এ অধ্যায়ে আমরা যে বিষয় গুলি আলোচনা করব।
- ঐতিহাসিক পটভূমি
- সার সংক্ষেপ
- বিপরীত ত্রিকোণমিতিক ফাংশন
- \(\sin^{-1}{x}=cosec^{-1}{\frac{1}{x}}\)
- \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
- \(\sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)
- \(\sin^{-1}{x}=\sec^{-1}{\frac{1}{\sqrt{1-x^2}}}\)
- \(\sin^{-1}{x}=\tan^{-1}{\frac{x}{\sqrt{1-x^2}}}\)
- \(\sin^{-1}{x}=\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
- \(\cos^{-1}{x}=\sec^{-1}{\frac{1}{x}}\)
- \(\sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
- \(\cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
- \(\cos^{-1}{x}=cosec^{-1}{\frac{1}{\sqrt{1-x^2}}}\)
- \(\cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
- \(\cos^{-1}{x}=\cot^{-1}{\frac{x}{\sqrt{1-x^2}}}\)
- \(\tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
- \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
- \(\tan^{-1}{x}=\sin^{-1}{\frac{x}{\sqrt{1+x^2}}}\)
- \(\tan^{-1}{x}=cosec^{-1}{\frac{\sqrt{1+x^2}}{x}}\)
- \(\tan^{-1}{x}=\cos^{-1}{\frac{1}{\sqrt{1+x^2}}}\)
- \(\tan^{-1}{x}=\sec^{-1}{\sqrt{1+x^2}}\)
- \(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
- \(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
- \(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
- \(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)
- \(\sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)
- \(\cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
- \(\cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
- \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
- \(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
- \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\)
- \(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\frac{xy-1}{y+x}}\)
- \(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\frac{xy+1}{y-x}}\)
- \(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\frac{xyz-x-y-z}{yz+zx+xy-1}}\)
- \(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2}})\)
- \(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)
- \(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)
- \(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)
- \(3\tan^{-1}{x}=\tan^{-1}{\frac{3x-x^3}{1-3x^2}}\)
- \(3\cot^{-1}{x}=\cot^{-1}{\frac{x^3-3x}{3x^2-1}}\)
- \(2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}=\sin^{-1}{\frac{2x}{1+x^2}}=\cos^{-1}{\frac{1-x^2}{1+x^2}}=\cot^{-1}{\frac{1-x^2}{2x}}\)
- \( f(x)=y=\sin^{-1}{x}\)-এর লেখচিত্র
- \( f(x)=y=\cos^{-1}{x}\)-এর লেখচিত্র
- \( f(x)=y=\tan^{-1}{x}\)-এর লেখচিত্র
- \( f(x)=y=cosec^{-1}{x}\)-এর লেখচিত্র
- \( f(x)=y=\sec^{-1}{x}\)-এর লেখচিত্র
- \( f(x)=y=\cot^{-1}{x}\)-এর লেখচিত্র
- অধ্যায় \(7H\)-এর উদাহরণসমুহ
- অধ্যায় \(7H\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
- অধ্যায় \(7H\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(7H\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
- অধ্যায় \(7H\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ

ঐতিহাসিক পটভূমি
Historical Background

হিপার্কাস (১৯০ খ্রিষ্টপূর্ব-১২০ খ্রিষ্টপূর্ব)
গণিত, জ্যোতির্বিদ্যা ও ভূগোলে তাঁর ব্যপক অবদান রয়েছে। তিনি প্রথম ত্রিকোণমিতিক সারনি প্রণয়ন করে 'আর্ক' ও 'কর্ড' সিরিজের মান নির্ণয় করেন। এজন্য তাঁকে ত্রিকোণমিতির জনক বলা হয়।
ত্রিকোণমিতি গণিত শাস্ত্রের একটি গুরুত্বপূর্ণ শাখা। ইংরেজী শব্দ 'Trigonometry' শব্দটি দুইটি গ্রিক শব্দ 'Trigon' যার অর্থ তিন কোণ এবং 'Metron' যার অর্থ পরিমাপ, এর সমন্বয়ে গঠিত। পরিমাপের ক্ষেত্রে উদ্ভূত নিত্য-নতুন জটিল সমস্যা সহজে সমাধানের জন্যই ত্রিকোণমিতির আবির্ভাব। খ্রিষ্টপূর্ব ২০০০ বছরেরও পূর্বে প্রাচীন মিশরীয় ও গ্রিক গণিতবিদ্গণ ত্রিকোণমিতি বিষয়ে অধ্যয়ন করতেন। জ্যোতির্বিদ্যা সংক্রান্ত গবেষণায় এটি ব্যপক ব্যবহৃত হয়। ভারত বর্ষের গুপ্ত আমলে আর্যভট্টের
প্রাচীন ভারতীয় গণিতের ইতিহাসে আর্যভট্টের (৪৭৬ – ৫৫০ খ্রিষ্টপূর্ব ) হাত ধরেই ক্লাসিকাল যুগ (কিংবা স্বর্ণযুগ) শুরু হয়। গণিত এবং জ্যোতির্বিদ্যা সংক্রান্ত আর্যভট্টের বিভিন্ন কাজ মূলত দুটি গ্রন্থে সংকলিত হয়েছে বলে জানা গেছে। এর মাঝে ‘আর্যভট্টীয়’ একটি, যেটি উদ্ধার করা গিয়েছে। এটি রচিত চার খণ্ডে, মোট ১১৮টি স্তোত্রে। অন্য যে কাজটি সম্পর্কে জানা যায় সেটি হল ‘আর্য-সিদ্ধান্ত’। আর্য-সিদ্ধান্তের কোন পাণ্ডুলিপি খুঁজে পাওয়া যায়নি, তবে বরাহমিহির, ব্রহ্মগুপ্ত এবং প্রথম ভাস্করের কাজে এটির উল্লেখ মেলে। আর্যভট্ট গ্রন্থ রচনা করেছেন পদবাচ্যের আকারে। বিশেষ অবদানের কারণে ত্রিকোনমিতির স্বরূপ উন্মোচিত হয়। পরবর্তিতে ১৭ শতকে স্যার আইজ্যাক নিউটন
১৬৮৭ সালে স্যার আইজ্যাক নিউটনের বিশ্ব নন্দিত গ্রন্থ প্রকাশিত হয়, যেখানে তিনি সর্বজনীন মহাকর্ষ সূত্র সহ গতির তিনটি সূত্র প্রদান করেন। তিনি বলবিজ্ঞানের ভিত্তি স্থাপন করেন। আলোকবিজ্ঞান, শব্দবিজ্ঞান, তাপবিজ্ঞানসহ পদার্থবিজ্ঞানের সকল মৌলিক শাখায় তাঁর অবদান অনস্বীকার্য। বৈজ্ঞানিক পর্যবেক্ষন ও পরীক্ষণের তিনি উদ্ভাবিত তত্ত্বকে যাচাই ও পরীক্ষা নিরীক্ষার জন্য পরীক্ষণের ব্যবস্থা করতেন। ১৬৬৯ সালে নিউটন ক্যামব্রিজ বিশ্ববিদ্যালয়ে গণিতের লুকাসিয়ান প্রফেসর হিসাবে যোগদান করেন। ও জেমস স্টার্লিং
স্টার্লিং (11/05/1692-5/12/1770) ছিলেন আর্চিবাল্ড স্টার্লিং অফ গার্ডেনের তৃতীয় পুত্র। ১৮ বছর বয়সে তিনি বলিওল কলেজ, অক্সফোর্ডে গিয়েছিলেন, যেখানে প্রধানত আর্ল অফ মারের প্রভাবে তিনি ব্যালিওলের বিশপ ওয়ার্নারের প্রদর্শনীকারীদের (বা স্নেল প্রদর্শনী) মনোনীত হন। লন্ডনে তিনি দশ বছর অবস্থান করেন, বেশিরভাগ সময় টাওয়ার স্ট্রিটের একটি একাডেমির সাথে যুক্ত ছিলেন এবং তাঁর অবসরকে গণিত এবং খ্যাতিমান গণিতবিদদের সাথে যোগাযোগের জন্য উৎসর্গ করেছিলেন। এর মত বিজ্ঞানীদের হাত ধরে ত্রিকোণমিতি আধুনিক গণিতের গুরুত্বপূর্ণ শাখা হিসেবে প্রতিষ্ঠা লাভ করে।
হিপার্কাসের প্রণীত সারণি সংস্কার করে ক্লডিয়াস টলেমী ত্রিকোনমিতিতে অনেক গুরুত্বপূর্ণ তথ্য সংযোজন করেন।
বিপরীত ত্রিকোণমিতিক ফাংশন একটি নির্দিষ্ট ব্যবধিতে ব্যবহৃত হয়, যেখানে একটি কোণের মানগুলি রূপায়িত থাকে। নির্দিষ্ট ব্যবধিতে বিপরীত ত্রিকোণমিতিক রেলেশনেই বিপরীত ত্রিকোণমিতিক ফাংশন এবং এটি এক-এক ফাংশন।
৪র্থ-৫ম শতাব্দীতে শীদ্ধার্থ, আর্যভট্ট, ৭ম শতাব্দীতে ভাস্করা-I ও ব্রহ্মগুপ্ত বিপরীত ত্রিকোণমিতিক সমীকরণ নিয়ে ব্যপক তত্ত্ব লিপিবদ্ধ করেন।
১৮১৩ সালে বৃটিশ গণিতবিদ জন হার্শেল
১৮১৩ সালে বৃটিশ গণিতবিদ জন হার্শেল সর্বপ্রথম বিপরীত ত্রিকোণমিতিক ফাংশনের প্রতীকগুলি \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x} ... ... \) সূচিত করেন। (John Herschel) বিপরীত ত্রিকোণমিতিক ফাংশনকে \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x}\) ইত্যাদি প্রতীক দ্বারা সূচিত করেন।



হিপার্কাসের প্রণীত সারণি সংস্কার করে ক্লডিয়াস টলেমী ত্রিকোনমিতিতে অনেক গুরুত্বপূর্ণ তথ্য সংযোজন করেন।
বিপরীত ত্রিকোণমিতিক ফাংশন একটি নির্দিষ্ট ব্যবধিতে ব্যবহৃত হয়, যেখানে একটি কোণের মানগুলি রূপায়িত থাকে। নির্দিষ্ট ব্যবধিতে বিপরীত ত্রিকোণমিতিক রেলেশনেই বিপরীত ত্রিকোণমিতিক ফাংশন এবং এটি এক-এক ফাংশন।
৪র্থ-৫ম শতাব্দীতে শীদ্ধার্থ, আর্যভট্ট, ৭ম শতাব্দীতে ভাস্করা-I ও ব্রহ্মগুপ্ত বিপরীত ত্রিকোণমিতিক সমীকরণ নিয়ে ব্যপক তত্ত্ব লিপিবদ্ধ করেন।
১৮১৩ সালে বৃটিশ গণিতবিদ জন হার্শেল

সার সংক্ষেপ
বিপরীত ত্রিকোণমিতিক ফাংশন
\(\sin^{-1}{x}=cosec^{-1}{\frac{1}{x}}\) \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\) \(\sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\) \(\sin^{-1}{x}=\sec^{-1}{\frac{1}{\sqrt{1-x^2}}}\) \(\sin^{-1}{x}=\tan^{-1}{\frac{x}{\sqrt{1-x^2}}}\) \(\sin^{-1}{x}=\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\) \(\cos^{-1}{x}=\sec^{-1}{\frac{1}{x}}\) \(\sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\) \(\cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\) \(\cos^{-1}{x}=cosec^{-1}{\frac{1}{\sqrt{1-x^2}}}\) \(\cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1+x^2}}{x}}\) \(\cos^{-1}{x}=\cot^{-1}{\frac{x}{\sqrt{1+x^2}}}\) \(\tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\) \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\) \(\tan^{-1}{x}=\sin^{-1}{\frac{x}{\sqrt{1+x^2}}}\) \(\tan^{-1}{x}=cosec^{-1}{\frac{\sqrt{1+x^2}}{x}}\)\(\tan^{-1}{x}=\cos^{-1}{\frac{1}{\sqrt{1+x^2}}}\)\(\tan^{-1}{x}=\sec^{-1}{\sqrt{1+x^2}}\)\(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)\(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)\(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)\(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)\(\sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)\(\cos^{-1}{x}+\cos^{-1}{y}=\sin^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)\(\cos^{-1}{x}-\cos^{-1}{y}=\sin^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)\(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)\(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\)\(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\frac{xy-1}{y+x}}\)\(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\frac{xy+1}{y-x}}\)\(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\frac{xyz-x-y-z}{yz+zx+xy-1}}\)\(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\)\(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)\(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)\(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)\(3\tan^{-1}{x}=\tan^{-1}{\frac{3x-x^3}{1-3x^2}}\)\(3\cot^{-1}{x}=\cot^{-1}{\frac{x^3-3x}{3x^2-1}}\)\(2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}=\sin^{-1}{\frac{2x}{1+x^2}}=\cos^{-1}{\frac{1-x^2}{1+x^2}}=\cot^{-1}{\frac{1-x^2}{2x}}\)
বিপরীত ত্রিকোণমিতিক ফাংশন
Inverse trigonometric functions
নির্দিষ্ট ব্যবধিতে বিপরীত ত্রিকোণমিতিক রেলেশনেই বিপরীত ত্রিকোণমিতিক ফাংশন, অর্থাৎ ত্রিকোণমিতিক ফাংশনের বিপরীত বিশেষ অন্বয়কে বিপরীত ত্রিকোণমিতিক ফাংশন বলা হয়। বিপরীত ত্রিকোণমিতিক ফাংশনগুলি নিম্নরূপে লেখা হয়।
যেমনঃ \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x}, \ cosec^{-1}{x}, \ \sec^{-1}{x}, \ \cot^{-1}{x}\) ইত্যাদি।
\(\sin^{-1}{x}\) কে "সাইন ইনভার্স \(x\)" পড়া হয়।
যেমনঃ \(\sin^{-1}{x}, \ \cos^{-1}{x}, \ \tan^{-1}{x}, \ cosec^{-1}{x}, \ \sec^{-1}{x}, \ \cot^{-1}{x}\) ইত্যাদি।
\(\sin^{-1}{x}\) কে "সাইন ইনভার্স \(x\)" পড়া হয়।
প্রয়োজনীয় ও স্বরণীয় সূত্রসমূহ
Necessary and memorable formulas
সাইন ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the sine as the inverse of the other ratio
\(\sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\) \(cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\) \(\sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\)\(\sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) \(\sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\) \(\sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
কোসাইন ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the cosine as the inverse of the other ratio
\(\cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\) \(\sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\) \(\cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\)\(\cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) \(\cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\) \(\cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
ট্যানজেন্ট ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the tangent as the inverse of the other ratio
\(\tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\) \(\cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\) \(\tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\)\(\tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\) \(\tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\) \(\tan^{-1}{x}=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\)
\(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\) \(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\) \(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
\(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) \(\sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\) \(\sin^{-1}{x}+\sin^{-1}{y}=\pi-\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) যখন, \(x^2+y^2>1\)
\(\cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)\(\cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) \(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\) \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\) \(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) যখন, \(xy>1\) \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi+\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\) যখন, \(xy+yz+zx>1\)
\(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\) \(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\) \(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\)
\(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\) \(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\) \(2\sin^{-1}{x}=\pi-\sin^{-1}{(2x\sqrt{1-x^2})}\) যখন, \(x>\frac{1}{\sqrt{2}}\)
\(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\) \(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\) \(3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\) \(3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\) \(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)
\(2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
\( f(x)=y=\sin^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।


\( f(x)=y=\cos^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।


\( f(x)=y=\tan^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।


\( f(x)=y= cosec^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।


\( f(x)=y=\sec^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।


\( f(x)=y=\cot^{-1}{x}\)-এর লেখচিত্র পার্শে অঙ্কন করা হলো।


সাইন ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the sine as the inverse of the other ratio
\(\sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\) \(cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\) \(\sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\)\(\sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) \(\sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\) \(\sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\frac{1}{\sin{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sin{\theta}}\right)}\)
\(\therefore \sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=cosec^{-1}{\left(\frac{1}{x}\right)}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(cosec \ {\theta}=x\)
\(\Rightarrow \theta=cosec^{-1}{x}\)
আবার,
\(\sin{\theta}=\frac{1}{cosec \ {\theta}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\frac{1}{cosec \ {\theta}}\right)}\)
\(\therefore cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because cosec \ {\theta}=x\)
\(\therefore \theta=cosec^{-1}{x}\)
\(cosec^{-1}{x}=\sin^{-1}{\left(\frac{1}{x}\right)}\)
তৃতীয় প্রমাণঃ
ধরি,\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin^2{\theta}+\cos^2{\theta}=1\)
\(\Rightarrow \cos^2{\theta}=1-\sin^2{\theta}\)
\(\Rightarrow \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\sqrt{1-\sin^2{\theta}}\right)}\)
\(\therefore \sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\cos^{-1}{\left(\sqrt{1-x^2}\right)}\)
চতুর্থ প্রমাণঃ
ধরি,\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sec{\theta}=\frac{1}{\cos{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\sqrt{1-\sin^2{\theta}}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\sec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
পঞ্চম প্রমাণঃ
ধরি,\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\sqrt{1-\sin^2{\theta}}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
ষষ্ঠ প্রমাণঃ
ধরি,\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{\cos{\theta}}{\sin{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\sqrt{1-\sin^2{\theta}}}{\sin{\theta}}\right)}\) ➜ \(\because \cos{\theta}=\sqrt{1-\sin^2{\theta}}\)
\(\therefore \sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}=\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
কোসাইন ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the cosine as the inverse of the other ratio
\(\cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\) \(\sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\) \(\cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\)\(\cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) \(\cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\) \(\cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\sec{\theta}=\frac{1}{\cos{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\frac{1}{\cos{\theta}}\right)}\)
\(\therefore \cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\sec^{-1}{\left(\frac{1}{x}\right)}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\sec{\theta}=x\)
\(\Rightarrow \theta=\sec^{-1}{x}\)
আবার,
\(\cos{\theta}=\frac{1}{\sec{\theta}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\frac{1}{\sec{\theta}}\right)}\)
\(\therefore \sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \sec{\theta}=x\)
\(\therefore \theta=\sec^{-1}{x}\)
\(\sec^{-1}{x}=\cos^{-1}{\left(\frac{1}{x}\right)}\)
তৃতীয় প্রমাণঃ
ধরি,\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\sin^2{\theta}+\cos^2{\theta}=1\)
\(\Rightarrow \sin^2{\theta}=1-\cos^2{\theta}\)
\(\Rightarrow \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\sqrt{1-\cos^2{\theta}}\right)}\)
\(\therefore \cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\sin^{-1}{\left(\sqrt{1-x^2}\right)}\)
চতুর্থ প্রমাণঃ
ধরি,\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\frac{1}{\sin{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{1}{\sqrt{1-\cos^2{\theta}}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=cosec^{-1}{\left(\frac{1}{\sqrt{1-x^2}}\right)}\)
পঞ্চম প্রমাণঃ
