{\tan{\frac{\phi}{2}}}{\sqrt{a-b}}=\frac{\tan{\frac{\theta}{2}}}{\sqrt{a+b}}\)
\(\therefore \frac{\tan{\frac{\theta}{2}}}{\sqrt{a+b}}=\frac{\tan{\frac{\phi}{2}}}{\sqrt{a-b}}\) ➜ পক্ষান্তর করে,
(দেখানো হলো)
\(Q.4.(ix)\) \(\cos{36^{o}}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{1}{4}(\sqrt{5}+1)\)
উত্তরঃ \(\frac{1}{4}(\sqrt{5}+1)\)
সমাধানঃ
প্রদত্ত রাশি,
\(\cos{36^{o}}\)
\(=\cos{(2\times18^{o})}\)
\(=1-2\sin^2{18^{o}}\) ➜ \(\because \cos{2A}=1-2\sin^2{A}\)
\(=1-2\left(\frac{\sqrt{5}-1}{4}\right)^2\) ➜ \(\because \sin{18^{o}}=\frac{\sqrt{5}-1}{4}\)
\(=1-2\frac{(\sqrt{5}-1)^2}{16}\)
\(=1-\frac{(\sqrt{5}-1)^2}{8}\)
\(=1-\frac{5+1-2\sqrt{5}}{8}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=1-\frac{6-2\sqrt{5}}{8}\)
\(=\frac{8-6+2\sqrt{5}}{8}\)
\(=\frac{2+2\sqrt{5}}{8}\)
\(=\frac{2(\sqrt{5}+1)}{8}\)
\(=\frac{\sqrt{5}+1}{4}\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
ইহাই নির্ণেয় মান।
\(\cos{36^{o}}\)
\(=\cos{(2\times18^{o})}\)
\(=1-2\sin^2{18^{o}}\) ➜ \(\because \cos{2A}=1-2\sin^2{A}\)
\(=1-2\left(\frac{\sqrt{5}-1}{4}\right)^2\) ➜ \(\because \sin{18^{o}}=\frac{\sqrt{5}-1}{4}\)
\(=1-2\frac{(\sqrt{5}-1)^2}{16}\)
\(=1-\frac{(\sqrt{5}-1)^2}{8}\)
\(=1-\frac{5+1-2\sqrt{5}}{8}\) ➜ \(\because (a-b)^2=a^2+b^2-2ab\)
\(=1-\frac{6-2\sqrt{5}}{8}\)
\(=\frac{8-6+2\sqrt{5}}{8}\)
\(=\frac{2+2\sqrt{5}}{8}\)
\(=\frac{2(\sqrt{5}+1)}{8}\)
\(=\frac{\sqrt{5}+1}{4}\)
\(=\frac{1}{4}(\sqrt{5}+1)\)
ইহাই নির্ণেয় মান।
\(Q.4.(x)\) \(\sec{(\theta+\alpha)}+\sec{(\theta-\alpha)}=2\sec{\theta}\) হলে দেখাও যে, \(\cos{\theta}=\pm{\sqrt{2}\cos{\frac{\alpha}{2}}}\)
সমাধানঃ
দেওয়া আছে,
\(\sec{(\theta+\alpha)}+\sec{(\theta-\alpha)}=2\sec{\theta}\)
\(\Rightarrow \frac{1}{\cos{(\theta+\alpha)}}+\frac{1}{\cos{(\theta-\alpha)}}=\frac{2}{\cos{\theta}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(\Rightarrow \frac{\cos{(\theta-\alpha)}+\cos{(\theta+\alpha)}}{\cos{(\theta+\alpha)}\cos{(\theta-\alpha)}}=\frac{2}{\cos{\theta}}\)
\(\Rightarrow \frac{2\cos{\theta}\cos{\alpha}}{\cos^2{\theta}-\sin^2{\alpha}}=\frac{2}{\cos{\theta}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
এবং \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(\Rightarrow \frac{\cos{\theta}\cos{\alpha}}{\cos^2{\theta}-\sin^2{\alpha}}=\frac{1}{\cos{\theta}}\)
\(\Rightarrow \cos^2{\theta}\cos{\alpha}=\cos^2{\theta}-\sin^2{\alpha}\)
\(\Rightarrow \cos^2{\theta}\cos{\alpha}-\cos^2{\theta}=-\sin^2{\alpha}\)
\(\Rightarrow -\cos^2{\theta}(1-\cos{\alpha})=-\sin^2{\alpha}\)
\(\Rightarrow \cos^2{\theta}=\frac{\sin^2{\alpha}}{1-\cos{\alpha}}\)
\(\Rightarrow \cos^2{\theta}=\frac{1-\cos^2{\alpha}}{1-\cos{\alpha}}\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
\(\Rightarrow \cos^2{\theta}=\frac{(1+\cos{\alpha})(1-\cos{\alpha})}{1-\cos{\alpha}}\) ➜ \(\because a^2-b^2=(a+b)(a-b)\)
\(\Rightarrow \cos^2{\theta}=1+\cos{\alpha}\)
\(\Rightarrow \cos^2{\theta}=2\cos^2{\frac{\alpha}{2}}\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\therefore \cos{\theta}=\pm{\sqrt{2}\cos{\frac{\alpha}{2}}}\)
(দেখানো হলো)
\(\sec{(\theta+\alpha)}+\sec{(\theta-\alpha)}=2\sec{\theta}\)