ধরি,\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sin{\theta}}{\cos{\theta}}\right)}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{\sqrt{1-\cos^2{\theta}}}{\cos{\theta}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\tan^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}\)
ষষ্ঠ প্রমাণঃ
ধরি,\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{\cos{\theta}}{\sin{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sin{\theta}}\right)}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{\cos{\theta}}{\sqrt{1-\cos^2{\theta}}}\right)}\) ➜ \(\because \sin{\theta}=\sqrt{1-\cos^2{\theta}}\)
\(\therefore \cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(\cos^{-1}{x}=\cot^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}\)
ট্যানজেন্ট ইনভার্সকে অপর অনুপাতের ইনভার্সরূপে প্রকাশ
Express the inverse of the tangent as the inverse of the other ratio
\(\tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\) \(\cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\) \(\tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\)\(\tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\) \(\tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\) \(\tan^{-1}{x}=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\cot{\theta}=\frac{1}{\tan{\theta}}\)
\(\Rightarrow \theta=\cot^{-1}{\left(\frac{1}{\tan{\theta}}\right)}\)
\(\therefore \tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\cot^{-1}{\left(\frac{1}{x}\right)}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\cot{\theta}=x\)
\(\Rightarrow \theta=\cot^{-1}{x}\)
আবার,
\(\tan{\theta}=\frac{1}{\cot{\theta}}\)
\(\Rightarrow \theta=\tan^{-1}{\left(\frac{1}{\cot{\theta}}\right)}\)
\(\therefore \cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\) ➜ \(\because \cot{\theta}=x\)
\(\therefore \theta=\cot^{-1}{x}\)
\(\cot^{-1}{x}=\tan^{-1}{\left(\frac{1}{x}\right)}\)
তৃতীয় প্রমাণঃ
ধরি,\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\sin{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\times\cos{\theta}\)
\(\Rightarrow \sin{\theta}=\tan{\theta}\times\frac{1}{\sec{\theta}}\) ➜ \(\because \frac{\sin{A}}{\cos{A}}=\tan{A}\)
এবং \(\cos{A}=\frac{1}{\sec{A}}\)
\(\Rightarrow \sin{\theta}=\frac{\tan{\theta}}{\sqrt{1+\tan^2{\theta}}}\) ➜ \(\because \sec{A}=\sqrt{1+\tan^2{A}}\)
\(\Rightarrow \theta=\sin^{-1}{\left(\frac{\tan{\theta}}{\sqrt{1+\tan^2{\theta}}}\right)}\)
\(\therefore \tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\sin^{-1}{\left(\frac{x}{\sqrt{1+x^2}}\right)}\)
চতুর্থ প্রমাণঃ
ধরি,\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(cosec \ {\theta}=\sqrt{1+\cot^2{\theta}}\)
\(\Rightarrow cosec \ {\theta}=\sqrt{1+\frac{1}{\tan^2{\theta}}}\) ➜ \(\because \cot{A}=\frac{1}{\tan{A}}\)
\(\Rightarrow cosec \ {\theta}=\sqrt{\frac{1+\tan^2{\theta}}{\tan^2{\theta}}}\)
\(\Rightarrow cosec \ {\theta}=\frac{\sqrt{1+\tan^2{\theta}}}{\tan{\theta}}\)
\(\Rightarrow \theta=cosec^{-1}{\left(\frac{\sqrt{1+\tan^2{\theta}}}{\tan{\theta}}\right)}\)
\(\therefore \tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=cosec^{-1}{\left(\frac{\sqrt{1+x^2}}{x}\right)}\)
পঞ্চম প্রমাণঃ
ধরি,\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\cos{\theta}=\frac{1}{\sec{\theta}}\)
\(\Rightarrow \cos{\theta}=\frac{1}{\sqrt{1+\tan^2{\theta}}}\) ➜ \(\because \sec{A}=\sqrt{1+\tan^2{A}}\)
\(\Rightarrow \theta=\cos^{-1}{\left(\frac{1}{\sqrt{1+\tan^2{\theta}}}\right)}\)
\(\therefore \tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\cos^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}\)
ষষ্ঠ প্রমাণঃ
ধরি,\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\sec{\theta}=\sqrt{1+\tan^2{\theta}}\)
\(\Rightarrow \theta=\sec^{-1}{\left(\sqrt{1+\tan^2{\theta}}\right)}\)
\(\therefore \theta=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}=\sec^{-1}{\left(\sqrt{1+x^2}\right)}\)
\(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\) \(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\) \(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আমরা জানি,
\(\sin{\theta}=\cos{\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow \cos^{-1}{\sin{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+\cos^{-1}{\sin{\theta}}=\frac{\pi}{2}\)
\(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আমরা জানি,
\(\tan{\theta}=\cot{\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow \cot^{-1}{\tan{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+\cot^{-1}{\tan{\theta}}=\frac{\pi}{2}\)
\(\therefore \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
তৃতীয় প্রমাণঃ
ধরি,\(\sec{\theta}=x\)
\(\Rightarrow \theta=\sec^{-1}{x}\)
আমরা জানি,
\(\sec{\theta}=cosec \ {\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow cosec^{-1}{\sec{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+cosec^{-1}{\sec{\theta}}=\frac{\pi}{2}\)
\(\therefore \sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \sec{\theta}=x\)
\(\therefore \theta=\sec^{-1}{x}\)
\(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
\(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) \(\sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\sin{A}=x, \ \sin{B}=y\)
\(\Rightarrow A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
আমরা জানি,
\(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\)
\(\Rightarrow \sin{(A+B)}=\sin{A}\sqrt{1-\sin^2{B}}+\sqrt{1-\sin^2{A}}\sin{B}\) ➜ \(\because \cos{\theta}=\sqrt{1-sin^2{\theta}}\)
\(\Rightarrow A+B=\sin^{-1}{(\sin{A}\sqrt{1-\sin^2{B}}+\sin{B}\sqrt{1-\sin^2{A}})}\)
\(\therefore \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) ➜ \(\because \sin{A}=x, \ \sin{B}=y\)
\(\therefore A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
\(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\sin{A}=x, \ \sin{B}=y\)
\(\Rightarrow A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
আমরা জানি,
\(\sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \sin{(A-B)}=\sin{A}\sqrt{1-\sin^2{B}}-\sqrt{1-\sin^2{A}}\sin{B}\) ➜ \(\because \cos{\theta}=\sqrt{1-sin^2{\theta}}\)
\(\Rightarrow A-B=\sin^{-1}{(\sin{A}\sqrt{1-\sin^2{B}}-\sin{B}\sqrt{1-\sin^2{A}})}\)
\(\therefore \sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\) ➜ \(\because \sin{A}=x, \ \sin{B}=y\)
\(\therefore A=\sin^{-1}{x}, \ B=\sin^{-1}{y}\)
\(\sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)
\(\cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)\(\cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\cos{A}=x, \ \cos{B}=y\)
\(\Rightarrow A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
আমরা জানি,
\(\cos{(A+B)}=\cos{A}\cos{B}-\sin{A}\sin{B}\)
\(\Rightarrow \cos{(A+B)}=\cos{A}\cos{B}-\sqrt{1-\cos^2{A}}\sqrt{1-\cos^2{B}}\) ➜ \(\because \sin{\theta}=\sqrt{1-cos^2{\theta}}\)
\(\Rightarrow A+B=\cos^{-1}{\{\cos{A}\cos{B}-\sqrt{(1-\cos^2{A})(1-\cos^2{B})}\}}\)
\(\therefore \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\) ➜ \(\because \cos{A}=x, \ \cos{B}=y\)
\(\therefore A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
\(\cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\cos{A}=x, \ \cos{B}=y\)
\(\Rightarrow A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
আমরা জানি,
\(\cos{(A-B)}=\cos{A}\cos{B}+\sin{A}\sin{B}\)
\(\Rightarrow \cos{(A-B)}=\cos{A}\cos{B}+\sqrt{1-\cos^2{A}}\sqrt{1-\cos^2{B}}\) ➜ \(\because \sin{\theta}=\sqrt{1-cos^2{\theta}}\)
\(\Rightarrow A-B=\cos^{-1}{\{\cos{A}\cos{B}+\sqrt{(1-\cos^2{A})(1-\cos^2{B})}\}}\)
\(\therefore \cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\) ➜ \(\because \cos{A}=x, \ \cos{B}=y\)
\(\therefore A=\cos^{-1}{x}, \ B=\cos^{-1}{y}\)
\(\cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) \(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\) \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\tan{A}=x, \ \tan{B}=y\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
আমরা জানি,
\(\tan{(A+B)}=\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\)
\(\Rightarrow A+B=\tan^{-1}{\left(\frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
\(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\tan{A}=x, \ \tan{B}=y\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
আমরা জানি,
\(\tan{(A-B)}=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\)
\(\Rightarrow A-B=\tan^{-1}{\left(\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}\)
\(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
তৃতীয় প্রমাণঃ
ধরি,\(\tan{A}=x, \ \tan{B}=y, \ \tan{C}=z\)
\(\Rightarrow A=\tan^{-1}{x}, \ B=\tan^{-1}{y}, \ C=\tan^{-1}{z}\)
আমরা জানি,
\(\tan{(A+B+C)}=\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{B}\tan{C}-\tan{C}\tan{A}-\tan{A}\tan{B}}\)
\(\Rightarrow A+B+C=\tan^{-1}{\left(\frac{\tan{A}+\tan{B}+\tan{C}-\tan{A}\tan{B}\tan{C}}{1-\tan{B}\tan{C}-\tan{C}\tan{A}-\tan{A}\tan{B}}\right)}\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\) ➜ \(\because \tan{A}=x, \ \tan{B}=y, \ \tan{C}=z\)
\(\therefore A=\tan^{-1}{x}, \ B=\tan^{-1}{y}, \ C=\tan^{-1}{z}\)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\) \(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\) \(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\cot{A}=x, \ \cot{B}=y\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
আমরা জানি,
\(\cot{(A+B)}=\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\)
\(\Rightarrow A+B=\cot^{-1}{\left(\frac{\cot{A}\cot{B}-1}{\cot{B}+\cot{A}}\right)}\)
\(\therefore \cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
\(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\cot{A}=x, \ \cot{B}=y\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
আমরা জানি,
\(\cot{(A-B)}=\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\)
\(\Rightarrow A-B=\cot^{-1}{\left(\frac{\cot{A}\cot{B}+1}{\cot{B}-\cot{A}}\right)}\)
\(\therefore \cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}\)
\(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\)
তৃতীয় প্রমাণঃ
ধরি,\(\cot{A}=x, \ \cot{B}=y, \ \cot{C}=z\)
\(\Rightarrow A=\cot^{-1}{x}, \ B=\cot^{-1}{y}, \ C=\cot^{-1}{z}\)
আমরা জানি,
\(\cot{(A+B+C)}=\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\)
\(\Rightarrow A+B+C=\cot^{-1}{\left(\frac{\cot{A}\cot{B}\cot{C}-\cot{A}-\cot{B}-\cot{C}}{\cot{B}\cot{C}+\cot{C}\cot{A}+\cot{A}\cot{B}-1}\right)}\)
\(\therefore \cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\) ➜ \(\because \cot{A}=x, \ \cot{B}=y, \ \cot{C}=z\)
\(\therefore A=\cot^{-1}{x}, \ B=\cot^{-1}{y}, \ C=\cot^{-1}{z}\)
\(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\left(\frac{xyz-x-y-z}{yz+zx+xy-1}\right)}\)
\(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\) \(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{2\theta}=2\sin{\theta}\cos{\theta}\)
\(\Rightarrow \sin{2\theta}=2\sin{\theta}\sqrt{1-\sin^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{(2\sin{\theta}\sqrt{1-\sin^2{\theta}})}\)
\(\therefore 2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cos{2\theta}=2\cos^2{\theta}-1\)
\(\Rightarrow 2\theta=\cos^{-1}{(2\cos^2{\theta}-1)}\)
\(\therefore 2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)
\(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\) \(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\) \(3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\) \(3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\)
প্রমাণঃ
প্রথম প্রমাণঃ
ধরি,\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{3\theta}=3\sin{\theta}-4\sin^3{\theta}\) ➜ \(\because \sin{3A}=3\sin{A}-4\sin^3{A}\)
\(\Rightarrow 3\theta=\sin^{-1}{(3\sin{\theta}-4\sin^3{\theta})}\)
\(\therefore 3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
\(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)
দ্বিতীয় প্রমাণঃ
ধরি,\(\cos{\theta}=x\)
\(\Rightarrow \theta=\cos^{-1}{x}\)
আবার,
\(\cos{3\theta}=4\cos^3{\theta}-3\cos{\theta}\) ➜ \(\because \cos{3A}=4\cos^3{A}-3\cos{A}\)
\(\Rightarrow 3\theta=\cos^{-1}{(4\cos^3{\theta}-3\cos{\theta})}\)
\(\therefore 3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\) ➜ \(\because \cos{\theta}=x\)
\(\therefore \theta=\cos^{-1}{x}\)
\(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)
তৃতীয় প্রমাণঃ
ধরি,\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
আবার,
\(\tan{3\theta}=\frac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}}\) ➜ \(\because \tan{3A}=\frac{3\tan{A}-\tan^3{A}}{1-3\tan^2{A}}\)
\(\Rightarrow 3\theta=\tan^{-1}{\left(\frac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}}\right)}\)
\(\therefore 3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(3\tan^{-1}{x}=\tan^{-1}{\left(\frac{3x-x^3}{1-3x^2}\right)}\)
চতুর্থ প্রমাণঃ
ধরি,\(\cot{\theta}=x\)
\(\Rightarrow \theta=\cot^{-1}{x}\)
আবার,
\(\cot{3\theta}=\frac{\cot^3{\theta}-3\cot{\theta}}{3\cot^2{\theta}-1}\) ➜ \(\because \cot{3A}=\frac{\cot^3{A}-3\cot{A}}{3\cot^2{A}-1}\)
\(\Rightarrow 3\theta=\cot^{-1}{\left(\frac{\cot^3{\theta}-3\cot{\theta}}{3\cot^2{\theta}-1}\right)}\)
\(\therefore 3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\) ➜ \(\because \cot{\theta}=x\)
\(\therefore \theta=\cot^{-1}{x}\)
\(3\cot^{-1}{x}=\cot^{-1}{\left(\frac{x^3-3x}{3x^2-1}\right)}\)
\(2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
প্রমাণঃ
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
এখন,
\(\tan{2\theta}=\frac{2\tan{\theta}}{1-\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\tan^{-1}{\left(\frac{2\tan{\theta}}{1-\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\sin{2\theta}=\frac{2\tan{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{\left(\frac{2\tan{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\cos{2\theta}=\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\cos^{-1}{\left(\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\cot{2\theta}=\frac{\cos{2\theta}}{\sin{2\theta}}\)
\(\Rightarrow \cot{2\theta}=\frac{\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}}{\frac{2\tan{\theta}}{1+\tan^2{\theta}}}\)
\(\Rightarrow \cot{2\theta}=\frac{1-\tan^2{\theta}}{2\tan{\theta}}\)
\(\Rightarrow 2\theta=\cot^{-1}{\left(\frac{1-\tan^2{\theta}}{2\tan{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
\(2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
এখন,
\(\tan{2\theta}=\frac{2\tan{\theta}}{1-\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\tan^{-1}{\left(\frac{2\tan{\theta}}{1-\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\sin{2\theta}=\frac{2\tan{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{\left(\frac{2\tan{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\cos{2\theta}=\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\cos^{-1}{\left(\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\cot{2\theta}=\frac{\cos{2\theta}}{\sin{2\theta}}\)
\(\Rightarrow \cot{2\theta}=\frac{\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}}{\frac{2\tan{\theta}}{1+\tan^2{\theta}}}\)
\(\Rightarrow \cot{2\theta}=\frac{1-\tan^2{\theta}}{2\tan{\theta}}\)
\(\Rightarrow 2\theta=\cot^{-1}{\left(\frac{1-\tan^2{\theta}}{2\tan{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
\(2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}=\cot^{-1}{\left(\frac{1-x^2}{2x}\right)}\)
অধ্যায় \(7H\)-এর উদাহরণসমুহ
উদাহরণ \(1.\) দেখাও যে, \(\tan^{-1}{\frac{7}{11}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{1}{13}}=\frac{\pi}{4}\)
উদাহরণ \(2.\) দেখাও যে, \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{11}{2}}\)
উদাহরণ \(3.\) দেখাও যে, \(\sec^2{(\tan^{-1}{2})}+cosec^2{(\cot^{-1}{3})}=15\)
উদাহরণ \(4.\) প্রমান কর যে, \(\cos{\tan^{-1}{\cot{\sin^{-1}{x}}}}=x\)
উদাহরণ \(5.\) প্রমান কর যে, \(\cos^{-1}{x}+\cos^{-1}{y}=\frac{\pi}{2}\) হলে \(x^2+y^2=1\) হবে।
উদাহরণ \(6.\) যদি \(\cos^{-1}{\frac{x}{a}}+\cos^{-1}{\frac{y}{b}}=\theta\) হয় তবে দেখাও যে, \(\frac{x^2}{a^2}-\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}.\)
উদাহরণ \(2.\) দেখাও যে, \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{11}{2}}\)
উদাহরণ \(3.\) দেখাও যে, \(\sec^2{(\tan^{-1}{2})}+cosec^2{(\cot^{-1}{3})}=15\)
বঃ ২০১২, ২০০৮; ঢাঃ২০০৭; যঃ২০০৭; মাঃ২০০৯,২০০৫ ।
উদাহরণ \(4.\) প্রমান কর যে, \(\cos{\tan^{-1}{\cot{\sin^{-1}{x}}}}=x\)
বঃ ২০১২, মাঃ২০১০; সিঃ২০০৬ ।
উদাহরণ \(5.\) প্রমান কর যে, \(\cos^{-1}{x}+\cos^{-1}{y}=\frac{\pi}{2}\) হলে \(x^2+y^2=1\) হবে।
উদাহরণ \(6.\) যদি \(\cos^{-1}{\frac{x}{a}}+\cos^{-1}{\frac{y}{b}}=\theta\) হয় তবে দেখাও যে, \(\frac{x^2}{a^2}-\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}.\)
ঢাঃ ২০১৫,২০১১,২০০৬ রাঃ২০১৪,২০১্২০০৬; বঃ২০১৪,২০০৮; যঃ২০১৩,২০০৩; সিঃ২০১১; চঃ,কুঃ২০০৯ ।
উদাহরণ \(7.\) সমাধান করঃ \(\sin^{-1}{x}+\sin^{-1}{(1-x)}=\cos^{-1}{x}\)
উত্তরঃ \(x=0, \ \frac{1}{2}\)
উদাহরণ \(8.\) \(\tan{(\pi\cot{\theta})}=\cot{(\pi\tan{\theta})}\) হলে দেখাও যে, \(\tan{\theta}=\frac{1}{4}(2n+1\pm{\sqrt{4n^2+4n-15}})\) যেখানে, \(n\in{\mathbb{Z}}\) এবং \(n\lt{-2}\) অথবা \(n\gt{1}\)
উদাহরণ \(9.\) \(y=\sin^{-1}{x}\) এর লেখচিত্র অংকন কর যখন, \(-1\le{x}\le{1}.\)
উদাহরণ \(10.\) প্রমান কর যে, \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}=\cot^{-1}{\frac{2}{11}}\)
উদাহরণ \(11.\) প্রমান কর যে, \(\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{1}{8}}+\tan^{-1}{\frac{1}{18}}=\cot^{-1}{3}\)
উত্তরঃ \(x=0, \ \frac{1}{2}\)
উদাহরণ \(8.\) \(\tan{(\pi\cot{\theta})}=\cot{(\pi\tan{\theta})}\) হলে দেখাও যে, \(\tan{\theta}=\frac{1}{4}(2n+1\pm{\sqrt{4n^2+4n-15}})\) যেখানে, \(n\in{\mathbb{Z}}\) এবং \(n\lt{-2}\) অথবা \(n\gt{1}\)
উদাহরণ \(9.\) \(y=\sin^{-1}{x}\) এর লেখচিত্র অংকন কর যখন, \(-1\le{x}\le{1}.\)
উদাহরণ \(10.\) প্রমান কর যে, \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}=\cot^{-1}{\frac{2}{11}}\)
উদাহরণ \(11.\) প্রমান কর যে, \(\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{1}{8}}+\tan^{-1}{\frac{1}{18}}=\cot^{-1}{3}\)
উদাহরণ \(1.\) দেখাও যে, \(\tan^{-1}{\frac{7}{11}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{1}{13}}=\frac{\pi}{4}\)
সমাধানঃ
\(L.S=\tan^{-1}{\frac{7}{11}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{1}{13}}\)
\(=\tan^{-1}{\left(\frac{\frac{7}{11}+\frac{1}{7}}{1-\frac{7}{11}\times\frac{1}{7}}\right)}+\tan^{-1}{\frac{1}{13}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{7}{11}+\frac{1}{7}}{1-\frac{7}{77}}\right)}+\tan^{-1}{\frac{1}{13}}\)
\(=\tan^{-1}{\left(\frac{49+11}{77-7}\right)}+\tan^{-1}{\frac{1}{13}}\) ➜ লব ও হরকে \(77\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{60}{70}}+\tan^{-1}{\frac{1}{13}}\)
\(=\tan^{-1}{\frac{6}{7}}+\tan^{-1}{\frac{1}{13}}\)
\(=\tan^{-1}{\left(\frac{\frac{6}{7}+\frac{1}{13}}{1-\frac{6}{7}\times\frac{1}{13}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{6}{7}+\frac{1}{13}}{1-\frac{6}{91}}\right)}\)
\(=\tan^{-1}{\left(\frac{78+7}{91-6}\right)}\) ➜ লব ও হরকে \(91\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{85}{85}\right)}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{7}{11}+\frac{1}{7}}{1-\frac{7}{11}\times\frac{1}{7}}\right)}+\tan^{-1}{\frac{1}{13}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{7}{11}+\frac{1}{7}}{1-\frac{7}{77}}\right)}+\tan^{-1}{\frac{1}{13}}\)
\(=\tan^{-1}{\left(\frac{49+11}{77-7}\right)}+\tan^{-1}{\frac{1}{13}}\) ➜ লব ও হরকে \(77\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{60}{70}}+\tan^{-1}{\frac{1}{13}}\)
\(=\tan^{-1}{\frac{6}{7}}+\tan^{-1}{\frac{1}{13}}\)
\(=\tan^{-1}{\left(\frac{\frac{6}{7}+\frac{1}{13}}{1-\frac{6}{7}\times\frac{1}{13}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{6}{7}+\frac{1}{13}}{1-\frac{6}{91}}\right)}\)
\(=\tan^{-1}{\left(\frac{78+7}{91-6}\right)}\) ➜ লব ও হরকে \(91\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{85}{85}\right)}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(2.\) দেখাও যে, \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{11}{2}}\)
সমাধানঃ
\(L.S=\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}\)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{1}{2}}\) ➜ এখানে, \(\text{লম্ব}=4 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9} \)
\(=3 \)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
আবার, \(\text{ভূমি}=2, \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1} \)
\(=1 \)
\(\therefore \cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{8+3}{6-4}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{11}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{1}{2}}\) ➜ এখানে, \(\text{লম্ব}=4 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9} \)
\(=3 \)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
আবার, \(\text{ভূমি}=2, \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1} \)
\(=1 \)
\(\therefore \cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{8+3}{6-4}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{11}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(3.\) দেখাও যে, \(\sec^2{(\tan^{-1}{2})}+cosec^2{(\cot^{-1}{3})}=15\)
বঃ ২০১২, ২০০৮; ঢাঃ২০০৭; যঃ২০০৭; মাঃ২০০৯,২০০৫ ।
সমাধানঃ
\(L.S=\sec^2{(\tan^{-1}{2})}+cosec^2{(\cot^{-1}{3})}\)
\(=\left\{\sec{(\tan^{-1}{2})}\right\}^2+\left\{cosec \ {(\cot^{-1}{3})}\right\}^2\)
\(=\left\{\sec{(\sec^{-1}{\sqrt{5}})}\right\}^2+\left\{cosec \ {(cosec^{-1}{\sqrt{10}})}\right\}^2\) ➜ এখানে, \(\text{লম্ব}=2 , \ \text{ভূমি}=1 \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{2^2+1^2} \)
\(=\sqrt{4+1} \)
\(=\sqrt{5} \)
\(\therefore \tan^{-1}{2}=\sec^{-1}{\frac{\sqrt{5}}{1}}\)
\(=\sec^{-1}{\sqrt{5}}\)
আবার, \(\text{লম্ব}=1 , \ \text{ভূমি}=3 \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{1^2+3^2} \)
\(=\sqrt{1+9} \)
\(=\sqrt{10} \)
\(\therefore \cot^{-1}{2}=cosec^{-1}{\frac{\sqrt{10}}{1}}\)
\(=cosec^{-1}{\sqrt{10}}\)
\(=\left\{\sqrt{5}\right\}^2+\left\{\sqrt{10}\right\}^2\)
\(=5+10\)
\(=15\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\left\{\sec{(\tan^{-1}{2})}\right\}^2+\left\{cosec \ {(\cot^{-1}{3})}\right\}^2\)
\(=\left\{\sec{(\sec^{-1}{\sqrt{5}})}\right\}^2+\left\{cosec \ {(cosec^{-1}{\sqrt{10}})}\right\}^2\) ➜ এখানে, \(\text{লম্ব}=2 , \ \text{ভূমি}=1 \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{2^2+1^2} \)
\(=\sqrt{4+1} \)
\(=\sqrt{5} \)
\(\therefore \tan^{-1}{2}=\sec^{-1}{\frac{\sqrt{5}}{1}}\)
\(=\sec^{-1}{\sqrt{5}}\)
আবার, \(\text{লম্ব}=1 , \ \text{ভূমি}=3 \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{1^2+3^2} \)
\(=\sqrt{1+9} \)
\(=\sqrt{10} \)
\(\therefore \cot^{-1}{2}=cosec^{-1}{\frac{\sqrt{10}}{1}}\)
\(=cosec^{-1}{\sqrt{10}}\)
\(=\left\{\sqrt{5}\right\}^2+\left\{\sqrt{10}\right\}^2\)
\(=5+10\)
\(=15\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(4.\) প্রমান কর যে, \(\cos{\tan^{-1}{\cot{\sin^{-1}{x}}}}=x\)
বঃ ২০১২, মাঃ২০১০; সিঃ২০০৬ ।
সমাধানঃ
\(L.S=\cos{\tan^{-1}{\cot{\sin^{-1}{x}}}}\)
\(=\cos{\tan^{-1}{\cot{\left(\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}}}\) ➜ এখানে, \(\text{লম্ব}=x , \ \text{অতিভুজ}=1 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \sin^{-1}{x}=\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
\(=\cos{\left(\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}\)
\(=\cos{\left(\cos^{-1}{x}\right)}\) ➜ এখানে, \(\text{লম্ব}=\sqrt{1-x^2} , \ \text{ভূমি}=x \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{1-x^2})^2+x^2} \)
\(=\sqrt{1-x^2+x^2} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \tan^{-1}{\frac{\sqrt{1-x^2}}{x}}=\cos^{-1}{\frac{x}{1}}\)
\(=\cos^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\tan^{-1}{\cot{\left(\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}}}\) ➜ এখানে, \(\text{লম্ব}=x , \ \text{অতিভুজ}=1 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \sin^{-1}{x}=\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
\(=\cos{\left(\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}\)
\(=\cos{\left(\cos^{-1}{x}\right)}\) ➜ এখানে, \(\text{লম্ব}=\sqrt{1-x^2} , \ \text{ভূমি}=x \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{1-x^2})^2+x^2} \)
\(=\sqrt{1-x^2+x^2} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \tan^{-1}{\frac{\sqrt{1-x^2}}{x}}=\cos^{-1}{\frac{x}{1}}\)
\(=\cos^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(5.\) প্রমান কর যে, \(\cos^{-1}{x}+\cos^{-1}{y}=\frac{\pi}{2}\) হলে \(x^2+y^2=1\) হবে।
সমাধানঃ
দেওয়া আছে,
\(\cos^{-1}{x}+\cos^{-1}{y}=\frac{\pi}{2}\)
\(\Rightarrow \cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}=\frac{\pi}{2}\) ➜ \(\because \cos^{-1}{A}+\cos^{-1}{B}=\cos^{-1}{\{AB-\sqrt{(1-A^2)(1-B^2)}\}}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=\cos{\frac{\pi}{2}}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=0\) ➜ \(\because \cos{\frac{\pi}{2}}=0\)
\(\Rightarrow xy=\sqrt{(1-x^2)(1-y^2)}\)
\(\Rightarrow x^2y^2=(1-x^2)(1-y^2)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow x^2y^2=1-x^2-y^2+x^2y^2\)
\(\Rightarrow x^2y^2+x^2+y^2-x^2y^2=1\)
\(\therefore x^2+y^2=1\)
(প্রমাণিত)
\(\cos^{-1}{x}+\cos^{-1}{y}=\frac{\pi}{2}\)
\(\Rightarrow \cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}=\frac{\pi}{2}\) ➜ \(\because \cos^{-1}{A}+\cos^{-1}{B}=\cos^{-1}{\{AB-\sqrt{(1-A^2)(1-B^2)}\}}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=\cos{\frac{\pi}{2}}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=0\) ➜ \(\because \cos{\frac{\pi}{2}}=0\)
\(\Rightarrow xy=\sqrt{(1-x^2)(1-y^2)}\)
\(\Rightarrow x^2y^2=(1-x^2)(1-y^2)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow x^2y^2=1-x^2-y^2+x^2y^2\)
\(\Rightarrow x^2y^2+x^2+y^2-x^2y^2=1\)
\(\therefore x^2+y^2=1\)
(প্রমাণিত)
উদাহরণ \(6.\) যদি \(\cos^{-1}{\frac{x}{a}}+\cos^{-1}{\frac{y}{b}}=\theta\) হয় তবে দেখাও যে, \(\frac{x^2}{a^2}-\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}.\)
ঢাঃ ২০১৫,২০১১,২০০৬ রাঃ২০১৪,২০১্২০০৬; বঃ২০১৪,২০০৮; যঃ২০১৩,২০০৩; সিঃ২০১১; চঃ,কুঃ২০০৯ ।
সমাধানঃ
দেওয়া আছে,
\(\cos^{-1}{\frac{x}{a}}+\cos^{-1}{\frac{y}{b}}=\theta\)
\(\Rightarrow \cos^{-1}{\left\{\frac{x}{a}\times\frac{y}{b}-\sqrt{\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)}\right\}}=\theta\) ➜ \(\because \cos^{-1}{A}+\cos^{-1}{B}=\cos^{-1}{\{AB-\sqrt{(1-A^2)(1-B^2)}\}}\)
\(\Rightarrow \frac{xy}{ab}-\sqrt{\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)}=\cos{\theta}\)
\(\Rightarrow \frac{xy}{ab}-\cos{\theta}=\sqrt{\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)}\)
\(\Rightarrow \left(\frac{xy}{ab}-\cos{\theta}\right)^2=\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{x^2y^2}{a^2b^2}-2\frac{xy}{ab}\cos{\theta}+\cos^2{\theta}=1-\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{x^2y^2}{a^2b^2}\)
\(\Rightarrow \frac{x^2y^2}{a^2b^2}-2\frac{xy}{ab}\cos{\theta}+\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{x^2y^2}{a^2b^2}=1-\cos^2{\theta}\)
\(\Rightarrow -2\frac{xy}{ab}\cos{\theta}+\frac{x^2}{a^2}+\frac{y^2}{b^2}=\sin^2{\theta}\) ➜ \(\because 1-\cos^2{A}=\sin^2{A}\)
\(\therefore \frac{x^2}{a^2}-\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}\)
(প্রমাণিত)
\(\cos^{-1}{\frac{x}{a}}+\cos^{-1}{\frac{y}{b}}=\theta\)
\(\Rightarrow \cos^{-1}{\left\{\frac{x}{a}\times\frac{y}{b}-\sqrt{\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)}\right\}}=\theta\) ➜ \(\because \cos^{-1}{A}+\cos^{-1}{B}=\cos^{-1}{\{AB-\sqrt{(1-A^2)(1-B^2)}\}}\)
\(\Rightarrow \frac{xy}{ab}-\sqrt{\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)}=\cos{\theta}\)
\(\Rightarrow \frac{xy}{ab}-\cos{\theta}=\sqrt{\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)}\)
\(\Rightarrow \left(\frac{xy}{ab}-\cos{\theta}\right)^2=\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{x^2y^2}{a^2b^2}-2\frac{xy}{ab}\cos{\theta}+\cos^2{\theta}=1-\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{x^2y^2}{a^2b^2}\)
\(\Rightarrow \frac{x^2y^2}{a^2b^2}-2\frac{xy}{ab}\cos{\theta}+\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{x^2y^2}{a^2b^2}=1-\cos^2{\theta}\)
\(\Rightarrow -2\frac{xy}{ab}\cos{\theta}+\frac{x^2}{a^2}+\frac{y^2}{b^2}=\sin^2{\theta}\) ➜ \(\because 1-\cos^2{A}=\sin^2{A}\)
\(\therefore \frac{x^2}{a^2}-\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}\)
(প্রমাণিত)
উদাহরণ \(7.\) সমাধান করঃ \(\sin^{-1}{x}+\sin^{-1}{(1-x)}=\cos^{-1}{x}\)
উত্তরঃ \(x=0, \ \frac{1}{2}\)
উত্তরঃ \(x=0, \ \frac{1}{2}\)
সমাধানঃ
দেওয়া আছে,
\(\sin^{-1}{x}+\sin^{-1}{(1-x)}=\cos^{-1}{x}\)
\(\Rightarrow \sin^{-1}{\{x\sqrt{1-(1-x)^2}+(1-x)\sqrt{(1-x^2)}\}}=\cos^{-1}{x}\) ➜ \(\because \sin^{-1}{A}+\sin^{-1}{B}=\sin^{-1}{\{A\sqrt{(1-B^2)}+B\sqrt{(1-A^2)}\}}\)
\(\Rightarrow \sin^{-1}{\{x\sqrt{1-1+2x-x^2}+(1-x)\sqrt{(1-x^2)}\}}=\cos^{-1}{x}\)
\(\Rightarrow \sin^{-1}{\{x\sqrt{2x-x^2}+(1-x)\sqrt{(1-x^2)}\}}=\sin^{-1}{\sqrt{1-x^2}}\) ➜ এখানে, \(\text{ভূমি}=x , \ \text{অতিভুজ}=1 \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\sin^{-1}{\frac{\sqrt{1-x^2}}{1}}\)
\(=\sin^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow x\sqrt{2x-x^2}+(1-x)\sqrt{(1-x^2)}=\sqrt{1-x^2}\)
\(\Rightarrow x\sqrt{2x-x^2}=\sqrt{1-x^2}-(1-x)\sqrt{(1-x^2)}=0\)
\(\Rightarrow x\sqrt{2x-x^2}=(1-1+x)\sqrt{1-x^2}=0\)
\(\Rightarrow x\sqrt{2x-x^2}-x\sqrt{1-x^2}=0\)
\(\Rightarrow x(\sqrt{2x-x^2}-\sqrt{1-x^2})=0\)
\(\Rightarrow x=0, \ \sqrt{2x-x^2}-\sqrt{1-x^2}=0\)
\(\Rightarrow x=0, \ \sqrt{2x-x^2}=\sqrt{1-x^2}\)
\(\Rightarrow x=0, \ 2x-x^2=1-x^2\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow x=0, \ 2x=1-x^2+x^2\)
\(\Rightarrow x=0, \ 2x=1\)
\(\therefore x=0, \ x=\frac{1}{2}\)
ইহাই নির্ণেয় সমাধান।
\(\sin^{-1}{x}+\sin^{-1}{(1-x)}=\cos^{-1}{x}\)
\(\Rightarrow \sin^{-1}{\{x\sqrt{1-(1-x)^2}+(1-x)\sqrt{(1-x^2)}\}}=\cos^{-1}{x}\) ➜ \(\because \sin^{-1}{A}+\sin^{-1}{B}=\sin^{-1}{\{A\sqrt{(1-B^2)}+B\sqrt{(1-A^2)}\}}\)
\(\Rightarrow \sin^{-1}{\{x\sqrt{1-1+2x-x^2}+(1-x)\sqrt{(1-x^2)}\}}=\cos^{-1}{x}\)
\(\Rightarrow \sin^{-1}{\{x\sqrt{2x-x^2}+(1-x)\sqrt{(1-x^2)}\}}=\sin^{-1}{\sqrt{1-x^2}}\) ➜ এখানে, \(\text{ভূমি}=x , \ \text{অতিভুজ}=1 \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\sin^{-1}{\frac{\sqrt{1-x^2}}{1}}\)
\(=\sin^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow x\sqrt{2x-x^2}+(1-x)\sqrt{(1-x^2)}=\sqrt{1-x^2}\)
\(\Rightarrow x\sqrt{2x-x^2}=\sqrt{1-x^2}-(1-x)\sqrt{(1-x^2)}=0\)
\(\Rightarrow x\sqrt{2x-x^2}=(1-1+x)\sqrt{1-x^2}=0\)
\(\Rightarrow x\sqrt{2x-x^2}-x\sqrt{1-x^2}=0\)
\(\Rightarrow x(\sqrt{2x-x^2}-\sqrt{1-x^2})=0\)
\(\Rightarrow x=0, \ \sqrt{2x-x^2}-\sqrt{1-x^2}=0\)
\(\Rightarrow x=0, \ \sqrt{2x-x^2}=\sqrt{1-x^2}\)
\(\Rightarrow x=0, \ 2x-x^2=1-x^2\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow x=0, \ 2x=1-x^2+x^2\)
\(\Rightarrow x=0, \ 2x=1\)
\(\therefore x=0, \ x=\frac{1}{2}\)
ইহাই নির্ণেয় সমাধান।
উদাহরণ \(8.\) \(\tan{(\pi\cot{\theta})}=\cot{(\pi\tan{\theta})}\) হলে দেখাও যে, \(\tan{\theta}=\frac{1}{4}\{(2n+1)\pm{\sqrt{4n^2+4n-15}}\}\) যেখানে, \(n\in{\mathbb{Z}}\) এবং \(n\lt{-2}\) অথবা \(n\gt{1}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{(\pi\cot{\theta})}=\cot{(\pi\tan{\theta})}\)
\(\Rightarrow \cot{(\pi\tan{\theta})}=\tan{(\pi\cot{\theta})}\)
\(\Rightarrow \cot{(\pi\tan{\theta})}=\cot{\left(\frac{\pi}{2}-\pi\cot{\theta}\right)}\) ➜ \(\because \tan{x}=\cot{\left(\frac{\pi}{2}-x\right)}\)
\(\Rightarrow \pi\tan{\theta}=n\pi+\frac{\pi}{2}-\pi\cot{\theta}\)
\(\Rightarrow \pi\tan{\theta}=\pi\left(n+\frac{1}{2}-\cot{\theta}\right)\)
\(\Rightarrow \tan{\theta}=n+\frac{1}{2}-\cot{\theta}\)
\(\Rightarrow \tan{\theta}+\cot{\theta}=n+\frac{1}{2}\)
\(\Rightarrow \tan{\theta}+\cot{\theta}=(2n+1)\frac{1}{2}\)
\(\Rightarrow \tan{\theta}+\frac{1}{\tan{\theta}}-(2n+1)\frac{1}{2}=0\) ➜ \(\because \cot{x}=\frac{1}{\tan{x}}\)
\(\Rightarrow \frac{2\tan^2{\theta}+2-(2n+1)\tan{\theta}}{2\tan{\theta}}=0\)
\(\Rightarrow 2\tan^2{\theta}+2-(2n+1)\tan{\theta}=0\)
\(\Rightarrow 2\tan^2{\theta}-(2n+1)\tan{\theta}+2=0\)
\(\Rightarrow \tan{\theta}=\frac{(2n+1)\pm\sqrt{(2n+1)^2-4\times2\times2}}{2\times2}\) ➜ \(\because ax^2+bx+c=0\)
\(\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
\(\Rightarrow \tan{\theta}=\frac{(2n+1)\pm\sqrt{4n^2+4n+1-16}}{4}\)
\(\therefore \tan{\theta}=\frac{1}{4}\{(2n+1)\pm{\sqrt{4n^2+4n-15}}\}\)
(দেখানো হলো।)
\(\tan{(\pi\cot{\theta})}=\cot{(\pi\tan{\theta})}\)
\(\Rightarrow \cot{(\pi\tan{\theta})}=\tan{(\pi\cot{\theta})}\)
\(\Rightarrow \cot{(\pi\tan{\theta})}=\cot{\left(\frac{\pi}{2}-\pi\cot{\theta}\right)}\) ➜ \(\because \tan{x}=\cot{\left(\frac{\pi}{2}-x\right)}\)
\(\Rightarrow \pi\tan{\theta}=n\pi+\frac{\pi}{2}-\pi\cot{\theta}\)
\(\Rightarrow \pi\tan{\theta}=\pi\left(n+\frac{1}{2}-\cot{\theta}\right)\)
\(\Rightarrow \tan{\theta}=n+\frac{1}{2}-\cot{\theta}\)
\(\Rightarrow \tan{\theta}+\cot{\theta}=n+\frac{1}{2}\)
\(\Rightarrow \tan{\theta}+\cot{\theta}=(2n+1)\frac{1}{2}\)
\(\Rightarrow \tan{\theta}+\frac{1}{\tan{\theta}}-(2n+1)\frac{1}{2}=0\) ➜ \(\because \cot{x}=\frac{1}{\tan{x}}\)
\(\Rightarrow \frac{2\tan^2{\theta}+2-(2n+1)\tan{\theta}}{2\tan{\theta}}=0\)
\(\Rightarrow 2\tan^2{\theta}+2-(2n+1)\tan{\theta}=0\)
\(\Rightarrow 2\tan^2{\theta}-(2n+1)\tan{\theta}+2=0\)
\(\Rightarrow \tan{\theta}=\frac{(2n+1)\pm\sqrt{(2n+1)^2-4\times2\times2}}{2\times2}\) ➜ \(\because ax^2+bx+c=0\)
\(\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
\(\Rightarrow \tan{\theta}=\frac{(2n+1)\pm\sqrt{4n^2+4n+1-16}}{4}\)
\(\therefore \tan{\theta}=\frac{1}{4}\{(2n+1)\pm{\sqrt{4n^2+4n-15}}\}\)
(দেখানো হলো।)
উদাহরণ \(9.\) \(y=\sin^{-1}{x}\) এর লেখচিত্র অংকন কর যখন, \(-1\le{x}\le{1}.\)
সমাধানঃ
দেওয়া আছে,
\(y=\cos^{-1}{x}\) যখন, \(-1\le{x}\le{1}.\)
\(-1\le{x}\le{1}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
ছক কাগজে কার্তেসীয় অক্ষদ্বয় \(XOX^{\prime}\) এবং \(YOY^{\prime}\) অঙ্কন করি।
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(1\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

\(y=\cos^{-1}{x}\) যখন, \(-1\le{x}\le{1}.\)
\(-1\le{x}\le{1}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
\(x\) | \(0\) | \(\pm0.26\) | \(\pm0.5\) | \(\pm0.71\) | \(\pm0.87\) | \(\pm0.97\) | \(\pm1\) |
\(y=\sin^{-1}{x}\) | \(0^{o}\) | \(\pm15^{o}\) | \(\pm30^{o}\) | \(\pm45^{o}\) | \(\pm60^{o}\) | \(\pm75^{o}\) | \(\pm90^{o}\) |
\((x, \ y)\) | \((0, 0^{o})\) | \((\pm0.26, \pm15^{o})\) | \((\pm0.5, \pm30^{o})\) | \((\pm0.71, \pm45^{o})\) | \((\pm0.87, \pm60^{o})\) | \((\pm0.97, \pm75^{o})\) | \((\pm1, \pm90^{o})\) |
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(1\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

উদাহরণ \(10.\) প্রমান কর যে, \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}=\cot^{-1}{\frac{2}{11}}\)
সমাধানঃ
\(L.S=\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}\)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=2 , \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{8+3}{6-4}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{11}{2}\right)}\)