\(\Rightarrow \frac{1}{\cos{(\theta+\alpha)}}+\frac{1}{\cos{(\theta-\alpha)}}=\frac{2}{\cos{\theta}}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
\(\Rightarrow \frac{\cos{(\theta-\alpha)}+\cos{(\theta+\alpha)}}{\cos{(\theta+\alpha)}\cos{(\theta-\alpha)}}=\frac{2}{\cos{\theta}}\)
\(\Rightarrow \frac{2\cos{\theta}\cos{\alpha}}{\cos^2{\theta}-\sin^2{\alpha}}=\frac{2}{\cos{\theta}}\) ➜ \(\because \cos{(A-B)}+\cos{(A+B)}=2\cos{A}\cos{B}\)
এবং \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(\Rightarrow \frac{\cos{\theta}\cos{\alpha}}{\cos^2{\theta}-\sin^2{\alpha}}=\frac{1}{\cos{\theta}}\)
\(\Rightarrow \cos^2{\theta}\cos{\alpha}=\cos^2{\theta}-\sin^2{\alpha}\)
\(\Rightarrow \cos^2{\theta}\cos{\alpha}-\cos^2{\theta}=-\sin^2{\alpha}\)
\(\Rightarrow -\cos^2{\theta}(1-\cos{\alpha})=-\sin^2{\alpha}\)
\(\Rightarrow \cos^2{\theta}=\frac{\sin^2{\alpha}}{1-\cos{\alpha}}\)
\(\Rightarrow \cos^2{\theta}=\frac{1-\cos^2{\alpha}}{1-\cos{\alpha}}\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
\(\Rightarrow \cos^2{\theta}=\frac{(1+\cos{\alpha})(1-\cos{\alpha})}{1-\cos{\alpha}}\) ➜ \(\because a^2-b^2=(a+b)(a-b)\)
\(\Rightarrow \cos^2{\theta}=1+\cos{\alpha}\)
\(\Rightarrow \cos^2{\theta}=2\cos^2{\frac{\alpha}{2}}\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\therefore \cos{\theta}=\pm{\sqrt{2}\cos{\frac{\alpha}{2}}}\)
(দেখানো হলো)
\(Q.4.(xi)\) \(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\) হলে দেখাও যে, \(\tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\)
ধরি,
\(\sin{A}=\frac{1}{\sqrt{2}} .....(1)\)
এবং \(\sin{B}=\frac{1}{\sqrt{3}} .....(2)\)
\((1)\div(2)\) এর সাহায্যে,
\(\frac{\sin{A}}{\sin{B}}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{3}}}\)
\(\Rightarrow \frac{\sin{A}}{\sin{B}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{1}\)
\(\Rightarrow \frac{\sin{A}}{\sin{B}}=\frac{\sqrt{3}}{\sqrt{2}}\)
\(\Rightarrow \frac{\sin{A}+\sin{B}}{\sin{A}-\sin{B}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
\(\Rightarrow \tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং ডান পাশের লব ও হরকে \((\sqrt{3}+\sqrt{2})\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3})^2+(\sqrt{2})^2+2\sqrt{3}\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a-b)(a+b)=a^2-b^2\)
\(=\frac{3+2+2\sqrt{6}}{3-2}\)
\(=\frac{5+2\sqrt{6}}{1}\)
\(\therefore \tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
( দেখানো হলো)
\(\sin{A}=\frac{1}{\sqrt{2}}\) এবং \(\sin{B}=\frac{1}{\sqrt{3}}\)
ধরি,
\(\sin{A}=\frac{1}{\sqrt{2}} .....(1)\)
এবং \(\sin{B}=\frac{1}{\sqrt{3}} .....(2)\)
\((1)\div(2)\) এর সাহায্যে,
\(\frac{\sin{A}}{\sin{B}}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{3}}}\)
\(\Rightarrow \frac{\sin{A}}{\sin{B}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{1}\)
\(\Rightarrow \frac{\sin{A}}{\sin{B}}=\frac{\sqrt{3}}{\sqrt{2}}\)
\(\Rightarrow \frac{\sin{A}+\sin{B}}{\sin{A}-\sin{B}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ➜ যোজন-বিয়োজন করে।
\(\Rightarrow \frac{2\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{2\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