\(=\cot^{-1}{\frac{2}{11}}\) ➜ \(\because \tan^{-1}{x}=\cot{\frac{1}{x}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=2 , \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{8+3}{6-4}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{11}{2}\right)}\)
\(=\cot^{-1}{\frac{2}{11}}\) ➜ \(\because \tan^{-1}{x}=\cot{\frac{1}{x}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
উদাহরণ \(11.\) প্রমান কর যে, \(\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{1}{8}}+\tan^{-1}{\frac{1}{18}}=\cot^{-1}{3}\)
সমাধানঃ
\(L.S=\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{1}{8}}+\tan^{-1}{\frac{1}{18}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{7}\times\frac{1}{8}}\right)}+\tan^{-1}{\frac{1}{18}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{56}}\right)}+\tan^{-1}{\frac{1}{18}}\)
\(=\tan^{-1}{\left(\frac{8+7}{56-1}\right)}+\tan^{-1}{\frac{1}{18}}\) ➜ লব ও হরকে \(56\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{15}{55}}+\tan^{-1}{\frac{1}{18}}\)
\(=\tan^{-1}{\frac{3}{11}}+\tan^{-1}{\frac{1}{18}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{11}+\frac{1}{18}}{1-\frac{3}{11}\times\frac{1}{18}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{11}+\frac{1}{18}}{1-\frac{3}{198}}\right)}\)
\(=\tan^{-1}{\left(\frac{54+11}{198-3}\right)}\) ➜ লব ও হরকে \(198\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{65}{195}\right)}\)
\(=\tan^{-1}{\left(\frac{1}{3}\right)}\)
\(=\cot^{-1}{3}\) ➜ \(\because \tan^{-1}{\frac{1}{x}}=\cot^{-1}{x}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{7}\times\frac{1}{8}}\right)}+\tan^{-1}{\frac{1}{18}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{56}}\right)}+\tan^{-1}{\frac{1}{18}}\)
\(=\tan^{-1}{\left(\frac{8+7}{56-1}\right)}+\tan^{-1}{\frac{1}{18}}\) ➜ লব ও হরকে \(56\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{15}{55}}+\tan^{-1}{\frac{1}{18}}\)
\(=\tan^{-1}{\frac{3}{11}}+\tan^{-1}{\frac{1}{18}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{11}+\frac{1}{18}}{1-\frac{3}{11}\times\frac{1}{18}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{11}+\frac{1}{18}}{1-\frac{3}{198}}\right)}\)
\(=\tan^{-1}{\left(\frac{54+11}{198-3}\right)}\) ➜ লব ও হরকে \(198\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{65}{195}\right)}\)
\(=\tan^{-1}{\left(\frac{1}{3}\right)}\)
\(=\cot^{-1}{3}\) ➜ \(\because \tan^{-1}{\frac{1}{x}}=\cot^{-1}{x}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7H\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.1.(i)\) \(2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ঢাঃ২০১৭।
\(Q.1.(ii)\) \(\tan^{-1}{x}=\frac{1}{2}cosec^{-1}{\frac{1+x^2}{2x}}\)
\(Q.1.(iii)\) \(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\cos^{-1}{\frac{1-x}{1+x}}\)
কুঃ২০১৮; বুটেক্সঃ ২০০৮-২০০৯।
\(Q.1.(iv)\) \(\cos^{-1}{x}=2\sin^{-1}{\sqrt{\frac{1-x}{2}}}=2\cos^{-1}{\sqrt{\frac{1+x}{2}}}\)
কুয়েটঃ২০০৪-২০০৫,২০০৩-২০০৪; রুয়েটঃ ২০০৪-২০০৫।
\(Q.1.(v)\) \(2\sin^{-1}{x}=\sin^{-1}{2x\sqrt{1-x^2}}\)
ঢাঃ,যঃ,সিঃ,দিঃ ২০১৮।
\(Q.1.(vi)\) \(\sin^{-1}{(3\sin^{-1}{x})}=3x-4x^3\)
রাঃ ২০০৩।
\(Q.1.(vii)\) \(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
রাঃ,কুঃ,চঃ,বঃ ২০১৮।
\(Q.1.(viii)\) \(\cos{\left(2\tan^{-1}{\frac{y}{x}}\right)}=\frac{x^2-y^2}{x^2+y^2}\)
সিঃ২০১৭।
\(Q.1.(ix)\) \(\tan^{-1}{\frac{2}{11}}+\tan^{-1}{\frac{7}{24}}=\tan^{-1}{\frac{1}{2}}\)
\(Q.1.(x)\) \(4\left(\cot^{-1}{3}+cosec^{-1}{\sqrt{5}}\right)=\pi\)
ঢাঃ২০০৮; বঃ২০০৪,২০০২; চঃ২০০৪ ।
\(Q.1.(xi)\) \(4\left(\sin^{-1}{\frac{1}{\sqrt{5}}}+\cot^{-1}{3}\right)=\pi\)
মাঃ২০১৪,২০০৬; দিঃ২০১২; যঃ২০১১; ঢাঃ২০০৯; বঃ২০০৭; চঃ২০০৪ ।
\(Q.1.(xii)\) \(\sin^{-1}{\frac{3}{5}}+\cot^{-1}{\frac{17}{19}}=\tan^{-1}{\frac{127}{11}}\)
রুয়েটঃ২০০৩-২০০৪ ।
\(Q.1.(xiii)\) \(\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\sqrt{\frac{2}{3}}}=\tan^{-1}{\sqrt{2}}\)
সিঃ২০০১ ।
\(Q.1.(xiv)\) \(\cot^{-1}{\frac{5}{3}}+\sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{27}{11}}\)
রুয়েটঃ২০০৩-২০০৪; মাঃ ২০০১ ।
\(Q.1.(xv)\) \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{11}{2}}\)
ডুয়েটঃ২০১৪-২০১৫; দিঃ ২০১৩,২০০৯; সিঃ২০১২,২০০৫; বঃ২০১০; কুঃ২০০৫,২০০০; চঃ২০০৫ ।
প্রমাণ করঃ
\(Q.1.(xvi)\) \(\sec^{-1}{\frac{\sqrt{5}}{2}}+\tan^{-1}{\frac{1}{2}}=\cot^{-1}{\frac{3}{4}}\)বঃ ২০১৭ ।
\(Q.1.(xvii)\) \(\sec^{-1}{\frac{13}{5}}-cosec^{-1}{\frac{\sqrt{5}}{2}}=\tan^{-1}{\frac{2}{29}}\)
বঃ ২০০৬; চঃ২০০২ ।
\(Q.1.(xviii)\) \(\sec^{-1}{\frac{5}{3}}+\cot^{-1}{\frac{12}{5}}+\sin^{-1}{\frac{16}{65}}=\frac{\pi}{2}\)
ঢাঃ২০১৭ ।
\(Q.1.(xix)\) \(\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{5}{13}}+\sin^{-1}{\frac{16}{65}}=\frac{\pi}{2}\)
রুয়েটঃ২০০৭-২০০৮ ।
\(Q.1.(xx)\) \(\tan^{-1}{\frac{5}{3}}=\frac{\pi}{2}-\cos^{-1}{\frac{5}{\sqrt{34}}}\)
সিঃ২০১৯ ।
\(Q.1.(xxi)\) \(\tan^{-1}{\frac{2}{3}}=\frac{\pi}{2}-\sec^{-1}{\frac{\sqrt{13}}{2}}\)
ঢাঃ২০১১,২০০২; সিঃ২০১০; বঃ২০০৯; যঃ২০০৮; চঃ২০০৪,২০০১ ।
\(Q.1.(xxii)\) \(\tan^{-1}{\frac{1}{3}}-\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{7}}=\tan^{-1}{\frac{3}{11}}\)
\(Q.1.(xxiii)\) \(2\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{4}}=\tan^{-1}{\frac{32}{43}}\)
\(Q.1.(xxiv)\) \(4\tan^{-1}{\frac{1}{5}}-\tan^{-1}{\frac{1}{239}}=\frac{\pi}{4}\)
\(Q.1.(xxv)\) \(\cos^{-1}{\frac{4}{5}}+\cot^{-1}{\frac{5}{3}}=\tan^{-1}{\frac{27}{11}}\)
ঢাঃ২০১২ ।
\(Q.1.(xxvi)\) \(\cot^{-1}{3}+cosec^{-1}{\sqrt{5}}=\frac{\pi}{4}\)
\(Q.1.(xxvii)\) \(\tan^{-1}{\frac{5}{6}}-tan^{-1}{\frac{1}{11}}=\tan^{-1}{\frac{49}{71}}\)
\(Q.1.(xxviii)\) \(\tan^{-1}{\frac{5}{7}}+cot^{-1}{\frac{8}{5}}=\cot^{-1}{\frac{31}{75}}\)
\(Q.1.(xxix)\) \(\sin^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{27}{11}}\)
\(Q.1.(xxx)\) \(\sin^{-1}{\frac{3}{5}}+\sin^{-1}{\frac{8}{17}}=\sin^{-1}{\frac{77}{85}}\)
\(Q.1.(xxxi)\) \(\cot^{-1}{\frac{5}{3}}+\sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{27}{11}}\)
\(Q.1.(xxxii)\) \(\tan^{-1}{\frac{5}{6}}-\tan^{-1}{\frac{49}{71}}=\tan^{-1}{\frac{1}{11}}\)
\(Q.1.(xxxiii)\) \(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{8}}=\frac{\pi}{4}\)
প্রমাণ করঃ
\(Q.1.(i)\) \(2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ঢাঃ২০১৭।
সমাধানঃ
ধরি,
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
এখন,
\(\tan{2\theta}=\frac{2\tan{\theta}}{1-\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\tan^{-1}{\left(\frac{2\tan{\theta}}{1-\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\sin{2\theta}=\frac{2\tan{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{\left(\frac{2\tan{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
(প্রমাণিত)
\(\tan{\theta}=x\)
\(\Rightarrow \theta=\tan^{-1}{x}\)
এখন,
\(\tan{2\theta}=\frac{2\tan{\theta}}{1-\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\tan^{-1}{\left(\frac{2\tan{\theta}}{1-\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
আবার,
\(\sin{2\theta}=\frac{2\tan{\theta}}{1+\tan^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{\left(\frac{2\tan{\theta}}{1+\tan^2{\theta}}\right)}\)
\(\therefore 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because \tan{\theta}=x\)
\(\therefore \theta=\tan^{-1}{x}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(ii)\) \(\tan^{-1}{x}=\frac{1}{2}cosec^{-1}{\frac{1+x^2}{2x}}\)সমাধানঃ
\(L.S=\tan^{-1}{x}\)
\(=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\sin^{-1}{\frac{2x}{1+x^2}}\) ➜ \(\because 2\tan^{-1}{A}=\sin^{-1}{\frac{2A}{1+A^2}}\)
\(=\frac{1}{2}cosec^{-1}{\frac{1+x^2}{2x}}\) ➜ \(\because \sin^{-1}{A}=cosec^{-1}{\frac{1}{A}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\sin^{-1}{\frac{2x}{1+x^2}}\) ➜ \(\because 2\tan^{-1}{A}=\sin^{-1}{\frac{2A}{1+A^2}}\)
\(=\frac{1}{2}cosec^{-1}{\frac{1+x^2}{2x}}\) ➜ \(\because \sin^{-1}{A}=cosec^{-1}{\frac{1}{A}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(iii)\) \(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\cos^{-1}{\frac{1-x}{1+x}}\) কুঃ২০১৮; বুটেক্সঃ ২০০৮-২০০৯।
সমাধানঃ
\(L.S=\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\times2\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{1-(\sqrt{x})^2}{1+(\sqrt{x})^2}}\) ➜ \(\because 2\tan^{-1}{A}=\cos^{-1}{\frac{1-A^2}{1+A^2}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{1-x}{1+x}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{1}{2}\times2\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{1-(\sqrt{x})^2}{1+(\sqrt{x})^2}}\) ➜ \(\because 2\tan^{-1}{A}=\cos^{-1}{\frac{1-A^2}{1+A^2}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{1-x}{1+x}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(iv)\) \(\cos^{-1}{x}=2\sin^{-1}{\sqrt{\frac{1-x}{2}}}=2\cos^{-1}{\sqrt{\frac{1+x}{2}}}\) কুয়েটঃ২০০৪-২০০৫,২০০৩-২০০৪; রুয়েটঃ ২০০৪-২০০৫।
সমাধানঃ
ধরি,
\(\theta=\cos^{-1}{x}\)
\(\therefore \cos{\theta}=x\)
এখন, \(\sin{\frac{\theta}{2}}=\sqrt{\sin^2{\frac{\theta}{2}}}\)
\(=\sqrt{\frac{1}{2}\times2\sin^2{\frac{\theta}{2}}}\)
\(=\sqrt{\frac{1}{2}(1-\cos{\theta})}\) ➜ \(\because 2\sin^2{\frac{A}{2}}=1-\cos{A}\)
\(\therefore \sin{\frac{\theta}{2}}=\sqrt{\frac{1}{2}(1-\cos{\theta})}\)
\(\Rightarrow \frac{\theta}{2}=\sin^{-1}{\sqrt{\frac{1}{2}(1-\cos{\theta})}}\)
\(\Rightarrow \theta=2\sin^{-1}{\sqrt{\frac{1-\cos{\theta}}{2}}}\)
\(\therefore \cos^{-1}{x}=2\sin^{-1}{\sqrt{\frac{1-x}{2}}}\) ➜ \(\because \theta=\cos^{-1}{x}\)
\(\therefore \cos{\theta}=x\)
আবার,
\(\theta=\cos^{-1}{x}\)
\(\therefore \cos{\theta}=x\)
এখন, \(\cos{\frac{\theta}{2}}=\sqrt{\cos^2{\frac{\theta}{2}}}\)
\(=\sqrt{\frac{1}{2}\times2\cos^2{\frac{\theta}{2}}}\)
\(=\sqrt{\frac{1}{2}(1+\cos{\theta})}\) ➜ \(\because 2\cos^2{\frac{A}{2}}=1+\cos{A}\)
\(\therefore \cos{\frac{\theta}{2}}=\sqrt{\frac{1}{2}(1+\cos{\theta})}\)
\(\Rightarrow \frac{\theta}{2}=\cos^{-1}{\sqrt{\frac{1}{2}(1+\cos{\theta})}}\)
\(\Rightarrow \theta=2\cos^{-1}{\sqrt{\frac{1+\cos{\theta}}{2}}}\)
\(\therefore \cos^{-1}{x}=2\cos^{-1}{\sqrt{\frac{1+x}{2}}}\) ➜ \(\because \theta=\cos^{-1}{x}\)
\(\therefore \cos{\theta}=x\)
\(\therefore \cos^{-1}{x}=2\sin^{-1}{\sqrt{\frac{1-x}{2}}}=2\cos^{-1}{\sqrt{\frac{1+x}{2}}}\)
(প্রমাণিত)
\(\theta=\cos^{-1}{x}\)
\(\therefore \cos{\theta}=x\)
এখন, \(\sin{\frac{\theta}{2}}=\sqrt{\sin^2{\frac{\theta}{2}}}\)
\(=\sqrt{\frac{1}{2}\times2\sin^2{\frac{\theta}{2}}}\)
\(=\sqrt{\frac{1}{2}(1-\cos{\theta})}\) ➜ \(\because 2\sin^2{\frac{A}{2}}=1-\cos{A}\)
\(\therefore \sin{\frac{\theta}{2}}=\sqrt{\frac{1}{2}(1-\cos{\theta})}\)
\(\Rightarrow \frac{\theta}{2}=\sin^{-1}{\sqrt{\frac{1}{2}(1-\cos{\theta})}}\)
\(\Rightarrow \theta=2\sin^{-1}{\sqrt{\frac{1-\cos{\theta}}{2}}}\)
\(\therefore \cos^{-1}{x}=2\sin^{-1}{\sqrt{\frac{1-x}{2}}}\) ➜ \(\because \theta=\cos^{-1}{x}\)
\(\therefore \cos{\theta}=x\)
আবার,
\(\theta=\cos^{-1}{x}\)
\(\therefore \cos{\theta}=x\)
এখন, \(\cos{\frac{\theta}{2}}=\sqrt{\cos^2{\frac{\theta}{2}}}\)
\(=\sqrt{\frac{1}{2}\times2\cos^2{\frac{\theta}{2}}}\)
\(=\sqrt{\frac{1}{2}(1+\cos{\theta})}\) ➜ \(\because 2\cos^2{\frac{A}{2}}=1+\cos{A}\)
\(\therefore \cos{\frac{\theta}{2}}=\sqrt{\frac{1}{2}(1+\cos{\theta})}\)
\(\Rightarrow \frac{\theta}{2}=\cos^{-1}{\sqrt{\frac{1}{2}(1+\cos{\theta})}}\)
\(\Rightarrow \theta=2\cos^{-1}{\sqrt{\frac{1+\cos{\theta}}{2}}}\)
\(\therefore \cos^{-1}{x}=2\cos^{-1}{\sqrt{\frac{1+x}{2}}}\) ➜ \(\because \theta=\cos^{-1}{x}\)
\(\therefore \cos{\theta}=x\)
\(\therefore \cos^{-1}{x}=2\sin^{-1}{\sqrt{\frac{1-x}{2}}}=2\cos^{-1}{\sqrt{\frac{1+x}{2}}}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(v)\) \(2\sin^{-1}{x}=\sin^{-1}{2x\sqrt{1-x^2}}\) ঢাঃ,যঃ,সিঃ,দিঃ ২০১৮।
সমাধানঃ
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{2\theta}=2\sin{\theta}\cos{\theta}\)
\(\Rightarrow \sin{2\theta}=2\sin{\theta}\sqrt{1-\sin^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{(2\sin{\theta}\sqrt{1-\sin^2{\theta}})}\)
\(\therefore 2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
(প্রমাণিত)
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{2\theta}=2\sin{\theta}\cos{\theta}\)
\(\Rightarrow \sin{2\theta}=2\sin{\theta}\sqrt{1-\sin^2{\theta}}\)
\(\Rightarrow 2\theta=\sin^{-1}{(2\sin{\theta}\sqrt{1-\sin^2{\theta}})}\)
\(\therefore 2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2})}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(vi)\) \(\sin^{-1}{(3\sin^{-1}{x})}=3x-4x^3\) রাঃ ২০০৩।
সমাধানঃ
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{3\theta}=3\sin{\theta}-4\sin^3{\theta}\) ➜ \(\because \sin{3A}=3\sin{A}-4\sin^3{A}\)
\(\therefore \sin{(3\sin^{-1}{x})}=3x-4x^3\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
(প্রমাণিত)
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আবার,
\(\sin{3\theta}=3\sin{\theta}-4\sin^3{\theta}\) ➜ \(\because \sin{3A}=3\sin{A}-4\sin^3{A}\)
\(\therefore \sin{(3\sin^{-1}{x})}=3x-4x^3\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(vii)\) \(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\) রাঃ,কুঃ,চঃ,বঃ ২০১৮।
সমাধানঃ
ধরি,
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আমরা জানি,
\(\sin{\theta}=\cos{\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow \cos^{-1}{\sin{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+\cos^{-1}{\sin{\theta}}=\frac{\pi}{2}\)
\(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
(প্রমাণিত)
\(\sin{\theta}=x\)
\(\Rightarrow \theta=\sin^{-1}{x}\)
আমরা জানি,
\(\sin{\theta}=\cos{\left(\frac{\pi}{2}-\theta\right)}\)
\(\Rightarrow \cos^{-1}{\sin{\theta}}=\frac{\pi}{2}-\theta\)
\(\Rightarrow \theta+\cos^{-1}{\sin{\theta}}=\frac{\pi}{2}\)
\(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\) ➜ \(\because \sin{\theta}=x\)
\(\therefore \theta=\sin^{-1}{x}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(viii)\) \(\cos{\left(2\tan^{-1}{\frac{y}{x}}\right)}=\frac{x^2-y^2}{x^2+y^2}\) সিঃ২০১৭।
সমাধানঃ
\(L.S=\cos{\left(2\tan^{-1}{\frac{y}{x}}\right)}\)
\(=\cos{\left\{cos^{-1}{\frac{1-\left(\frac{y}{x}\right)^2}{1+\left(\frac{y}{x}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=cos^{-1}{\frac{1-A^2}{1+A^2}}\)
\(=\frac{1-\frac{y^2}{x^2}}{1+\frac{y^2}{x^2}}\)
\(=\frac{x^2-y^2}{x^2+y^2}\) ➜ লব ও হরকে \(x^2\) দ্বারা গুন করে,
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\left\{cos^{-1}{\frac{1-\left(\frac{y}{x}\right)^2}{1+\left(\frac{y}{x}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=cos^{-1}{\frac{1-A^2}{1+A^2}}\)
\(=\frac{1-\frac{y^2}{x^2}}{1+\frac{y^2}{x^2}}\)
\(=\frac{x^2-y^2}{x^2+y^2}\) ➜ লব ও হরকে \(x^2\) দ্বারা গুন করে,
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(ix)\) \(\tan^{-1}{\frac{2}{11}}+\tan^{-1}{\frac{7}{24}}=\tan^{-1}{\frac{1}{2}}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{2}{11}}+\tan^{-1}{\frac{7}{24}}\)
\(=\tan^{-1}{\left(\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11}\times\frac{7}{24}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{14}{264}}\right)}\)
\(=\tan^{-1}{\left(\frac{48+77}{264-14}\right)}\) ➜ লব ও হরকে \(264\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{125}{250}\right)}\)
\(=\tan^{-1}{\frac{1}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11}\times\frac{7}{24}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{14}{264}}\right)}\)
\(=\tan^{-1}{\left(\frac{48+77}{264-14}\right)}\) ➜ লব ও হরকে \(264\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{125}{250}\right)}\)
\(=\tan^{-1}{\frac{1}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(x)\) \(4\left(\cot^{-1}{3}+cosec^{-1}{\sqrt{5}}\right)=\pi\) ঢাঃ২০০৮; বঃ২০০৪,২০০২; চঃ২০০৪ ।
সমাধানঃ
\(L.S=4\left(\cot^{-1}{3}+cosec^{-1}{\sqrt{5}}\right)\)
\(=4\left(\tan^{-1}{\frac{1}{3}}+\sin^{-1}{\frac{1}{\sqrt{5}}}\right)\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
\(=4\left(\tan^{-1}{\frac{1}{3}}+\tan^{-1}{\frac{1}{2}}\right)\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4} \)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=4\tan^{-1}{\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=4\tan^{-1}{\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{6}}\right)}\)
\(=4\tan^{-1}{\left(\frac{2+3}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=4\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=4\tan^{-1}{(1)}\)
\(=4\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\)
\(=4\times\frac{\pi}{4}\)
\(=\pi\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=4\left(\tan^{-1}{\frac{1}{3}}+\sin^{-1}{\frac{1}{\sqrt{5}}}\right)\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
\(=4\left(\tan^{-1}{\frac{1}{3}}+\tan^{-1}{\frac{1}{2}}\right)\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4} \)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=4\tan^{-1}{\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=4\tan^{-1}{\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{6}}\right)}\)
\(=4\tan^{-1}{\left(\frac{2+3}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=4\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=4\tan^{-1}{(1)}\)
\(=4\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\)
\(=4\times\frac{\pi}{4}\)
\(=\pi\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xi)\) \(4\left(\sin^{-1}{\frac{1}{\sqrt{5}}}+\cot^{-1}{3}\right)=\pi\) মাঃ২০১৪,২০০৬; দিঃ২০১২; যঃ২০১১; ঢাঃ২০০৯; বঃ২০০৭; চঃ২০০৪ ।
সমাধানঃ
\(L.S=4\left(\sin^{-1}{\frac{1}{\sqrt{5}}}+\cot^{-1}{3}\right)\)