এবং \(\sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow \frac{\sin{\frac{A+B}{2}}\cos{\frac{A-B}{2}}}{\cos{\frac{A+B}{2}}\sin{\frac{A-B}{2}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
\(\Rightarrow \tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(\frac{\cos{A}}{\sin{A}}=\cot{A}\)
এবং ডান পাশের লব ও হরকে \((\sqrt{3}+\sqrt{2})\) দ্বারা গুণ করে।
\(=\frac{(\sqrt{3})^2+(\sqrt{2})^2+2\sqrt{3}\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}\) ➜ \(\because (a+b)^2=a^2+b^2+2ab\)
এবং \((a-b)(a+b)=a^2-b^2\)
\(=\frac{3+2+2\sqrt{6}}{3-2}\)
\(=\frac{5+2\sqrt{6}}{1}\)
\(\therefore \tan{\frac{A+B}{2}}\cot{\frac{A-B}{2}}=5+2\sqrt{6}\)
( দেখানো হলো)
\(Q.4.(xii)\) \(a\cos{\theta}+b\sin{\theta}=c\) সমীকরণটি \(\theta\) এর দুইটি ভিন্ন মান \(\alpha\) ও \(\beta\) দ্বারা সিদ্ধ হলে দেখাও যে, \(\sin{(\alpha+\beta)}=\frac{2ab}{a^2+b^2}\)
সমাধানঃ
দেওয়া আছে,
\(a\cos{\theta}+b\sin{\theta}=c\) সমীকরণটি \(\theta\) এর দুইটি ভিন্ন মান \(\alpha\) ও \(\beta\) দ্বারা সিদ্ধ
শর্ত মতে,
\(a\cos{\alpha}+b\sin{\alpha}=c .....(1)\)
এবং \(a\cos{\beta}+b\sin{\beta}=c .....(2)\)
\((1)\) ও \((2)\) হতে,
\(a\cos{\alpha}+b\sin{\alpha}=a\cos{\beta}+b\sin{\beta}\)
\(\Rightarrow b\sin{\alpha}-b\sin{\beta}=a\cos{\beta}-a\cos{\alpha}\) ➜ পক্ষান্তর করে।
\(\Rightarrow b(\sin{\alpha}-\sin{\beta})=a(\cos{\beta}-\cos{\alpha})\)
\(\Rightarrow b\times2\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}=a\times2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow b\cos{\frac{\alpha+\beta}{2}}=a\sin{\frac{\alpha+\beta}{2}}\) ➜ \(\because \sin{\frac{\alpha-\beta}{2}}\ne{0}\)
\(\Rightarrow \frac{\sin{\frac{\alpha+\beta}{2}}}{\cos{\frac{\alpha+\beta}{2}}}=\frac{b}{a}\) ➜ পক্ষান্তর করে।
\(\therefore \tan{\frac{\alpha+\beta}{2}}=\frac{b}{a}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(L.S=\sin{(\alpha+\beta)}\)
\(=\frac{2\tan{\frac{\alpha+\beta}{2}}}{1+\tan^2{\frac{\alpha+\beta}{2}}}\) ➜ \(\because \sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(=\frac{2\times\frac{b}{a}}{1+\left(\frac{b}{a}\right)^2}\) ➜ \(\because \tan{\frac{\alpha+\beta}{2}}=\frac{b}{a}\)
\(=\frac{\frac{2b}{a}}{1+\frac{b^2}{a^2}}\)
\(=\frac{2ab}{a^2+b^2}\) ➜ লব ও হরকে \(a^2\) দ্বারা গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
( দেখানো হলো)
\(a\cos{\theta}+b\sin{\theta}=c\) সমীকরণটি \(\theta\) এর দুইটি ভিন্ন মান \(\alpha\) ও \(\beta\) দ্বারা সিদ্ধ
শর্ত মতে,
\(a\cos{\alpha}+b\sin{\alpha}=c .....(1)\)
এবং \(a\cos{\beta}+b\sin{\beta}=c .....(2)\)
\((1)\) ও \((2)\) হতে,
\(a\cos{\alpha}+b\sin{\alpha}=a\cos{\beta}+b\sin{\beta}\)
\(\Rightarrow b\sin{\alpha}-b\sin{\beta}=a\cos{\beta}-a\cos{\alpha}\) ➜ পক্ষান্তর করে।
\(\Rightarrow b(\sin{\alpha}-\sin{\beta})=a(\cos{\beta}-\cos{\alpha})\)
\(\Rightarrow b\times2\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}=a\times2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\Rightarrow b\cos{\frac{\alpha+\beta}{2}}=a\sin{\frac{\alpha+\beta}{2}}\) ➜ \(\because \sin{\frac{\alpha-\beta}{2}}\ne{0}\)
\(\Rightarrow \frac{\sin{\frac{\alpha+\beta}{2}}}{\cos{\frac{\alpha+\beta}{2}}}=\frac{b}{a}\) ➜ পক্ষান্তর করে।
\(\therefore \tan{\frac{\alpha+\beta}{2}}=\frac{b}{a}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