\(=4\left(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{3}}\right)\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4} \)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
এবং দ্বিতীয় পদে \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=4\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\times\frac{1}{3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=4\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)}\)
\(=4\tan^{-1}{\left(\frac{2+3}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=4\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=4\tan^{-1}{(1)}\)
\(=4\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\)
\(=4\times\frac{\pi}{4}\)
\(=\pi\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=4\left(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{3}}\right)\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4} \)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
এবং দ্বিতীয় পদে \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=4\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\times\frac{1}{3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=4\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)}\)
\(=4\tan^{-1}{\left(\frac{2+3}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=4\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=4\tan^{-1}{(1)}\)
\(=4\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\)
\(=4\times\frac{\pi}{4}\)
\(=\pi\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xii)\) \(\sin^{-1}{\frac{3}{5}}+\cot^{-1}{\frac{17}{19}}=\tan^{-1}{\frac{127}{11}}\) রুয়েটঃ২০০৩-২০০৪ ।
সমাধানঃ
\(L.S=\sin^{-1}{\frac{3}{5}}+\cot^{-1}{\frac{17}{19}}\)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{19}{17}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(5)^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16} \)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
এবং দ্বিতীয় পদে \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{19}{17}}{1-\frac{3}{4}\times\frac{19}{17}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{19}{17}}{1-\frac{57}{68}}\right)}\)
\(=\tan^{-1}{\left(\frac{51+76}{68-57}\right)}\) ➜ লব ও হরকে \(68\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{127}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{19}{17}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(5)^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16} \)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
এবং দ্বিতীয় পদে \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{19}{17}}{1-\frac{3}{4}\times\frac{19}{17}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{19}{17}}{1-\frac{57}{68}}\right)}\)
\(=\tan^{-1}{\left(\frac{51+76}{68-57}\right)}\) ➜ লব ও হরকে \(68\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{127}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xiii)\) \(\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\sqrt{\frac{2}{3}}}=\tan^{-1}{\sqrt{2}}\) সিঃ২০০১ ।
সমাধানঃ
\(L.S=\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\sqrt{\frac{2}{3}}}\)
\(=\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\)
\(=\tan^{-1}{\frac{1}{2\sqrt{2}}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=3 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{3^2-1^2} \)
\(=\sqrt{9-1} \)
\(=\sqrt{8} \)
\(=2\sqrt{2} \)
\(\therefore \sin^{-1}{\frac{1}{3}}=\tan^{-1}{\frac{1}{2\sqrt{2}}}\)
এবং দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=\sqrt{2} , \ \text{অতিভুজ}=\sqrt{3} \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{3})^2-(\sqrt{2})^2} \)
\(=\sqrt{3-2} \)
\(=\sqrt{1} \)
\(=1 \)
\(\therefore \cos^{-1}{\frac{2}{3}}=\tan^{-1}{\frac{1}{\sqrt{2}}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2\sqrt{2}}+\frac{1}{\sqrt{2}}}{1-\frac{1}{2\sqrt{2}}\times\frac{1}{\sqrt{2}}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2\sqrt{2}}+\frac{1}{\sqrt{2}}}{1-\frac{1}{4}}\right)}\)
\(=\tan^{-1}{\left(\frac{\sqrt{2}+2\sqrt{2}}{4-1}\right)}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{3\sqrt{2}}{3}}\)
\(=\tan^{-1}{\sqrt{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\)
\(=\tan^{-1}{\frac{1}{2\sqrt{2}}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=3 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{3^2-1^2} \)
\(=\sqrt{9-1} \)
\(=\sqrt{8} \)
\(=2\sqrt{2} \)
\(\therefore \sin^{-1}{\frac{1}{3}}=\tan^{-1}{\frac{1}{2\sqrt{2}}}\)
এবং দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=\sqrt{2} , \ \text{অতিভুজ}=\sqrt{3} \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{3})^2-(\sqrt{2})^2} \)
\(=\sqrt{3-2} \)
\(=\sqrt{1} \)
\(=1 \)
\(\therefore \cos^{-1}{\frac{2}{3}}=\tan^{-1}{\frac{1}{\sqrt{2}}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2\sqrt{2}}+\frac{1}{\sqrt{2}}}{1-\frac{1}{2\sqrt{2}}\times\frac{1}{\sqrt{2}}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2\sqrt{2}}+\frac{1}{\sqrt{2}}}{1-\frac{1}{4}}\right)}\)
\(=\tan^{-1}{\left(\frac{\sqrt{2}+2\sqrt{2}}{4-1}\right)}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{3\sqrt{2}}{3}}\)
\(=\tan^{-1}{\sqrt{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xiv)\) \(\cot^{-1}{\frac{5}{3}}+\sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{27}{11}}\) রুয়েটঃ২০০৩-২০০৪; মাঃ ২০০১ ।
সমাধানঃ
\(L.S=\cot^{-1}{\frac{5}{3}}+\sin^{-1}{\frac{3}{5}}\)
\(=\tan^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{3}{4}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{5}+\frac{3}{4}}{1-\frac{3}{5}\times\frac{3}{4}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{5}+\frac{3}{4}}{1-\frac{9}{20}}\right)}\)
\(=\tan^{-1}{\left(\frac{12+15}{20-9}\right)}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{27}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{3}{4}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{5}+\frac{3}{4}}{1-\frac{3}{5}\times\frac{3}{4}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{5}+\frac{3}{4}}{1-\frac{9}{20}}\right)}\)
\(=\tan^{-1}{\left(\frac{12+15}{20-9}\right)}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{27}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xv)\) \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{11}{2}}\) ডুয়েটঃ২০১৪-২০১৫; দিঃ ২০১৩,২০০৯; সিঃ২০১২,২০০৫; বঃ২০১০; কুঃ২০০৫,২০০০; চঃ২০০৫ ।
সমাধানঃ
\(L.S=\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}\)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=4 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
এবং দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=2 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1} \)
\(=1 \)
\(\therefore \cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{8+3}{6-4}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{11}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=4 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
এবং দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=2 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1} \)
\(=1 \)
\(\therefore \cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{8+3}{6-4}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{11}{2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xvi)\) \(\sec^{-1}{\frac{\sqrt{5}}{2}}+\tan^{-1}{\frac{1}{2}}=\cot^{-1}{\frac{3}{4}}\)বঃ ২০১৭ ।
সমাধানঃ
\(L.S=\sec^{-1}{\frac{\sqrt{5}}{2}}+\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{ভূমি}=2 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1} \)
\(=1 \)
\(\therefore \sec^{-1}{\frac{\sqrt{5}}{2}}=\tan^{-1}{\frac{1}{2}}\)
\(=2\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{1}{1-\frac{1}{4}}\right\}}\)
\(=\tan^{-1}{\left(\frac{4}{4-1}\right)}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{4}{3}}\)
\(=\cot^{-1}{\frac{3}{4}}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{ভূমি}=2 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1} \)
\(=1 \)
\(\therefore \sec^{-1}{\frac{\sqrt{5}}{2}}=\tan^{-1}{\frac{1}{2}}\)
\(=2\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{1}{1-\frac{1}{4}}\right\}}\)
\(=\tan^{-1}{\left(\frac{4}{4-1}\right)}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{4}{3}}\)
\(=\cot^{-1}{\frac{3}{4}}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xvii)\) \(\sec^{-1}{\frac{13}{5}}-cosec^{-1}{\frac{\sqrt{5}}{2}}=\tan^{-1}{\frac{2}{29}}\)বঃ ২০০৬; চঃ২০০২ ।
সমাধানঃ
\(L.S=\sec^{-1}{\frac{13}{5}}-cosec^{-1}{\frac{\sqrt{5}}{2}}\)
\(=\tan^{-1}{\frac{12}{5}}-\tan^{-1}{2}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{ভূমি}=5 , \ \text{অতিভুজ}=13 \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(13)^2-5^2} \)
\(=\sqrt{169-25} \)
\(=\sqrt{144} \)
\(=12 \)
\(\therefore \sec^{-1}{\frac{13}{5}}=\tan^{-1}{\frac{12}{5}}\)
এবং দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=2 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore cosec^{-1}{\frac{\sqrt{5}}{2}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
\(=\tan^{-1}{\left\{\frac{\frac{12}{5}-2}{1+\frac{12}{5}\times2}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{12}{5}-2}{1+\frac{24}{5}}\right\}}\)
\(=\tan^{-1}{\left(\frac{12-10}{5+24}\right)}\) ➜ লব ও হরকে \(5\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{2}{29}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{12}{5}}-\tan^{-1}{2}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{ভূমি}=5 , \ \text{অতিভুজ}=13 \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(13)^2-5^2} \)
\(=\sqrt{169-25} \)
\(=\sqrt{144} \)
\(=12 \)
\(\therefore \sec^{-1}{\frac{13}{5}}=\tan^{-1}{\frac{12}{5}}\)
এবং দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=2 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore cosec^{-1}{\frac{\sqrt{5}}{2}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
\(=\tan^{-1}{\left\{\frac{\frac{12}{5}-2}{1+\frac{12}{5}\times2}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{12}{5}-2}{1+\frac{24}{5}}\right\}}\)
\(=\tan^{-1}{\left(\frac{12-10}{5+24}\right)}\) ➜ লব ও হরকে \(5\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{2}{29}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xviii)\) \(\sec^{-1}{\frac{5}{3}}+\cot^{-1}{\frac{12}{5}}+\sin^{-1}{\frac{16}{65}}=\frac{\pi}{2}\)ঢাঃ২০১৭ ।
সমাধানঃ
\(L.S=\sec^{-1}{\frac{5}{3}}+\cot^{-1}{\frac{12}{5}}+\sin^{-1}{\frac{16}{65}}\)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{5}{12}}+\tan^{-1}{\frac{16}{63}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{ভূমি}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16} \)
\(=4 \)
\(\therefore \sec^{-1}{\frac{5}{3}}=\tan^{-1}{\frac{4}{3}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং তৃতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=16 , \ \text{অতিভুজ}=65\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(65)^2-(16)^2} \)
\(=\sqrt{4225-256} \)
\(=\sqrt{3969}\)
\(=63\)
\(\therefore \sin^{-1}{\frac{\sqrt{16}}{65}}=\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left\{\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{4}{3}\times\frac{5}{12}}\right\}}+\tan^{-1}{\frac{16}{63}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{20}{36}}\right\}}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left(\frac{48+15}{36-20}\right)}+\tan^{-1}{\frac{16}{63}}\) ➜ লব ও হরকে \(36\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{63}{16}}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left\{\frac{\frac{63}{16}+\frac{16}{63}}{1-\frac{63}{16}\times\frac{16}{63}}\right\}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{63}{16}+\frac{16}{63}}{1-1}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{63}{16}+\frac{16}{63}}{0}\right\}}\)
\(=\tan^{-1}{(\infty)}\)
\(=\tan^{-1}{(\tan{\frac{\pi}{2}})}\)➜ \(\because \infty=\tan{\frac{\pi}{2}}\)
\(=\frac{\pi}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{5}{12}}+\tan^{-1}{\frac{16}{63}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{ভূমি}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16} \)
\(=4 \)
\(\therefore \sec^{-1}{\frac{5}{3}}=\tan^{-1}{\frac{4}{3}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং তৃতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=16 , \ \text{অতিভুজ}=65\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(65)^2-(16)^2} \)
\(=\sqrt{4225-256} \)
\(=\sqrt{3969}\)
\(=63\)
\(\therefore \sin^{-1}{\frac{\sqrt{16}}{65}}=\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left\{\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{4}{3}\times\frac{5}{12}}\right\}}+\tan^{-1}{\frac{16}{63}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{20}{36}}\right\}}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left(\frac{48+15}{36-20}\right)}+\tan^{-1}{\frac{16}{63}}\) ➜ লব ও হরকে \(36\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{63}{16}}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left\{\frac{\frac{63}{16}+\frac{16}{63}}{1-\frac{63}{16}\times\frac{16}{63}}\right\}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{63}{16}+\frac{16}{63}}{1-1}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{63}{16}+\frac{16}{63}}{0}\right\}}\)
\(=\tan^{-1}{(\infty)}\)
\(=\tan^{-1}{(\tan{\frac{\pi}{2}})}\)➜ \(\because \infty=\tan{\frac{\pi}{2}}\)
\(=\frac{\pi}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xix)\) \(\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{5}{13}}+\sin^{-1}{\frac{16}{65}}=\frac{\pi}{2}\)রুয়েটঃ২০০৭-২০০৮ ।
সমাধানঃ
\(L.S=\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{5}{13}}+\sin^{-1}{\frac{16}{65}}\)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{5}{12}}+\sin^{-1}{\frac{16}{65}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=5, \ \text{অতিভুজ}=13\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(13)^2-5^2} \)
\(=\sqrt{169-25} \)
\(=\sqrt{144}\)
\(=12\)
\(\therefore \sin^{-1}{\frac{5}{13}}=\tan^{-1}{\frac{5}{12}}\)
\(=\tan^{-1}{\left\{\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{4}{3}\times\frac{5}{12}}\right\}}+\sin^{-1}{\frac{16}{65}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{20}{36}}\right\}}+\sin^{-1}{\frac{16}{65}}\)
\(=\tan^{-1}{\left(\frac{48+15}{36-20}\right)}+\sin^{-1}{\frac{16}{65}}\) ➜ প্রথম পদের
লব ও হরকে \(36\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{63}{16}}+\cot^{-1}{\frac{63}{16}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=16 , \ \text{অতিভুজ}=65\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(65)^2-(16)^2} \)
\(=\sqrt{4225-256} \)
\(=\sqrt{3969}\)
\(=63\)
\(\therefore \sin^{-1}{\frac{16}{65}}=\cot^{-1}{\frac{63}{16}}\)
\(=\frac{\pi}{2}\) ➜ \(\because \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{5}{12}}+\sin^{-1}{\frac{16}{65}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=5, \ \text{অতিভুজ}=13\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(13)^2-5^2} \)
\(=\sqrt{169-25} \)
\(=\sqrt{144}\)
\(=12\)
\(\therefore \sin^{-1}{\frac{5}{13}}=\tan^{-1}{\frac{5}{12}}\)
\(=\tan^{-1}{\left\{\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{4}{3}\times\frac{5}{12}}\right\}}+\sin^{-1}{\frac{16}{65}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{20}{36}}\right\}}+\sin^{-1}{\frac{16}{65}}\)
\(=\tan^{-1}{\left(\frac{48+15}{36-20}\right)}+\sin^{-1}{\frac{16}{65}}\) ➜ প্রথম পদের
লব ও হরকে \(36\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{63}{16}}+\cot^{-1}{\frac{63}{16}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=16 , \ \text{অতিভুজ}=65\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(65)^2-(16)^2} \)
\(=\sqrt{4225-256} \)
\(=\sqrt{3969}\)
\(=63\)
\(\therefore \sin^{-1}{\frac{16}{65}}=\cot^{-1}{\frac{63}{16}}\)
\(=\frac{\pi}{2}\) ➜ \(\because \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xx)\) \(\tan^{-1}{\frac{5}{3}}=\frac{\pi}{2}-\cos^{-1}{\frac{5}{\sqrt{34}}}\)সিঃ২০১৯ ।
সমাধানঃ
\(R.S=\frac{\pi}{2}-\cos^{-1}{\frac{5}{\sqrt{34}}}\)
\(=\frac{\pi}{2}-\cot^{-1}{\frac{5}{3}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=5, \ \text{অতিভুজ}=\sqrt{34}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{34})^2-5^2} \)
\(=\sqrt{34-25} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \cos^{-1}{\frac{5}{\sqrt{34}}}=\cot^{-1}{\frac{5}{3}}\)
\(=\tan^{-1}{\frac{5}{3}}\) ➜ \(\because \frac{\pi}{2}=\tan^{-1}{x}+\cot^{-1}{x}\)
\(\therefore \frac{\pi}{2}-\cot^{-1}{x}=\tan^{-1}{x}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\pi}{2}-\cot^{-1}{\frac{5}{3}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=5, \ \text{অতিভুজ}=\sqrt{34}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{34})^2-5^2} \)
\(=\sqrt{34-25} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \cos^{-1}{\frac{5}{\sqrt{34}}}=\cot^{-1}{\frac{5}{3}}\)
\(=\tan^{-1}{\frac{5}{3}}\) ➜ \(\because \frac{\pi}{2}=\tan^{-1}{x}+\cot^{-1}{x}\)
\(\therefore \frac{\pi}{2}-\cot^{-1}{x}=\tan^{-1}{x}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxi)\) \(\tan^{-1}{\frac{2}{3}}=\frac{\pi}{2}-\sec^{-1}{\frac{\sqrt{13}}{2}}\)ঢাঃ২০১১,২০০২; সিঃ২০১০; বঃ২০০৯; যঃ২০০৮; চঃ২০০৪,২০০১ ।
সমাধানঃ
\(R.S=\frac{\pi}{2}-\sec^{-1}{\frac{\sqrt{13}}{2}}\)
\(=\frac{\pi}{2}-\cot^{-1}{\frac{2}{3}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=2, \ \text{অতিভুজ}=\sqrt{13}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{13})^2-2^2} \)
\(=\sqrt{13-4} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sec^{-1}{\frac{\sqrt{13}}{2}}=\cot^{-1}{\frac{2}{3}}\)
\(=\tan^{-1}{\frac{2}{3}}\) ➜ \(\because \frac{\pi}{2}=\tan^{-1}{x}+\cot^{-1}{x}\)
\(\therefore \frac{\pi}{2}-\cot^{-1}{x}=\tan^{-1}{x}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\frac{\pi}{2}-\cot^{-1}{\frac{2}{3}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=2, \ \text{অতিভুজ}=\sqrt{13}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{13})^2-2^2} \)
\(=\sqrt{13-4} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sec^{-1}{\frac{\sqrt{13}}{2}}=\cot^{-1}{\frac{2}{3}}\)
\(=\tan^{-1}{\frac{2}{3}}\) ➜ \(\because \frac{\pi}{2}=\tan^{-1}{x}+\cot^{-1}{x}\)
\(\therefore \frac{\pi}{2}-\cot^{-1}{x}=\tan^{-1}{x}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxii)\) \(\tan^{-1}{\frac{1}{3}}-\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{7}}=\tan^{-1}{\frac{3}{11}}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{1}{3}}-\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{3}-\frac{1}{5}}{1+\frac{1}{3}\times\frac{1}{5}}\right)}+\tan^{-1}{\frac{1}{7}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{3}-\frac{1}{5}}{1+\frac{1}{15}}\right)}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left(\frac{5-3}{15+1}\right)}+\tan^{-1}{\frac{1}{7}}\) ➜ প্রথম পদের,
লব ও হরকে \(15\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{2}{16}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\frac{1}{8}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{8}+\frac{1}{7}}{1-\frac{1}{8}\times\frac{1}{7}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{8}+\frac{1}{7}}{1-\frac{1}{56}}\right)}\)
\(=\tan^{-1}{\left(\frac{7+8}{56-1}\right)}\) ➜ লব ও হরকে \(56\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{15}{55}}\)
\(=\tan^{-1}{\frac{3}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{1}{3}-\frac{1}{5}}{1+\frac{1}{3}\times\frac{1}{5}}\right)}+\tan^{-1}{\frac{1}{7}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{3}-\frac{1}{5}}{1+\frac{1}{15}}\right)}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left(\frac{5-3}{15+1}\right)}+\tan^{-1}{\frac{1}{7}}\) ➜ প্রথম পদের,
লব ও হরকে \(15\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{2}{16}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\frac{1}{8}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{8}+\frac{1}{7}}{1-\frac{1}{8}\times\frac{1}{7}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{8}+\frac{1}{7}}{1-\frac{1}{56}}\right)}\)
\(=\tan^{-1}{\left(\frac{7+8}{56-1}\right)}\) ➜ লব ও হরকে \(56\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{15}{55}}\)
\(=\tan^{-1}{\frac{3}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxiii)\) \(2\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{4}}=\tan^{-1}{\frac{32}{43}}\)সমাধানঃ
\(L.S=2\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{4}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{5}}{1-\left(\frac{1}{5}\right)^2}\right\}}+\tan^{-1}{\frac{1}{4}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{2}{5}}{1-\frac{1}{25}}\right\}}+\tan^{-1}{\frac{1}{4}}\)
\(=\tan^{-1}{\left\{\frac{10}{25-1}\right\}}+\tan^{-1}{\frac{1}{4}}\) ➜ প্রথম পদের,
লব ও হরকে \(25\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{10}{24}}+\tan^{-1}{\frac{1}{4}}\)
\(=\tan^{-1}{\frac{5}{12}}+\tan^{-1}{\frac{1}{4}}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{12}+\frac{1}{4}}{1-\frac{5}{12}\times\frac{1}{4}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{12}+\frac{1}{4}}{1-\frac{5}{48}}\right)}\)
\(=\tan^{-1}{\left(\frac{20+12}{48-5}\right)}\) ➜ লব ও হরকে \(48\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{32}{43}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{5}}{1-\left(\frac{1}{5}\right)^2}\right\}}+\tan^{-1}{\frac{1}{4}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{2}{5}}{1-\frac{1}{25}}\right\}}+\tan^{-1}{\frac{1}{4}}\)
\(=\tan^{-1}{\left\{\frac{10}{25-1}\right\}}+\tan^{-1}{\frac{1}{4}}\) ➜ প্রথম পদের,
লব ও হরকে \(25\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{10}{24}}+\tan^{-1}{\frac{1}{4}}\)
\(=\tan^{-1}{\frac{5}{12}}+\tan^{-1}{\frac{1}{4}}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{12}+\frac{1}{4}}{1-\frac{5}{12}\times\frac{1}{4}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{12}+\frac{1}{4}}{1-\frac{5}{48}}\right)}\)
\(=\tan^{-1}{\left(\frac{20+12}{48-5}\right)}\) ➜ লব ও হরকে \(48\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{32}{43}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxiv)\) \(4\tan^{-1}{\frac{1}{5}}-\tan^{-1}{\frac{1}{239}}=\frac{\pi}{4}\)সমাধানঃ
\(L.S=4\tan^{-1}{\frac{1}{5}}-\tan^{-1}{\frac{1}{239}}\)
\(=2\times2\tan^{-1}{\frac{1}{5}}-\tan^{-1}{\frac{1}{239}}\)
\(=2\tan^{-1}{\left\{\frac{2\times\frac{1}{5}}{1-\left(\frac{1}{5}\right)^2}\right\}}-\tan^{-1}{\frac{1}{239}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=2\tan^{-1}{\left\{\frac{\frac{2}{5}}{1-\frac{1}{25}}\right\}}-\tan^{-1}{\frac{1}{239}}\)
\(=2\tan^{-1}{\left\{\frac{10}{25-1}\right\}}-\tan^{-1}{\frac{1}{239}}\) ➜ প্রথম পদের,
লব ও হরকে \(25\) দ্বারা গুন করে,
\(=2\tan^{-1}{\frac{10}{24}}-\tan^{-1}{\frac{1}{239}}\)
\(=2\tan^{-1}{\frac{5}{12}}-\tan^{-1}{\frac{1}{239}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{5}{12}}{1-\left(\frac{5}{12}\right)^2}\right\}}-\tan^{-1}{\frac{1}{239}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{5}{6}}{1-\frac{25}{144}}\right\}}-\tan^{-1}{\frac{1}{239}}\)
\(=\tan^{-1}{\frac{120}{144-25}}-\tan^{-1}{\frac{1}{239}}\) ➜ লব ও হরকে \(144\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{120}{119}}-\tan^{-1}{\frac{1}{239}}\)
\(=\tan^{-1}{\left(\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119}\times\frac{1}{239}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{28441}}\right)}\)
\(=\tan^{-1}{\left(\frac{28680-119}{28441+120}\right)}\) ➜ লব ও হরকে \(28441\) দ্বারা গুন করে,
\(=\tan^{-1}{(\frac{28561}{28561})}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{(\tan{\frac{\pi}{4}})}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\times2\tan^{-1}{\frac{1}{5}}-\tan^{-1}{\frac{1}{239}}\)
\(=2\tan^{-1}{\left\{\frac{2\times\frac{1}{5}}{1-\left(\frac{1}{5}\right)^2}\right\}}-\tan^{-1}{\frac{1}{239}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=2\tan^{-1}{\left\{\frac{\frac{2}{5}}{1-\frac{1}{25}}\right\}}-\tan^{-1}{\frac{1}{239}}\)
\(=2\tan^{-1}{\left\{\frac{10}{25-1}\right\}}-\tan^{-1}{\frac{1}{239}}\) ➜ প্রথম পদের,
লব ও হরকে \(25\) দ্বারা গুন করে,
\(=2\tan^{-1}{\frac{10}{24}}-\tan^{-1}{\frac{1}{239}}\)
\(=2\tan^{-1}{\frac{5}{12}}-\tan^{-1}{\frac{1}{239}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{5}{12}}{1-\left(\frac{5}{12}\right)^2}\right\}}-\tan^{-1}{\frac{1}{239}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{5}{6}}{1-\frac{25}{144}}\right\}}-\tan^{-1}{\frac{1}{239}}\)
\(=\tan^{-1}{\frac{120}{144-25}}-\tan^{-1}{\frac{1}{239}}\) ➜ লব ও হরকে \(144\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{120}{119}}-\tan^{-1}{\frac{1}{239}}\)
\(=\tan^{-1}{\left(\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119}\times\frac{1}{239}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{28441}}\right)}\)
\(=\tan^{-1}{\left(\frac{28680-119}{28441+120}\right)}\) ➜ লব ও হরকে \(28441\) দ্বারা গুন করে,
\(=\tan^{-1}{(\frac{28561}{28561})}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{(\tan{\frac{\pi}{4}})}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxv)\) \(\cos^{-1}{\frac{4}{5}}+\cot^{-1}{\frac{5}{3}}=\tan^{-1}{\frac{27}{11}}\)ঢাঃ২০১২ ।
সমাধানঃ
\(L.S=\cos^{-1}{\frac{4}{5}}+\cot^{-1}{\frac{5}{3}}\)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{3}{5}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \cos^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{3}{4}}\)
এবং \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{3}{5}}{1-\frac{3}{4}\times\frac{3}{5}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{4}{5}}{1-\frac{9}{20}}\right)}\)
\(=\tan^{-1}{\frac{15+12}{20-9}}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{27}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{3}{5}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \cos^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{3}{4}}\)
এবং \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{3}{5}}{1-\frac{3}{4}\times\frac{3}{5}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{4}{5}}{1-\frac{9}{20}}\right)}\)
\(=\tan^{-1}{\frac{15+12}{20-9}}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{27}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxvi)\) \(\cot^{-1}{3}+cosec^{-1}{\sqrt{5}}=\frac{\pi}{4}\)সমাধানঃ
\(L.S=\cot^{-1}{3}+cosec^{-1}{\sqrt{5}}\)
\(=\tan^{-1}{\frac{1}{3}}+\sin^{-1}{\frac{1}{\sqrt{5}}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\frac{1}{3}}+\tan^{-1}{\frac{1}{2}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4} \)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{2+3}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{1}{3}}+\sin^{-1}{\frac{1}{\sqrt{5}}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\frac{1}{3}}+\tan^{-1}{\frac{1}{2}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4} \)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}\times\frac{1}{2}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{2+3}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxvii)\) \(\tan^{-1}{\frac{5}{6}}-tan^{-1}{\frac{1}{11}}=\tan^{-1}{\frac{49}{71}}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{5}{6}}-tan^{-1}{\frac{1}{11}}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{6}-\frac{1}{11}}{1+\frac{5}{6}\times\frac{1}{11}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{6}-\frac{1}{11}}{1+\frac{5}{66}}\right)}\)
\(=\tan^{-1}{\left(\frac{55-6}{66+5}\right)}\) ➜ লব ও হরকে \(66\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{49}{71}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{5}{6}-\frac{1}{11}}{1+\frac{5}{6}\times\frac{1}{11}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{6}-\frac{1}{11}}{1+\frac{5}{66}}\right)}\)
\(=\tan^{-1}{\left(\frac{55-6}{66+5}\right)}\) ➜ লব ও হরকে \(66\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{49}{71}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxviii)\) \(\tan^{-1}{\frac{5}{7}}+cot^{-1}{\frac{8}{5}}=\cot^{-1}{\frac{31}{75}}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{5}{7}}+cot^{-1}{\frac{8}{5}}\)
\(=\cot^{-1}{\frac{7}{5}}+cot^{-1}{\frac{8}{5}}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(=\cot^{-1}{\left(\frac{\frac{7}{5}\times\frac{8}{5}-1}{\frac{8}{5}+\frac{7}{5}}\right)}\) ➜ \(\because \cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\)
\(=\cot^{-1}{\left(\frac{\frac{56}{25}-1}{\frac{8}{5}+\frac{7}{5}}\right)}\)
\(=\cot^{-1}{\left(\frac{56-25}{40+35}\right)}\) ➜ লব ও হরকে \(25\) দ্বারা গুন করে,
\(=\cot^{-1}{\frac{31}{75}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cot^{-1}{\frac{7}{5}}+cot^{-1}{\frac{8}{5}}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(=\cot^{-1}{\left(\frac{\frac{7}{5}\times\frac{8}{5}-1}{\frac{8}{5}+\frac{7}{5}}\right)}\) ➜ \(\because \cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\)
\(=\cot^{-1}{\left(\frac{\frac{56}{25}-1}{\frac{8}{5}+\frac{7}{5}}\right)}\)
\(=\cot^{-1}{\left(\frac{56-25}{40+35}\right)}\) ➜ লব ও হরকে \(25\) দ্বারা গুন করে,
\(=\cot^{-1}{\frac{31}{75}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxix)\) \(\sin^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{27}{11}}\)সমাধানঃ
\(L.S=\sin^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{3}{5}}\)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{3}{5}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16} \)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{3}{5}}{1-\frac{3}{4}\times\frac{3}{5}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{3}{5}}{1-\frac{9}{20}}\right)}\)
\(=\tan^{-1}{\left(\frac{15+12}{20-9}\right)}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{27}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{3}{5}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16} \)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{3}{5}}{1-\frac{3}{4}\times\frac{3}{5}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{3}{5}}{1-\frac{9}{20}}\right)}\)
\(=\tan^{-1}{\left(\frac{15+12}{20-9}\right)}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{27}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxx)\) \(\sin^{-1}{\frac{3}{5}}+\sin^{-1}{\frac{8}{17}}=\sin^{-1}{\frac{77}{85}}\)সমাধানঃ
\(L.S=\sin^{-1}{\frac{3}{5}}+\sin^{-1}{\frac{8}{17}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\sqrt{1-\left(\frac{8}{17}\right)^2}+\frac{8}{17}\sqrt{1-\left(\frac{3}{5}\right)^2}\right\}}\) ➜ \(\because \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{\left\{x\sqrt{1-y^2}+y\sqrt{1-x^2}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\sqrt{1-\frac{64}{289}}+\frac{8}{17}\sqrt{1-\frac{9}{25}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\sqrt{\frac{289-64}{289}}+\frac{8}{17}\sqrt{\frac{25-9}{25}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\sqrt{\frac{225}{289}}+\frac{8}{17}\sqrt{\frac{16}{25}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\times{\frac{15}{17}}+\frac{8}{17}\times{\frac{4}{5}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{1}\times{\frac{3}{17}}+\frac{32}{85}\right\}}\)
\(=\sin^{-1}{\left\{\frac{9}{17}+\frac{32}{85}\right\}}\)
\(=\sin^{-1}{\left\{\frac{45+32}{85}\right\}}\)
\(=\sin^{-1}{\frac{77}{85}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin^{-1}{\left\{\frac{3}{5}\sqrt{1-\left(\frac{8}{17}\right)^2}+\frac{8}{17}\sqrt{1-\left(\frac{3}{5}\right)^2}\right\}}\) ➜ \(\because \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{\left\{x\sqrt{1-y^2}+y\sqrt{1-x^2}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\sqrt{1-\frac{64}{289}}+\frac{8}{17}\sqrt{1-\frac{9}{25}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\sqrt{\frac{289-64}{289}}+\frac{8}{17}\sqrt{\frac{25-9}{25}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\sqrt{\frac{225}{289}}+\frac{8}{17}\sqrt{\frac{16}{25}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{5}\times{\frac{15}{17}}+\frac{8}{17}\times{\frac{4}{5}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{3}{1}\times{\frac{3}{17}}+\frac{32}{85}\right\}}\)
\(=\sin^{-1}{\left\{\frac{9}{17}+\frac{32}{85}\right\}}\)
\(=\sin^{-1}{\left\{\frac{45+32}{85}\right\}}\)
\(=\sin^{-1}{\frac{77}{85}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxxi)\) \(\cot^{-1}{\frac{5}{3}}+\sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{27}{11}}\)সমাধানঃ
\(L.S=\cot^{-1}{\frac{5}{3}}+\sin^{-1}{\frac{3}{5}}\)
\(=\tan^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{3}{4}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16} \)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\left\{\frac{\frac{3}{5}+\frac{3}{4}}{1-\frac{3}{5}\times\frac{3}{4}}\right\}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x+y}{1-xy}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{3}{5}+\frac{3}{4}}{1-\frac{9}{20}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{12+15}{20-9}\right\}}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{27}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{3}{4}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16} \)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\left\{\frac{\frac{3}{5}+\frac{3}{4}}{1-\frac{3}{5}\times\frac{3}{4}}\right\}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x+y}{1-xy}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{3}{5}+\frac{3}{4}}{1-\frac{9}{20}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{12+15}{20-9}\right\}}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{27}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxxii)\) \(\tan^{-1}{\frac{5}{6}}-\tan^{-1}{\frac{49}{71}}=\tan^{-1}{\frac{1}{11}}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{5}{6}}-\tan^{-1}{\frac{49}{71}}\)
\(=\tan^{-1}{\left\{\frac{\frac{5}{6}-\frac{49}{71}}{1+\frac{5}{6}\times\frac{49}{71}}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x-y}{1+xy}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{5}{6}-\frac{49}{71}}{1+\frac{245}{426}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{355-294}{426+245}\right\}}\) ➜ লব ও হরকে \(426\) দ্বারা গুন করে,
\(=\tan^{-1}{\left\{\frac{61}{671}\right\}}\)
\(=\tan^{-1}{\frac{1}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left\{\frac{\frac{5}{6}-\frac{49}{71}}{1+\frac{5}{6}\times\frac{49}{71}}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x-y}{1+xy}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{5}{6}-\frac{49}{71}}{1+\frac{245}{426}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{355-294}{426+245}\right\}}\) ➜ লব ও হরকে \(426\) দ্বারা গুন করে,
\(=\tan^{-1}{\left\{\frac{61}{671}\right\}}\)
\(=\tan^{-1}{\frac{1}{11}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.1.(xxxiii)\) \(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{8}}=\frac{\pi}{4}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{8}}\)