\(L.S=\sin{(\alpha+\beta)}\)
\(=\frac{2\tan{\frac{\alpha+\beta}{2}}}{1+\tan^2{\frac{\alpha+\beta}{2}}}\) ➜ \(\because \sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)
\(=\frac{2\times\frac{b}{a}}{1+\left(\frac{b}{a}\right)^2}\) ➜ \(\because \tan{\frac{\alpha+\beta}{2}}=\frac{b}{a}\)
\(=\frac{\frac{2b}{a}}{1+\frac{b^2}{a^2}}\)
\(=\frac{2ab}{a^2+b^2}\) ➜ লব ও হরকে \(a^2\) দ্বারা গুণ করে।
\(=R.S\)
\(\therefore L.S=R.S\)
( দেখানো হলো)
\(Q.4.(xiii)\) দেখাও যে, \(\sin{x}=2^n\cos{\frac{x}{2}}\cos{\frac{x}{2^2}}\cos{\frac{x}{2^3}} ...... \cos{\frac{x}{2^n}}\sin{\frac{x}{2^2}}\)
সমাধানঃ
\(L.S=\sin{x}\)
\(=\sin{2\times\left(\frac{x}{2}\right)}\)
\(=2\sin{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2}\right)}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2\sin{2\times\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2}\right)}\)
\(=2\times2\sin{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2}\right)}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2^2\sin{2\left(\frac{x}{2^3}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2}\right)}\)
\(=2^2\times2\sin{\left(\frac{x}{2^3}\right)}\cos{\left(\frac{x}{2^3}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2}\right)}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2^3\cos{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2^3}\right)}\sin{\left(\frac{x}{2^3}\right)}\)
\(.............................................\)
\(.............................................\)
\(=2^n\cos{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2^3}\right)} ........\cos{\left(\frac{x}{2^n}\right)}\sin{\left(\frac{x}{2^n}\right)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
( দেখানো হলো)
\(=\sin{2\times\left(\frac{x}{2}\right)}\)
\(=2\sin{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2}\right)}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2\sin{2\times\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2}\right)}\)
\(=2\times2\sin{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2}\right)}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2^2\sin{2\left(\frac{x}{2^3}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2}\right)}\)
\(=2^2\times2\sin{\left(\frac{x}{2^3}\right)}\cos{\left(\frac{x}{2^3}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2}\right)}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(=2^3\cos{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2^3}\right)}\sin{\left(\frac{x}{2^3}\right)}\)
\(.............................................\)
\(.............................................\)
\(=2^n\cos{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2^2}\right)}\cos{\left(\frac{x}{2^3}\right)} ........\cos{\left(\frac{x}{2^n}\right)}\sin{\left(\frac{x}{2^n}\right)}\)
\(=R.S\)
\(\therefore L.S=R.S\)
( দেখানো হলো)
\(Q.4.(xiv)\) যদি \(\sin{\theta}=\frac{a-b}{a+b}\) হয় তবে প্রমাণ কর যে, \(\tan{\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}=\pm{\sqrt{\frac{b}{a}}}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{\theta}=\frac{a-b}{a+b}\)
\(L.S=\tan{\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}\)