\(=\tan^{-1}{\left\{\frac{\frac{1}{2}+\frac{1}{5}}{1-\frac{1}{2}\times\frac{1}{5}}\right\}}+\tan^{-1}{\frac{1}{8}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x+y}{1-xy}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{1}{2}+\frac{1}{5}}{1-\frac{1}{10}}\right\}}+\tan^{-1}{\frac{1}{8}}\)
\(=\tan^{-1}{\left\{\frac{5+2}{10-1}\right\}}+\tan^{-1}{\frac{1}{8}}\) ➜ প্রথম পদের,
লব ও হরকে \(10\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{7}{9}}+\tan^{-1}{\frac{1}{8}}\)
\(=\tan^{-1}{\left\{\frac{\frac{7}{9}+\frac{1}{8}}{1-\frac{7}{9}\times\frac{1}{8}}\right\}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x+y}{1-xy}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{7}{9}+\frac{1}{8}}{1-\frac{7}{72}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{56+9}{72-7}\right\}}\)➜ লব ও হরকে \(72\) দ্বারা গুন করে,
\(=\tan^{-1}{\left\{\frac{65}{65}\right\}}\)
\(=\tan^{-1}{\left\{1\right\}}\)
\(=\tan^{-1}{\left\{\tan{\frac{\pi}{4}}\right\}}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left\{\frac{\frac{1}{2}+\frac{1}{5}}{1-\frac{1}{2}\times\frac{1}{5}}\right\}}+\tan^{-1}{\frac{1}{8}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x+y}{1-xy}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{1}{2}+\frac{1}{5}}{1-\frac{1}{10}}\right\}}+\tan^{-1}{\frac{1}{8}}\)
\(=\tan^{-1}{\left\{\frac{5+2}{10-1}\right\}}+\tan^{-1}{\frac{1}{8}}\) ➜ প্রথম পদের,
লব ও হরকে \(10\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{7}{9}}+\tan^{-1}{\frac{1}{8}}\)
\(=\tan^{-1}{\left\{\frac{\frac{7}{9}+\frac{1}{8}}{1-\frac{7}{9}\times\frac{1}{8}}\right\}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x+y}{1-xy}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\frac{7}{9}+\frac{1}{8}}{1-\frac{7}{72}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{56+9}{72-7}\right\}}\)➜ লব ও হরকে \(72\) দ্বারা গুন করে,
\(=\tan^{-1}{\left\{\frac{65}{65}\right\}}\)
\(=\tan^{-1}{\left\{1\right\}}\)
\(=\tan^{-1}{\left\{\tan{\frac{\pi}{4}}\right\}}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7H\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ
মান নির্ণয় করঃ
\(Q.2.(i) (a)\) \(\cot{\left(\sin^{-1}{\frac{1}{\sqrt{5}}}\right)}\)উত্তরঃ \(2\)
চঃ২০১৯।
\(Q.2.(i) (b)\) \(cosec^{-1}{\sqrt{17}}+\sec^{-1}{\frac{\sqrt{26}}{5}}\)
উত্তরঃ \(\tan^{-1}{\left(\frac{9}{19}\right)}\)
রাঃ২০১৯।
\(Q.2.(i) (c)\) \(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{3}}\)
উত্তরঃ \(\frac{\pi}{4}\)
যঃ২০১৯।
\(Q.2.(i) (d)\) \(\tan^{-1}{4}+\tan^{-1}{\frac{5}{3}}\)
উত্তরঃ \(\frac{3\pi}{4}\)
দিঃ২০১৯।
\(Q.2.(i) (e)\) \(cosec^{-1}{\sqrt{5}}+\sec^{-1}{\frac{\sqrt{10}}{3}}\)
উত্তরঃ \(\frac{\pi}{4}\)
কুঃ২০১৭।
\(Q.2.(i) (f)\) \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}-\cot^{-1}{\frac{2}{11}}\)
উত্তরঃ \(0\)
ঢা,দিঃ,যঃ,সিঃ২০১৮।
\(Q.2.(i) (g)\) \(\tan^{-1}{\sin{\cos^{-1}{\sqrt{\frac{2}{3}}}}}\)
উত্তরঃ \(\frac{\pi}{6}\)
দিঃ২০১৭।
\(Q.2.(i) (h)\) \(\sin{\left(\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{1}{3}}\right)}\)
উত্তরঃ \(1\)
\(Q.2.(i) (i)\) \(\cos{\left(\tan^{-1}{3}+\tan^{-1}{\frac{1}{3}}\right)}\)
উত্তরঃ \(0\)
\(Q.2.(i) (j)\) \(\tan{\left\{\frac{1}{2}{\left(\sec^{-1}{3}+cosec^{-1}{3}\right)}\right\}}\)
উত্তরঃ \(1\)
\(Q.2.(i) (k)\) \(\cot{\left(\sec^{-1}{2}+\sin^{-1}{\frac{1}{2}}\right)}\)
উত্তরঃ \(0\)
\(Q.2.(i) (l)\) \(\cos{\left(\sin^{-1}{\frac{1}{4}}+\cos^{-1}{\frac{1}{4}}\right)}\)
উত্তরঃ \(0\)
\(Q.2.(i) (m)\) \(\cot{\left(\tan^{-1}{\frac{1}{3}}+\cot^{-1}{\frac{1}{3}}\right)}\)
উত্তরঃ \(0\)
সমাধান করঃ
\(Q.2.(ii) (a)\) \(\sin^{-1}{2x}+\sin^{-1}{x}=\frac{\pi}{3}\)উত্তরঃ \(\frac{\sqrt{3}}{2\sqrt{7}}\)
বুয়েটঃ২০১৮-২০১৯।
\(Q.2.(ii) (b)\) \(\tan^{-1}{\frac{x-1}{x-2}}+\tan^{-1}{\frac{x+1}{x+2}}=\frac{\pi}{4}\)
উত্তরঃ \(\pm\frac{1}{\sqrt{2}}\)
\(Q.2.(ii) (c)\) \(\tan^{-1}{\frac{1-x}{1+x}}=\frac{1}{2}\tan^{-1}{x}\)
উত্তরঃ \(\frac{1}{\sqrt{3}}\)
বুয়েটঃ২০০৬-২০০৭।
\(Q.2.(ii) (d)\) \(\tan^{-1}{x}+2\cot^{-1}{x}=\frac{2}{3}\pi\)
উত্তরঃ \(\sqrt{3}\)
বুয়েটঃ২০১০-২০১১।
\(Q.2.(ii) (e)\) \(\tan{\cos^{-1}{x}}=\sin{\tan^{-1}{2}}\)
উত্তরঃ \(\frac{\sqrt{5}}{3}\)
বুয়েটঃ২০১২-২০১৩।
\(Q.2.(ii) (f)\) \(\tan^{-1}{(x+2)}+\tan^{-1}{(x-2)}=\tan^{-1}{\frac{1}{2}}\)
উত্তরঃ \(1, \ -5\)
\(Q.2.(ii) (g)\) \(\tan^{-1}{(x+1)}+\tan^{-1}{x}+\tan^{-1}{(x-1)}=\tan^{-1}{3x}\)
সিঃ২০০৬ ।
উত্তরঃ \(0, \ \pm{\frac{1}{2}}\) সমাধান করঃ
\(Q.2.(ii) (h)\) \(\tan{\left(\cos^{-1}{x}\right)}=\sin{\left(\cot^{-1}{\frac{1}{2}}\right)}\)উত্তরঃ \(\frac{\sqrt{5}}{3}\)
\(Q.2.(ii) (i)\) \(\sin^{-1}{x}-\cos^{-1}{x}=\frac{\pi}{6}\)
উত্তরঃ \(\frac{\sqrt{3}}{2}\)
\(Q.2.(ii) (j)\) \(\sec^{-1}{\frac{x}{2}}-\sec^{-1}{\frac{x}{3}}=\sec^{-1}{3}-\sec^{-1}{2}\)
উত্তরঃ \(6\)
\(Q.2.(ii) (k)\) \(\sin^{-1}{(5x^2-x-3)}=3\sin^{-1}{\frac{x}{2}}\)
উত্তরঃ \(1, \ \frac{-11+\sqrt{97}}{2}\)
\(Q.2.(ii) (l)\) \(\tan^{-1}{\frac{2x}{1-x^2}}=\sin^{-1}{\frac{2a}{1+a^2}}+\cos^{-1}{\frac{1-b^2}{1+b^2}}\)
উত্তরঃ \(\frac{a+b}{1-ab}\)
\(Q.2.(ii) (m)\) \(\cot^{-1}{(x-1)}+\cot^{-1}{(x-2)}+\cot^{-1}{(x-3)}=0\)
উত্তরঃ \(\frac{6\pm\sqrt{6}}{3}\)
\(Q.2.(ii) (n)\) \(2\tan^{-1}{(\cos{x})}=\tan^{-1}{(2cosec \ {x})}\)
উত্তরঃ \(n\pi+\frac{\pi}{4}\)
\(Q.2.(ii) (o)\) \(\cos^{-1}{x}-\sin^{-1}{x}=\cos^{-1}{(\sqrt{3}x)}\)
উত্তরঃ \(0\)
\(Q.2.(ii) (p)\) \(\tan^{-1}{\sin{\tan^{-1}{x}}}=\cos^{-1}{\sqrt{\frac{3}{5}}}\)
উত্তরঃ \(\pm{\sqrt{2}}\)
\(Q.2.(ii) (q)\) \(\tan^{-1}{\frac{x-1}{x+1}}+\tan^{-1}{\frac{2x-1}{2x+1}}=\tan^{-1}{\frac{23}{36}}\)
উত্তরঃ \(\frac{4}{3}\)
\(Q.2.(ii) (r)\) \(\sec^{-1}{\frac{x}{a}}-\sec^{-1}{\frac{x}{b}}=\sec^{-1}{b}-\sec^{-1}{a}\)
উত্তরঃ \(\pm{ab}\)
\(Q.2.(ii) (s)\) \(\tan^{-1}{(x+1)}+\tan^{-1}{(x-1)}=\tan^{-1}{\frac{8}{31}}\)
উত্তরঃ \(\frac{1}{4}\)
\(Q.2.(ii) (t)\) \(\sin{\cot^{-1}{\cos{\tan^{-1}{x}}}}=\frac{2}{\sqrt{5}}\)
উত্তরঃ \(\pm\sqrt{3}\)
\(Q.2.(ii) (u)\) \(\sin^{-1}{\frac{5}{x}}+\sin^{-1}{\frac{12}{x}}=\frac{\pi}{2}\)
উত্তরঃ \(13\)
নিম্নোক্ত ত্রিকোণমিতিক অভেদগুলির প্রমাণ কর এবং মুখ্যসীমার প্রভাব আলোচনা করঃ
\(Q.2.(iii) (a)\) \(\tan^{-1}{2}+\tan^{-1}{3}=\frac{3\pi}{4}\)\(Q.2.(iii) (b)\) \(\tan^{-1}{2}+\tan^{-1}{5}+\tan^{-1}{8}=\frac{5\pi}{4}\)
\(Q.2.(iii) (c)\) \(\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{56}{65}}=\pi\)
\(Q.2.(iii) (d)\) \(2\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{120}{169}}=\pi\)
\(Q.2.(iii) (e)\) \(\tan^{-1}{6}+\tan^{-1}{\frac{7}{5}}=\frac{3\pi}{4}\)
\(Q.2.(iii) (f)\) \(\tan^{-1}{5}+\tan^{-1}{6}+\tan^{-1}{7}+\tan^{-1}{8}=2\pi-\tan^{-1}{\frac{8}{11}}\)
লেখচিত্র অংকন করঃ
\(Q.2.(iv) (a)\) \(g(x)=p\sin^{-1}{x}\) যখন, \(p=\frac{1}{2}, \ -1\le{x}\le{1}.\) বঃ২০১৭ ।
\(Q.2.(iv) (b)\) \(y=\cos^{-1}{x}\) যখন, \(-1\le{x}\le{1}.\)
\(Q.2.(iv) (c)\) \(y=\tan^{-1}{x}\) যখন, \(-1\le{x}\le{1}.\)
\(Q.2.(iv) (d)\) \(y=\sec^{-1}{x}\) যখন, \(1\le{x}\le{2}.\)
মান নির্ণয় করঃ
\(Q.2.(i) (a)\) \(\cot{\left(\sin^{-1}{\frac{1}{\sqrt{5}}}\right)}\)উত্তরঃ \(2\)
চঃ২০১৯।
সমাধানঃ
প্রদত্ত রাশি,
\(\cot{\left(\sin^{-1}{\frac{1}{\sqrt{5}}}\right)}\)
\(=\cot{\left(\cot^{-1}{2}\right)}\) ➜ এখানে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\cot^{-1}{\frac{2}{1}}\)
\(=\cot^{-1}{2}\)
\(=2\)
ইহাই নির্ণেয় মান।
\(\cot{\left(\sin^{-1}{\frac{1}{\sqrt{5}}}\right)}\)
\(=\cot{\left(\cot^{-1}{2}\right)}\) ➜ এখানে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\cot^{-1}{\frac{2}{1}}\)
\(=\cot^{-1}{2}\)
\(=2\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (b)\) \(cosec^{-1}{\sqrt{17}}+\sec^{-1}{\frac{\sqrt{26}}{5}}\)উত্তরঃ \(\tan^{-1}{\left(\frac{9}{19}\right)}\)
রাঃ২০১৯।
সমাধানঃ
প্রদত্ত রাশি,
\(cosec^{-1}{\sqrt{17}}+\sec^{-1}{\frac{\sqrt{26}}{5}}\)
\(=\tan^{-1}{\frac{1}{4}}+\tan^{-1}{\frac{1}{5}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=1, \ \text{অতিভুজ}=\sqrt{17}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{17})^2-1^2} \)
\(=\sqrt{17-1} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore cosec^{-1}{\sqrt{17}}=\tan^{-1}{\frac{1}{4}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=5 , \ \text{অতিভুজ}=\sqrt{26}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{26})^2-5^2} \)
\(=\sqrt{26-25} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \sec^{-1}{\frac{\sqrt{26}}{5}}=\tan^{-1}{\frac{1}{5}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{4}+\frac{1}{5}}{1-\frac{1}{4}\times\frac{1}{5}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{4}+\frac{1}{5}}{1-\frac{1}{20}}\right)}\)
\(=\tan^{-1}{\left(\frac{5+4}{20-1}\right)}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{9}{19}\right)}\)
ইহাই নির্ণেয় মান।
\(cosec^{-1}{\sqrt{17}}+\sec^{-1}{\frac{\sqrt{26}}{5}}\)
\(=\tan^{-1}{\frac{1}{4}}+\tan^{-1}{\frac{1}{5}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=1, \ \text{অতিভুজ}=\sqrt{17}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{17})^2-1^2} \)
\(=\sqrt{17-1} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore cosec^{-1}{\sqrt{17}}=\tan^{-1}{\frac{1}{4}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=5 , \ \text{অতিভুজ}=\sqrt{26}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{26})^2-5^2} \)
\(=\sqrt{26-25} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \sec^{-1}{\frac{\sqrt{26}}{5}}=\tan^{-1}{\frac{1}{5}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{4}+\frac{1}{5}}{1-\frac{1}{4}\times\frac{1}{5}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{4}+\frac{1}{5}}{1-\frac{1}{20}}\right)}\)
\(=\tan^{-1}{\left(\frac{5+4}{20-1}\right)}\) ➜ লব ও হরকে \(20\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{9}{19}\right)}\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (c)\) \(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{3}}\)উত্তরঃ \(\frac{\pi}{4}\)
যঃ২০১৯।
সমাধানঃ
প্রদত্ত রাশি,
\(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{3}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\times\frac{1}{3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{3+2}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=\tan^{-1}{\left(1\right)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
ইহাই নির্ণেয় মান।
\(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{3}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\times\frac{1}{3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{3+2}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=\tan^{-1}{\left(1\right)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (d)\) \(\tan^{-1}{4}+\tan^{-1}{\frac{5}{3}}\)উত্তরঃ \(\frac{3\pi}{4}\)
দিঃ২০১৯।
সমাধানঃ
প্রদত্ত রাশি,
\(\tan^{-1}{4}+\tan^{-1}{\frac{5}{3}}\)
\(=\tan^{-1}{\left(\frac{4+\frac{5}{3}}{1-4\times\frac{5}{3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{4+\frac{5}{3}}{1-\frac{20}{3}}\right)}\)
\(=\tan^{-1}{\left(\frac{12+5}{20-3}\right)}\) ➜ লব ও হরকে \(3\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{17}{-17}\right)}\)
\(=\tan^{-1}{\left(-1\right)}\)
\(=\tan^{-1}{\left(-\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\tan^{-1}{\left\{\tan{\left(\pi-\frac{\pi}{4}\right)}\right\}}\)
\(=\frac{4\pi-\pi}{4}\)
\(=\frac{3\pi}{4}\)
ইহাই নির্ণেয় মান।
\(\tan^{-1}{4}+\tan^{-1}{\frac{5}{3}}\)
\(=\tan^{-1}{\left(\frac{4+\frac{5}{3}}{1-4\times\frac{5}{3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{4+\frac{5}{3}}{1-\frac{20}{3}}\right)}\)
\(=\tan^{-1}{\left(\frac{12+5}{20-3}\right)}\) ➜ লব ও হরকে \(3\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{17}{-17}\right)}\)
\(=\tan^{-1}{\left(-1\right)}\)
\(=\tan^{-1}{\left(-\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\tan^{-1}{\left\{\tan{\left(\pi-\frac{\pi}{4}\right)}\right\}}\)
\(=\frac{4\pi-\pi}{4}\)
\(=\frac{3\pi}{4}\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (e)\) \(cosec^{-1}{\sqrt{5}}+\sec^{-1}{\frac{\sqrt{10}}{3}}\)উত্তরঃ \(\frac{\pi}{4}\)
কুঃ২০১৭।
সমাধানঃ
প্রদত্ত রাশি,
\(cosec^{-1}{\sqrt{5}}+\sec^{-1}{\frac{\sqrt{10}}{3}}\)
\(=\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{3}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore cosec^{-1}{\sqrt{5}}=\tan^{-1}{\frac{1}{2}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=3 , \ \text{অতিভুজ}=\sqrt{10}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{10})^2-3^2} \)
\(=\sqrt{10-9} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \sec^{-1}{\frac{\sqrt{10}}{3}}=\tan^{-1}{\frac{1}{3}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\times\frac{1}{3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{3+2}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=\tan^{-1}{\left(1\right)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
ইহাই নির্ণেয় মান।
\(cosec^{-1}{\sqrt{5}}+\sec^{-1}{\frac{\sqrt{10}}{3}}\)
\(=\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{1}{3}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore cosec^{-1}{\sqrt{5}}=\tan^{-1}{\frac{1}{2}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=3 , \ \text{অতিভুজ}=\sqrt{10}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{10})^2-3^2} \)
\(=\sqrt{10-9} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \sec^{-1}{\frac{\sqrt{10}}{3}}=\tan^{-1}{\frac{1}{3}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\times\frac{1}{3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)}\)
\(=\tan^{-1}{\left(\frac{3+2}{6-1}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{5}{5}\right)}\)
\(=\tan^{-1}{\left(1\right)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (f)\) \(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}-\cot^{-1}{\frac{2}{11}}\)উত্তরঃ \(0\)
ঢা,দিঃ,যঃ,সিঃ২০১৮।
সমাধানঃ
প্রদত্ত রাশি,
\(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}-\cot^{-1}{\frac{2}{11}}\)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{1}{2}}-\cot^{-1}{\frac{2}{11}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=2 , \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{3}\times\frac{1}{2}}\right)}-\cot^{-1}{\frac{2}{11}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{6}}\right)}-\cot^{-1}{\frac{2}{11}}\)
\(=\tan^{-1}{\left(\frac{8+3}{6-4}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{11}{2}\right)}-\cot^{-1}{\frac{2}{11}}\)
\(=\tan^{-1}{\frac{11}{2}}-\tan^{-1}{\frac{11}{2}}\) ➜ \(\because \cot^{-1}{x}=\tan{\frac{1}{x}}\)
\(=0\)
ইহাই নির্ণেয় মান।
\(\sin^{-1}{\frac{4}{5}}+\cos^{-1}{\frac{2}{\sqrt{5}}}-\cot^{-1}{\frac{2}{11}}\)
\(=\tan^{-1}{\frac{4}{3}}+\tan^{-1}{\frac{1}{2}}-\cot^{-1}{\frac{2}{11}}\) ➜ প্রথম পদের ক্ষেত্রে
\(\text{লম্ব}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=2 , \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-2^2} \)
\(=\sqrt{5-4} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \cos^{-1}{\frac{2}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{3}\times\frac{1}{2}}\right)}-\cot^{-1}{\frac{2}{11}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4}{3}+\frac{1}{2}}{1-\frac{4}{6}}\right)}-\cot^{-1}{\frac{2}{11}}\)
\(=\tan^{-1}{\left(\frac{8+3}{6-4}\right)}\) ➜ লব ও হরকে \(6\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{11}{2}\right)}-\cot^{-1}{\frac{2}{11}}\)
\(=\tan^{-1}{\frac{11}{2}}-\tan^{-1}{\frac{11}{2}}\) ➜ \(\because \cot^{-1}{x}=\tan{\frac{1}{x}}\)
\(=0\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (g)\) \(\tan^{-1}{\sin{\cos^{-1}{\sqrt{\frac{2}{3}}}}}\)উত্তরঃ \(\frac{\pi}{6}\)
দিঃ২০১৭।
সমাধানঃ
প্রদত্ত রাশি,
\(\tan^{-1}{\sin{\left(\cos^{-1}{\sqrt{\frac{2}{3}}}\right)}}\)
\(=\tan^{-1}{\sin{\left(\cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\right)}}\)
\(=\tan^{-1}{\sin{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{2} , \ \text{অতিভুজ}=\sqrt{3}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{3})^2-(\sqrt{2})^2} \)
\(=\sqrt{3-2} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}=\sin^{-1}{\frac{1}{\sqrt{3}}}\)
\(=\tan^{-1}{\frac{1}{\sqrt{3}}}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{6}}\right)}\) ➜ \(\because \frac{1}{\sqrt{3}}=\tan{\frac{\pi}{6}}\)
\(=\frac{\pi}{6}\)
ইহাই নির্ণেয় মান।
\(\tan^{-1}{\sin{\left(\cos^{-1}{\sqrt{\frac{2}{3}}}\right)}}\)
\(=\tan^{-1}{\sin{\left(\cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\right)}}\)
\(=\tan^{-1}{\sin{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{2} , \ \text{অতিভুজ}=\sqrt{3}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{3})^2-(\sqrt{2})^2} \)
\(=\sqrt{3-2} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}=\sin^{-1}{\frac{1}{\sqrt{3}}}\)
\(=\tan^{-1}{\frac{1}{\sqrt{3}}}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{6}}\right)}\) ➜ \(\because \frac{1}{\sqrt{3}}=\tan{\frac{\pi}{6}}\)
\(=\frac{\pi}{6}\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (h)\) \(\sin{\left(\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{1}{3}}\right)}\)উত্তরঃ \(1\)
সমাধানঃ
প্রদত্ত রাশি,
\(\sin{\left(\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{1}{3}}\right)}\)
\(=\sin{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(=1\) ➜ \(\because \sin{\left(\frac{\pi}{2}\right)}=1\)
ইহাই নির্ণেয় মান।
\(\sin{\left(\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{1}{3}}\right)}\)
\(=\sin{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(=1\) ➜ \(\because \sin{\left(\frac{\pi}{2}\right)}=1\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (i)\) \(\cos{\left(\tan^{-1}{3}+\tan^{-1}{\frac{1}{3}}\right)}\)উত্তরঃ \(0\)
সমাধানঃ
প্রদত্ত রাশি,
\(\cos{\left(\tan^{-1}{3}+\tan^{-1}{\frac{1}{3}}\right)}\)