\(=\frac{\tan{\frac{\pi}{4}}-\tan{\frac{\theta}{2}}}{1+\tan{\frac{\pi}{4}}\tan{\frac{\theta}{2}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{1-\tan{\frac{\theta}{2}}}{1+1.\tan{\frac{\theta}{2}}}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=\frac{1-\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}{1+\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}+\sin{\frac{\theta}{2}}}\) ➜ লব ও হরকে \(\cos{\frac{\theta}{2}}\) দ্বারা গুণ করে,
\(=\frac{\left(\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}\right)^2}{\left(\cos{\frac{\theta}{2}}+\sin{\frac{\theta}{2}}\right)\left(\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}\right)}\) ➜ আবার, লব ও হরকে \(\left(\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}\right)\) দ্বারা গুণ করে,
\(=\frac{\cos^2{\frac{\theta}{2}}-2\cos{\frac{\theta}{2}}\sin{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}-2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}{\cos{\theta}}\) ➜ \(\because \cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}=\cos{A}\)
\(=\frac{1-\sin{\theta}}{\cos{\theta}}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\because 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(=\frac{1-\sin{\theta}}{\pm{\sqrt{1-\sin^2{\theta}}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
\(=\frac{1-\frac{a-b}{a+b}}{\pm{\sqrt{1-\left(\frac{a-b}{a+b}\right)^2}}}\) ➜ \(\because \sin{\theta}=\frac{a-b}{a+b}\)
\(=\pm\frac{1-\frac{a-b}{a+b}}{\sqrt{1-\frac{(a-b)^2}{(a+b)^2}}}\)
\(=\pm\frac{1-\frac{a-b}{a+b}}{\sqrt{\frac{(a+b)^2-(a-b)^2}{(a+b)^2}}}\)
\(=\pm\frac{1-\frac{a-b}{a+b}}{\frac{\sqrt{(a+b)^2-(a-b)^2}}{(a+b)}}\)
\(=\pm\frac{(a+b)-(a-b)}{\sqrt{(a+b)^2-(a-b)^2}}\) ➜ লব ও হরকে \((a+b)\) দ্বারা গুণ করে,
\(=\pm\frac{a+b-a+b}{\sqrt{4ab}}\)
\(=\pm\frac{2b}{2\sqrt{ab}}\)
\(=\pm\frac{\sqrt{b}\sqrt{b}}{\sqrt{a}\sqrt{b}}\)
\(=\pm\frac{\sqrt{b}}{\sqrt{a}}\)
\(=\pm\sqrt{\frac{b}{a}}\)
\(\therefore L.S=R.S\)
( দেখানো হলো)
\(\sin{\theta}=\frac{a-b}{a+b}\)
\(L.S=\tan{\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}\)
\(=\frac{\tan{\frac{\pi}{4}}-\tan{\frac{\theta}{2}}}{1+\tan{\frac{\pi}{4}}\tan{\frac{\theta}{2}}}\) ➜ \(\because \tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(=\frac{1-\tan{\frac{\theta}{2}}}{1+1.\tan{\frac{\theta}{2}}}\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(=\frac{1-\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}{1+\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}+\sin{\frac{\theta}{2}}}\) ➜ লব ও হরকে \(\cos{\frac{\theta}{2}}\) দ্বারা গুণ করে,
\(=\frac{\left(\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}\right)^2}{\left(\cos{\frac{\theta}{2}}+\sin{\frac{\theta}{2}}\right)\left(\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}\right)}\) ➜ আবার, লব ও হরকে \(\left(\cos{\frac{\theta}{2}}-\sin{\frac{\theta}{2}}\right)\) দ্বারা গুণ করে,
\(=\frac{\cos^2{\frac{\theta}{2}}-2\cos{\frac{\theta}{2}}\sin{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}-\sin^2{\frac{\theta}{2}}}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
এবং \((a+b)(a-b)=a^2-b^2\)
\(=\frac{\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}-2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}{\cos{\theta}}\) ➜ \(\because \cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}=\cos{A}\)
\(=\frac{1-\sin{\theta}}{\cos{\theta}}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\because 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(=\frac{1-\sin{\theta}}{\pm{\sqrt{1-\sin^2{\theta}}}}\) ➜ \(\because \cos{A}=\sqrt{1-\sin^2{A}}\)
\(=\frac{1-\frac{a-b}{a+b}}{\pm{\sqrt{1-\left(\frac{a-b}{a+b}\right)^2}}}\) ➜ \(\because \sin{\theta}=\frac{a-b}{a+b}\)
\(=\pm\frac{1-\frac{a-b}{a+b}}{\sqrt{1-\frac{(a-b)^2}{(a+b)^2}}}\)
\(=\pm\frac{1-\frac{a-b}{a+b}}{\sqrt{\frac{(a+b)^2-(a-b)^2}{(a+b)^2}}}\)
\(=\pm\frac{1-\frac{a-b}{a+b}}{\frac{\sqrt{(a+b)^2-(a-b)^2}}{(a+b)}}\)
\(=\pm\frac{(a+b)-(a-b)}{\sqrt{(a+b)^2-(a-b)^2}}\) ➜ লব ও হরকে \((a+b)\) দ্বারা গুণ করে,
\(=\pm\frac{a+b-a+b}{\sqrt{4ab}}\)
\(=\pm\frac{2b}{2\sqrt{ab}}\)
\(=\pm\frac{\sqrt{b}\sqrt{b}}{\sqrt{a}\sqrt{b}}\)
\(=\pm\frac{\sqrt{b}}{\sqrt{a}}\)
\(=\pm\sqrt{\frac{b}{a}}\)
\(\therefore L.S=R.S\)
( দেখানো হলো)
\(Q.4.(xv)\) যদি \(\cos{\theta}=\frac{\cos{\alpha}-\cos{\beta}}{1-\cos{\alpha}\cos{\beta}}\) হয় তবে প্রমাণ কর যে, \(\tan{\frac{\theta}{2}}\) অনুপাতের একটি মান হবে \(\tan{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\)
সমাধানঃ
দেওয়া আছে,
\(\cos{\theta}=\frac{\cos{\alpha}-\cos{\beta}}{1-\cos{\alpha}\cos{\beta}}\)
\(\Rightarrow \frac{1}{\cos{\theta}}=\frac{1-\cos{\alpha}\cos{\beta}}{\cos{\alpha}-\cos{\beta}}\) ➜ ব্যাস্তকরণ করে,
\(\Rightarrow \frac{1-\cos{\theta}}{1+\cos{\theta}}=\frac{1-\cos{\alpha}\cos{\beta}-\cos{\alpha}+\cos{\beta}}{1-\cos{\alpha}\cos{\beta}+\cos{\alpha}-\cos{\beta}}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{2\sin^2{\frac{\theta}{2}}}{2\cos^2{\frac{\theta}{2}}}=\frac{1(1+\cos{\beta})-\cos{\alpha}(1+\cos{\beta})}{1(1+\cos{\alpha})-\cos{\beta}(1+\cos{\alpha})}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
এবং \(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow \frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{(1+\cos{\beta})(1-\cos{\alpha})}{(1+\cos{\alpha})(1-\cos{\beta})}\)
\(\Rightarrow \frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{2\cos^2{\frac{\beta}{2}}\times2\sin^2{\frac{\alpha}{2}}}{2\cos^2{\frac{\alpha}{2}}\times2\sin^2{\frac{\beta}{2}}}\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
এবং \(1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(\Rightarrow \left(\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}\right)^2=\left(\frac{\cos{\frac{\beta}{2}}\sin{\frac{\alpha}{2}}}{\cos{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}}\right)^2\)
\(\Rightarrow \frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}=\frac{\sin{\frac{\alpha}{2}}\cos{\frac{\beta}{2}}}{\cos{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}}\)
\(\therefore \tan{\frac{\theta}{2}}=\tan{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\)
(প্রমাণিত)
\(\cos{\theta}=\frac{\cos{\alpha}-\cos{\beta}}{1-\cos{\alpha}\cos{\beta}}\)
\(\Rightarrow \frac{1}{\cos{\theta}}=\frac{1-\cos{\alpha}\cos{\beta}}{\cos{\alpha}-\cos{\beta}}\) ➜ ব্যাস্তকরণ করে,
\(\Rightarrow \frac{1-\cos{\theta}}{1+\cos{\theta}}=\frac{1-\cos{\alpha}\cos{\beta}-\cos{\alpha}+\cos{\beta}}{1-\cos{\alpha}\cos{\beta}+\cos{\alpha}-\cos{\beta}}\) ➜ বিয়োজন-যোজন করে,
\(\Rightarrow \frac{2\sin^2{\frac{\theta}{2}}}{2\cos^2{\frac{\theta}{2}}}=\frac{1(1+\cos{\beta})-\cos{\alpha}(1+\cos{\beta})}{1(1+\cos{\alpha})-\cos{\beta}(1+\cos{\alpha})}\) ➜ \(\because 1-\cos{A}=2\sin^2{\frac{A}{2}}\)
এবং \(1+\cos{A}=2\cos^2{\frac{A}{2}}\)
\(\Rightarrow \frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{(1+\cos{\beta})(1-\cos{\alpha})}{(1+\cos{\alpha})(1-\cos{\beta})}\)
\(\Rightarrow \frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{2\cos^2{\frac{\beta}{2}}\times2\sin^2{\frac{\alpha}{2}}}{2\cos^2{\frac{\alpha}{2}}\times2\sin^2{\frac{\beta}{2}}}\) ➜ \(\because 1+\cos{A}=2\cos^2{\frac{A}{2}}\)
এবং \(1-\cos{A}=2\sin^2{\frac{A}{2}}\)
\(\Rightarrow \left(\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}\right)^2=\left(\frac{\cos{\frac{\beta}{2}}\sin{\frac{\alpha}{2}}}{\cos{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}}\right)^2\)
\(\Rightarrow \frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}=\frac{\sin{\frac{\alpha}{2}}\cos{\frac{\beta}{2}}}{\cos{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}}\)
\(\therefore \tan{\frac{\theta}{2}}=\tan{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\)
(প্রমাণিত)
\(Q.4.(xvi)\) \(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\) হলে দেখাও যে, \(\frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
সমাধানঃ
দেওয়া আছে,
\(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\)
\(\Rightarrow x\cos{\alpha}+y\sin{\alpha}=k, \ x\cos{\beta}+y\sin{\beta}=k\)
\(\therefore x\cos{\alpha}+y\sin{\alpha}-k=0, \ x\cos{\beta}+y\sin{\beta}-k=0\)
ধরি,
\(x\cos{\alpha}+y\sin{\alpha}-k=0 .......(1)\)
\(x\cos{\beta}+y\sin{\beta}-k=0 .........(2)\)
\((1)\) ও \((2)\) বজ্র গুন করে,
\(\frac{x}{-k\sin{\alpha}+k\sin{\beta}}=\frac{y}{-k\cos{\beta}+k\cos{\alpha}}=\frac{1}{\cos{\alpha}\sin{\beta}-\sin{\alpha}\cos{\beta}}\)
\(\Rightarrow \frac{x}{-k(\sin{\alpha}-\sin{\beta})}=\frac{y}{-k(\cos{\beta}-\cos{\alpha})}=\frac{1}{-(\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta})}\)
\(\Rightarrow \frac{x}{k\times2\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{y}{k\times2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{1}{\sin{(\alpha-\beta)}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\Rightarrow \frac{x}{2k\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{y}{2k\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{1}{2\sin{\frac{\alpha-\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(\Rightarrow \frac{x}{\cos{\frac{\alpha+\beta}{2}}}=\frac{y}{\sin{\frac{\alpha+\beta}{2}}}=\frac{k}{\cos{\frac{\alpha-\beta}{2}}}\) ➜ প্রতিটি পদকে \(2k\sin{\frac{\alpha-\beta}{2}}\) দ্বারা গুণ করে।
\(\therefore \frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
(দেখানো হলো)
\(x\cos{\alpha}+y\sin{\alpha}=k=x\cos{\beta}+y\sin{\beta}\)
\(\Rightarrow x\cos{\alpha}+y\sin{\alpha}=k, \ x\cos{\beta}+y\sin{\beta}=k\)
\(\therefore x\cos{\alpha}+y\sin{\alpha}-k=0, \ x\cos{\beta}+y\sin{\beta}-k=0\)
ধরি,
\(x\cos{\alpha}+y\sin{\alpha}-k=0 .......(1)\)
\(x\cos{\beta}+y\sin{\beta}-k=0 .........(2)\)
\((1)\) ও \((2)\) বজ্র গুন করে,
\(\frac{x}{-k\sin{\alpha}+k\sin{\beta}}=\frac{y}{-k\cos{\beta}+k\cos{\alpha}}=\frac{1}{\cos{\alpha}\sin{\beta}-\sin{\alpha}\cos{\beta}}\)
\(\Rightarrow \frac{x}{-k(\sin{\alpha}-\sin{\beta})}=\frac{y}{-k(\cos{\beta}-\cos{\alpha})}=\frac{1}{-(\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta})}\)
\(\Rightarrow \frac{x}{k\times2\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{y}{k\times2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{1}{\sin{(\alpha-\beta)}}\) ➜ \(\because \sin{C}-\sin{D}=2\cos{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
\(\cos{D}-\cos{C}=2\sin{\frac{C+D}{2}}\sin{\frac{C-D}{2}}\)
এবং \(\sin{A}\cos{B}-\cos{A}\sin{B}=\sin{(A-B)}\)
\(\Rightarrow \frac{x}{2k\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{y}{2k\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}}}=\frac{1}{2\sin{\frac{\alpha-\beta}{2}}\cos{\frac{\alpha-\beta}{2}}}\) ➜ \(\because \sin{2A}=2\sin{A}\cos{A}\)
\(\Rightarrow \frac{x}{\cos{\frac{\alpha+\beta}{2}}}=\frac{y}{\sin{\frac{\alpha+\beta}{2}}}=\frac{k}{\cos{\frac{\alpha-\beta}{2}}}\) ➜ প্রতিটি পদকে \(2k\sin{\frac{\alpha-\beta}{2}}\) দ্বারা গুণ করে।
\(\therefore \frac{x}{\cos{\frac{1}{2}(\alpha+\beta)}}=\frac{y}{\sin{\frac{1}{2}(\alpha+\beta)}}=\frac{k}{\cos{\frac{1}{2}(\alpha-\beta)}}\)
(দেখানো হলো)
উপ-গুণিতক কোণের ত্রিকোণমিতিক অনুপাত \(\sin{A}=2\sin{\frac{A}{2}}\cos{\frac{A}{2}}\)\(1+\sin{A}=(\sin{\frac{A}{2}}+\cos{\frac{A}{2}})^2\)\(1-\sin{A}=(\sin{\frac{A}{2}}-\cos{\frac{A}{2}})^2\)\(\sin{A}=\frac{2\tan{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)\(\cos{A}=\cos^2{\frac{A}{2}}-\sin^2{\frac{A}{2}}\)\(\cos{A}=2\cos^2{\frac{A}{2}}-1\)\(\cos{A}=1-2\sin^2{\frac{A}{2}}\)\(1+\cos{A}=2\cos^2{\frac{A}{2}}\)\(1-\cos{A}=2\sin^2{\frac{A}{2}}\)\(\cos{A}=\frac{1-\tan^2{\frac{A}{2}}}{1+\tan^2{\frac{A}{2}}}\)\(\frac{1-\cos{A}}{1+\cos{A}}=\tan^2{\frac{A}{2}}\)\(\tan{A}=\frac{2\tan{\frac{A}{2}}}{1-\tan^2{\frac{A}{2}}}\) \(\cot{A}=\frac{\cot^2{\frac{A}{2}}-1}{2\cot{\frac{A}{2}}}\) \(\sin{A}=3\sin{\frac{A}{3}}-4\sin^3{\frac{A}{3}}\)\(\cos{A}=4\cos^3{\frac{A}{3}}-3\cos{\frac{A}{3}}\) \(\tan{A}=\frac{3\tan{\frac{A}{3}}-\tan^3{\frac{A}{3}}}{1-3\tan^2{\frac{A}{3}}}\)\(\cot{A}=\frac{\cot^3{\frac{A}{3}}-3\cot{\frac{A}{3}}}{3\cot^2{\frac{A}{3}}-1}\)\(\cot{\frac{A}{2}}-\tan{\frac{A}{2}}=2\cot{A}\)\(15^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(18^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(36^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(54^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(72^{o}\) কোণের ত্রিকোণমিতিক অনুপাত \(75^{o}\) কোণের ত্রিকোণমিতিক অনুপাত অধ্যায় \(7E\)-এর উদাহরণসমুহ অধ্যায় \(7E\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ অধ্যায় \(7E\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ অধ্যায় \(7E\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ অধ্যায় \(7E\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
Email: Golzarrahman1966@gmail.com
Visitors online: 000006