\(=\cos{\left(\tan^{-1}{3}+\cot^{-1}{3}\right)}\) ➜ \(\therefore \tan^{-1}{\frac{1}{x}}=\cot^{-1}{x}\)
\(=\cos{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(=0\) ➜ \(\because \cos{\left(\frac{\pi}{2}\right)}=0\)
ইহাই নির্ণেয় মান।
\(\cos{\left(\tan^{-1}{3}+\tan^{-1}{\frac{1}{3}}\right)}\)
\(=\cos{\left(\tan^{-1}{3}+\cot^{-1}{3}\right)}\) ➜ \(\therefore \tan^{-1}{\frac{1}{x}}=\cot^{-1}{x}\)
\(=\cos{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(=0\) ➜ \(\because \cos{\left(\frac{\pi}{2}\right)}=0\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (j)\) \(\tan{\left\{\frac{1}{2}{\left(\sec^{-1}{3}+cosec^{-1}{3}\right)}\right\}}\)উত্তরঃ \(1\)
সমাধানঃ
প্রদত্ত রাশি,
\(\tan{\left\{\frac{1}{2}{\left(\sec^{-1}{3}+cosec^{-1}{3}\right)}\right\}}\)
\(=\tan{\left\{\frac{1}{2}{\left(\frac{\pi}{2}\right)}\right\}}\) ➜ \(\therefore \sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
\(=\tan{\left(\frac{\pi}{4}\right)}\)
\(=1\) ➜ \(\because \tan{\left(\frac{\pi}{4}\right)}=1\)
ইহাই নির্ণেয় মান।
\(\tan{\left\{\frac{1}{2}{\left(\sec^{-1}{3}+cosec^{-1}{3}\right)}\right\}}\)
\(=\tan{\left\{\frac{1}{2}{\left(\frac{\pi}{2}\right)}\right\}}\) ➜ \(\therefore \sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)
\(=\tan{\left(\frac{\pi}{4}\right)}\)
\(=1\) ➜ \(\because \tan{\left(\frac{\pi}{4}\right)}=1\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (k)\) \(\cot{\left(\sec^{-1}{2}+\sin^{-1}{\frac{1}{2}}\right)}\)উত্তরঃ \(0\)
সমাধানঃ
প্রদত্ত রাশি,
\(\cot{\left(\sec^{-1}{2}+\sin^{-1}{\frac{1}{2}}\right)}\)
\(=\cot{\left(\cos^{-1}{\frac{1}{2}}+\sin^{-1}{\frac{1}{2}}\right)}\) ➜ \(\therefore \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(=\cot{\left(\sin^{-1}{\frac{1}{2}}+\cos^{-1}{\frac{1}{2}}\right)}\)
\(=\cot{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(=0\) ➜ \(\because \cot{\left(\frac{\pi}{2}\right)}=0\)
ইহাই নির্ণেয় মান।
\(\cot{\left(\sec^{-1}{2}+\sin^{-1}{\frac{1}{2}}\right)}\)
\(=\cot{\left(\cos^{-1}{\frac{1}{2}}+\sin^{-1}{\frac{1}{2}}\right)}\) ➜ \(\therefore \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(=\cot{\left(\sin^{-1}{\frac{1}{2}}+\cos^{-1}{\frac{1}{2}}\right)}\)
\(=\cot{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(=0\) ➜ \(\because \cot{\left(\frac{\pi}{2}\right)}=0\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (l)\) \(\cos{\left(\sin^{-1}{\frac{1}{4}}+\cos^{-1}{\frac{1}{4}}\right)}\)উত্তরঃ \(0\)
সমাধানঃ
প্রদত্ত রাশি,
\(\cos{\left(\sin^{-1}{\frac{1}{4}}+\cos^{-1}{\frac{1}{4}}\right)}\)
\(=\cos{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(=0\) ➜ \(\because \cos{\left(\frac{\pi}{2}\right)}=0\)
ইহাই নির্ণেয় মান।
\(\cos{\left(\sin^{-1}{\frac{1}{4}}+\cos^{-1}{\frac{1}{4}}\right)}\)
\(=\cos{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(=0\) ➜ \(\because \cos{\left(\frac{\pi}{2}\right)}=0\)
ইহাই নির্ণেয় মান।
মান নির্ণয় করঃ
\(Q.2.(i) (m)\) \(\cot{\left(\tan^{-1}{\frac{1}{3}}+\cot^{-1}{\frac{1}{3}}\right)}\)উত্তরঃ \(0\)
সমাধানঃ
প্রদত্ত রাশি,
\(\cot{\left(\tan^{-1}{\frac{1}{3}}+\cot^{-1}{\frac{1}{3}}\right)}\)
\(=\cot{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(=0\) ➜ \(\because \cot{\left(\frac{\pi}{2}\right)}=0\)
ইহাই নির্ণেয় মান।
\(\cot{\left(\tan^{-1}{\frac{1}{3}}+\cot^{-1}{\frac{1}{3}}\right)}\)
\(=\cot{\left(\frac{\pi}{2}\right)}\) ➜ \(\therefore \tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(=0\) ➜ \(\because \cot{\left(\frac{\pi}{2}\right)}=0\)
ইহাই নির্ণেয় মান।
সমাধান করঃ
\(Q.2.(ii) (a)\) \(\sin^{-1}{2x}+\sin^{-1}{x}=\frac{\pi}{3}\)উত্তরঃ \(\frac{\sqrt{3}}{2\sqrt{7}}\)
বুয়েটঃ২০১৮-২০১৯।
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\sin^{-1}{2x}+\sin^{-1}{x}=\frac{\pi}{3}\)
\(\Rightarrow \sin^{-1}{2x}=\frac{\pi}{3}-\sin^{-1}{x}\)
\(\Rightarrow 2x=\sin{\left(\frac{\pi}{3}-\sin^{-1}{x}\right)}\)
\(\Rightarrow 2x=\sin{\left(\frac{\pi}{3}\right)}\cos{\left(\sin^{-1}{x}\right)}-\cos{\left(\frac{\pi}{3}\right)}\sin{\left(\sin^{-1}{x}\right)}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow 2x=\frac{\sqrt{3}}{2}\cos{\left\{\cos^{-1}{(\sqrt{1-x^2})}\right\}}-\frac{1}{2}x\) ➜ \(\because \sin{\left(\frac{\pi}{3}\right)}=\frac{\sqrt{3}}{2}\)
\(\sin^{-1}{x}=\cos^{-1}{(\sqrt{1-x^2})}\)
এবং \(\cos{\left(\frac{\pi}{3}\right)}=\frac{1}{2}\)
\(\Rightarrow 2x=\frac{\sqrt{3}}{2}\sqrt{1-x^2}-\frac{1}{2}x\)
\(\Rightarrow 4x=\sqrt{3}\sqrt{1-x^2}-x\) ➜ উভয় পার্শে \(2\) গুন করে।
\(\Rightarrow 4x+x=\sqrt{3}\sqrt{1-x^2}\)
\(\Rightarrow 5x=\sqrt{3}\sqrt{1-x^2}\)
\(\Rightarrow 25x^2=3(1-x^2)\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow 25x^2=3-3x^2\)
\(\Rightarrow 25x^2+3x^2=3\)
\(\Rightarrow 28x^2=3\)
\(\Rightarrow x^2=\frac{3}{28}\)
\(\Rightarrow x=\sqrt{\frac{3}{28}}\)
\(\Rightarrow x=\frac{\sqrt{3}}{\sqrt{28}}\)
\(\therefore x=\frac{\sqrt{3}}{2\sqrt{7}}\)
ইহাই নির্ণেয় সমাধান।
\(\sin^{-1}{2x}+\sin^{-1}{x}=\frac{\pi}{3}\)
\(\Rightarrow \sin^{-1}{2x}=\frac{\pi}{3}-\sin^{-1}{x}\)
\(\Rightarrow 2x=\sin{\left(\frac{\pi}{3}-\sin^{-1}{x}\right)}\)
\(\Rightarrow 2x=\sin{\left(\frac{\pi}{3}\right)}\cos{\left(\sin^{-1}{x}\right)}-\cos{\left(\frac{\pi}{3}\right)}\sin{\left(\sin^{-1}{x}\right)}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow 2x=\frac{\sqrt{3}}{2}\cos{\left\{\cos^{-1}{(\sqrt{1-x^2})}\right\}}-\frac{1}{2}x\) ➜ \(\because \sin{\left(\frac{\pi}{3}\right)}=\frac{\sqrt{3}}{2}\)
\(\sin^{-1}{x}=\cos^{-1}{(\sqrt{1-x^2})}\)
এবং \(\cos{\left(\frac{\pi}{3}\right)}=\frac{1}{2}\)
\(\Rightarrow 2x=\frac{\sqrt{3}}{2}\sqrt{1-x^2}-\frac{1}{2}x\)
\(\Rightarrow 4x=\sqrt{3}\sqrt{1-x^2}-x\) ➜ উভয় পার্শে \(2\) গুন করে।
\(\Rightarrow 4x+x=\sqrt{3}\sqrt{1-x^2}\)
\(\Rightarrow 5x=\sqrt{3}\sqrt{1-x^2}\)
\(\Rightarrow 25x^2=3(1-x^2)\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow 25x^2=3-3x^2\)
\(\Rightarrow 25x^2+3x^2=3\)
\(\Rightarrow 28x^2=3\)
\(\Rightarrow x^2=\frac{3}{28}\)
\(\Rightarrow x=\sqrt{\frac{3}{28}}\)
\(\Rightarrow x=\frac{\sqrt{3}}{\sqrt{28}}\)
\(\therefore x=\frac{\sqrt{3}}{2\sqrt{7}}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (b)\) \(\tan^{-1}{\frac{x-1}{x-2}}+\tan^{-1}{\frac{x+1}{x+2}}=\frac{\pi}{4}\)উত্তরঃ \(\pm\frac{1}{\sqrt{2}}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{\frac{x-1}{x-2}}+\tan^{-1}{\frac{x+1}{x+2}}=\frac{\pi}{4}\)
\(\Rightarrow \tan^{-1}{\left(\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\frac{x-1}{x-2}\times\frac{x+1}{x+2}}\right)}=\frac{\pi}{4}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\Rightarrow \tan^{-1}{\left(\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\frac{(x-1)(x+1)}{(x-2)(x+2)}}\right)}=\frac{\pi}{4}\)
\(\Rightarrow \frac{(x-1)(x+2)+(x+1)(x-2)}{(x-2)(x+2)-(x-1)(x+1)}=\tan{\frac{\pi}{4}}\) ➜ লব ও হরকে \((x-2)(x+2)\) দ্বারা গুন করে,
\(\Rightarrow \frac{x^2+2x-x-2+x^2-2x+x-2}{x^2-4-x^2+1}=1\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(\Rightarrow \frac{2x^2-4}{-3}=1\)
\(\Rightarrow 2x^2-4=-3\)
\(\Rightarrow 2x^2=4-3\)
\(\Rightarrow 2x^2=1\)
\(\Rightarrow x^2=\frac{1}{2}\)
\(\Rightarrow x=\pm{\sqrt{\frac{1}{2}}}\)
\(\therefore x=\pm{\frac{1}{\sqrt{2}}}\)
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{\frac{x-1}{x-2}}+\tan^{-1}{\frac{x+1}{x+2}}=\frac{\pi}{4}\)
\(\Rightarrow \tan^{-1}{\left(\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\frac{x-1}{x-2}\times\frac{x+1}{x+2}}\right)}=\frac{\pi}{4}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\Rightarrow \tan^{-1}{\left(\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\frac{(x-1)(x+1)}{(x-2)(x+2)}}\right)}=\frac{\pi}{4}\)
\(\Rightarrow \frac{(x-1)(x+2)+(x+1)(x-2)}{(x-2)(x+2)-(x-1)(x+1)}=\tan{\frac{\pi}{4}}\) ➜ লব ও হরকে \((x-2)(x+2)\) দ্বারা গুন করে,
\(\Rightarrow \frac{x^2+2x-x-2+x^2-2x+x-2}{x^2-4-x^2+1}=1\) ➜ \(\because \tan{\frac{\pi}{4}}=1\)
\(\Rightarrow \frac{2x^2-4}{-3}=1\)
\(\Rightarrow 2x^2-4=-3\)
\(\Rightarrow 2x^2=4-3\)
\(\Rightarrow 2x^2=1\)
\(\Rightarrow x^2=\frac{1}{2}\)
\(\Rightarrow x=\pm{\sqrt{\frac{1}{2}}}\)
\(\therefore x=\pm{\frac{1}{\sqrt{2}}}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (c)\) \(\tan^{-1}{\frac{1-x}{1+x}}=\frac{1}{2}\tan^{-1}{x}\)উত্তরঃ \(\frac{1}{\sqrt{3}}\)
বুয়েটঃ২০০৬-২০০৭।
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{\frac{1-x}{1+x}}=\frac{1}{2}\tan^{-1}{x}\)
\(\Rightarrow 2\tan^{-1}{\frac{1-x}{1+x}}=\tan^{-1}{x}\)
\(\Rightarrow \tan^{-1}{\left\{\frac{2\frac{1-x}{1+x}}{1-\left(\frac{1-x}{1+x}\right)^2}\right\}}=\tan^{-1}{x}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(\Rightarrow \frac{\frac{2(1-x)}{1+x}}{1-\frac{(1-x)^2}{(1+x)^2}}=x\)
\(\Rightarrow \frac{2(1-x)(1+x)}{(1+x)^2-(1-x)^2}=x\) ➜ লব ও হরকে \((x+1)^2\) দ্বারা গুন করে,
\(\Rightarrow \frac{2(1-x^2)}{4\times1\times{x}}=x\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
এবং \((a+b)^2-(a-b)^2=4ab\)
\(\Rightarrow \frac{2-2x^2}{4x}=x\)
\(\Rightarrow 4x^2=2-2x^2\)
\(\Rightarrow 4x^2+2x^2=2\)
\(\Rightarrow 6x^2=2\)
\(\Rightarrow x^2=\frac{2}{6}\)
\(\Rightarrow x=\sqrt{\frac{1}{3}}\)
\(\therefore x=\frac{1}{\sqrt{3}}\)
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{\frac{1-x}{1+x}}=\frac{1}{2}\tan^{-1}{x}\)
\(\Rightarrow 2\tan^{-1}{\frac{1-x}{1+x}}=\tan^{-1}{x}\)
\(\Rightarrow \tan^{-1}{\left\{\frac{2\frac{1-x}{1+x}}{1-\left(\frac{1-x}{1+x}\right)^2}\right\}}=\tan^{-1}{x}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(\Rightarrow \frac{\frac{2(1-x)}{1+x}}{1-\frac{(1-x)^2}{(1+x)^2}}=x\)
\(\Rightarrow \frac{2(1-x)(1+x)}{(1+x)^2-(1-x)^2}=x\) ➜ লব ও হরকে \((x+1)^2\) দ্বারা গুন করে,
\(\Rightarrow \frac{2(1-x^2)}{4\times1\times{x}}=x\) ➜ \(\because (a-b)(a+b)=a^2-b^2\)
এবং \((a+b)^2-(a-b)^2=4ab\)
\(\Rightarrow \frac{2-2x^2}{4x}=x\)
\(\Rightarrow 4x^2=2-2x^2\)
\(\Rightarrow 4x^2+2x^2=2\)
\(\Rightarrow 6x^2=2\)
\(\Rightarrow x^2=\frac{2}{6}\)
\(\Rightarrow x=\sqrt{\frac{1}{3}}\)
\(\therefore x=\frac{1}{\sqrt{3}}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (d)\) \(\tan^{-1}{x}+2\cot^{-1}{x}=\frac{2}{3}\pi\)উত্তরঃ \(\sqrt{3}\)
বুয়েটঃ২০১০-২০১১।
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{x}+2\cot^{-1}{x}=\frac{2}{3}\pi\)
\(\Rightarrow \tan^{-1}{x}+2\tan^{-1}{\frac{1}{x}}=\frac{2}{3}\pi\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{\left\{\frac{2\times\frac{1}{x}}{1-\left(\frac{1}{x}\right)^2}\right\}}=\frac{2\pi}{3}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{\left(\frac{\frac{2}{x}}{1-\frac{1}{x^2}}\right)}=\frac{2\pi}{3}\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{\left(\frac{2x}{x^2-1}\right)}=\frac{2\pi}{3}\) ➜ লব ও হরকে \(x^2\) দ্বারা গুন করে,
\(\Rightarrow \tan^{-1}{\left(\frac{x+\frac{2x}{x^2-1}}{1-x\times\frac{2x}{x^2-1}}\right)}=\frac{2\pi}{3}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\Rightarrow \frac{x+\frac{2x}{x^2-1}}{1-\frac{2x^2}{x^2-1}}=\tan{\frac{2\pi}{3}}\)
\(\Rightarrow \frac{x(x^2-1)+2x}{x^2-1-2x^2}=\tan{\left(\frac{\pi}{2}\times2-\frac{\pi}{3}\right)}\) ➜ লব ও হরকে \((x^2-1)\) দ্বারা গুন করে,
\(\Rightarrow \frac{x^3-x+2x}{-1-x^2}=-\tan{\frac{\pi}{3}}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(\Rightarrow -\frac{x^3+x}{1+x^2}=-\sqrt{3}\) ➜ \(\because \tan{\frac{\pi}{3}}=\sqrt{3}\)
\(\Rightarrow \frac{x(1+x^2)}{1+x^2}=\sqrt{3}\)
\(\therefore x=\sqrt{3}\)
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{x}+2\cot^{-1}{x}=\frac{2}{3}\pi\)
\(\Rightarrow \tan^{-1}{x}+2\tan^{-1}{\frac{1}{x}}=\frac{2}{3}\pi\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{\left\{\frac{2\times\frac{1}{x}}{1-\left(\frac{1}{x}\right)^2}\right\}}=\frac{2\pi}{3}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{\left(\frac{\frac{2}{x}}{1-\frac{1}{x^2}}\right)}=\frac{2\pi}{3}\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{\left(\frac{2x}{x^2-1}\right)}=\frac{2\pi}{3}\) ➜ লব ও হরকে \(x^2\) দ্বারা গুন করে,
\(\Rightarrow \tan^{-1}{\left(\frac{x+\frac{2x}{x^2-1}}{1-x\times\frac{2x}{x^2-1}}\right)}=\frac{2\pi}{3}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\Rightarrow \frac{x+\frac{2x}{x^2-1}}{1-\frac{2x^2}{x^2-1}}=\tan{\frac{2\pi}{3}}\)
\(\Rightarrow \frac{x(x^2-1)+2x}{x^2-1-2x^2}=\tan{\left(\frac{\pi}{2}\times2-\frac{\pi}{3}\right)}\) ➜ লব ও হরকে \((x^2-1)\) দ্বারা গুন করে,
\(\Rightarrow \frac{x^3-x+2x}{-1-x^2}=-\tan{\frac{\pi}{3}}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং ট্যানজেন্ট অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(\Rightarrow -\frac{x^3+x}{1+x^2}=-\sqrt{3}\) ➜ \(\because \tan{\frac{\pi}{3}}=\sqrt{3}\)
\(\Rightarrow \frac{x(1+x^2)}{1+x^2}=\sqrt{3}\)
\(\therefore x=\sqrt{3}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (e)\) \(\tan{\cos^{-1}{x}}=\sin{\tan^{-1}{2}}\)উত্তরঃ \(\frac{\sqrt{5}}{3}\)
বুয়েটঃ২০১২-২০১৩।
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan{\cos^{-1}{x}}=\sin{\tan^{-1}{2}}\)
\(\Rightarrow \tan{\left(\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}=\sin{\left(\sin^{-1}{\frac{2}{\sqrt{5}}}\right)}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
ডান পাশের ক্ষেত্রে,
\(\text{লম্ব}=2 , \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{2^2+1^2} \)
\(=\sqrt{4+1} \)
\(=\sqrt{5}\)
\(\therefore \tan^{-1}{2}=\sin^{-1}{\frac{2}{\sqrt{5}}}\)
\(\Rightarrow \frac{\sqrt{1-x^2}}{x}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow 2x=\sqrt{5}\sqrt{1-x^2}\)
\(\Rightarrow 4x^2=5(1-x^2)\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow 4x^2=5-5x^2\)
\(\Rightarrow 4x^2+5x^2=5\)
\(\Rightarrow 9x^2=5\)
\(\Rightarrow x^2=\frac{5}{9}\)
\(\Rightarrow x=\sqrt{\frac{5}{9}}\)
\(\therefore x=\frac{\sqrt{5}}{3}\)
ইহাই নির্ণেয় সমাধান।
\(\tan{\cos^{-1}{x}}=\sin{\tan^{-1}{2}}\)
\(\Rightarrow \tan{\left(\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}=\sin{\left(\sin^{-1}{\frac{2}{\sqrt{5}}}\right)}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
ডান পাশের ক্ষেত্রে,
\(\text{লম্ব}=2 , \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{2^2+1^2} \)
\(=\sqrt{4+1} \)
\(=\sqrt{5}\)
\(\therefore \tan^{-1}{2}=\sin^{-1}{\frac{2}{\sqrt{5}}}\)
\(\Rightarrow \frac{\sqrt{1-x^2}}{x}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow 2x=\sqrt{5}\sqrt{1-x^2}\)
\(\Rightarrow 4x^2=5(1-x^2)\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow 4x^2=5-5x^2\)
\(\Rightarrow 4x^2+5x^2=5\)
\(\Rightarrow 9x^2=5\)
\(\Rightarrow x^2=\frac{5}{9}\)
\(\Rightarrow x=\sqrt{\frac{5}{9}}\)
\(\therefore x=\frac{\sqrt{5}}{3}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (f)\) \(\tan^{-1}{(x+2)}+\tan^{-1}{(x-2)}=\tan^{-1}{\frac{1}{2}}\)উত্তরঃ \(1, \ -5\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{(x+2)}+\tan^{-1}{(x-2)}=\tan^{-1}{\frac{1}{2}}\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+2+x-2}{1-(x+2)(x-2)}\right)}=\tan^{-1}{\frac{1}{2}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\Rightarrow \frac{2x}{1-(x^2-4)}=\frac{1}{2}\)
\(\Rightarrow \frac{2x}{1-x^2+4}=\frac{1}{2}\)
\(\Rightarrow \frac{2x}{5-x^2}=\frac{1}{2}\)
\(\Rightarrow 4x=5-x^2\)
\(\Rightarrow x^2+4x-5=0\)
\(\Rightarrow x^2+5x-x-5=0\)
\(\Rightarrow x(x+5)-1(x+5)=0\)
\(\Rightarrow (x-1)(x+5)=0\)
\(\Rightarrow x-1=0, \ x+5=0\)
\(\therefore x=1, \ x=-5\)
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{(x+2)}+\tan^{-1}{(x-2)}=\tan^{-1}{\frac{1}{2}}\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+2+x-2}{1-(x+2)(x-2)}\right)}=\tan^{-1}{\frac{1}{2}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\Rightarrow \frac{2x}{1-(x^2-4)}=\frac{1}{2}\)
\(\Rightarrow \frac{2x}{1-x^2+4}=\frac{1}{2}\)
\(\Rightarrow \frac{2x}{5-x^2}=\frac{1}{2}\)
\(\Rightarrow 4x=5-x^2\)
\(\Rightarrow x^2+4x-5=0\)
\(\Rightarrow x^2+5x-x-5=0\)
\(\Rightarrow x(x+5)-1(x+5)=0\)
\(\Rightarrow (x-1)(x+5)=0\)
\(\Rightarrow x-1=0, \ x+5=0\)
\(\therefore x=1, \ x=-5\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (g)\) \(\tan^{-1}{(x+1)}+\tan^{-1}{x}+\tan^{-1}{(x-1)}=\tan^{-1}{3x}\) সিঃ২০০৬ ।
উত্তরঃ \(0, \ \pm{\frac{1}{2}}\)সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{(x+1)}+\tan^{-1}{x}+\tan^{-1}{(x-1)}=\tan^{-1}{3x}\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+1+x+x-1-(x+1)x(x-1)}{1-x(x-1)-(x+1)(x-1)-(x+1)x}\right)}=\tan^{-1}{3x}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{3x-x(x^2-1)}{1-x^2+x-x^2+1-x^2-x}=3x\)
\(\Rightarrow \frac{3x-x^3+x}{2-3x^2}=3x\)
\(\Rightarrow \frac{4x-x^3}{2-3x^2}=3x\)
\(\Rightarrow 4x-x^3=6x-9x^3\)
\(\Rightarrow 9x^3+4x-x^3-6x=0\)
\(\Rightarrow 8x^3-2x=0\)
\(\Rightarrow 2x(4x^2-1)=0\)
\(\Rightarrow x=0, \ 4x^2-1=0\)
\(\Rightarrow x=0, \ 4x^2=1\)
\(\Rightarrow x=0, \ x^2=\frac{1}{4}\)
\(\Rightarrow x=0, \ x=\pm\sqrt{\frac{1}{4}}\)
\(\therefore x=0, \ x=\pm\frac{1}{2}\)
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{(x+1)}+\tan^{-1}{x}+\tan^{-1}{(x-1)}=\tan^{-1}{3x}\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+1+x+x-1-(x+1)x(x-1)}{1-x(x-1)-(x+1)(x-1)-(x+1)x}\right)}=\tan^{-1}{3x}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{3x-x(x^2-1)}{1-x^2+x-x^2+1-x^2-x}=3x\)
\(\Rightarrow \frac{3x-x^3+x}{2-3x^2}=3x\)
\(\Rightarrow \frac{4x-x^3}{2-3x^2}=3x\)
\(\Rightarrow 4x-x^3=6x-9x^3\)
\(\Rightarrow 9x^3+4x-x^3-6x=0\)
\(\Rightarrow 8x^3-2x=0\)
\(\Rightarrow 2x(4x^2-1)=0\)
\(\Rightarrow x=0, \ 4x^2-1=0\)
\(\Rightarrow x=0, \ 4x^2=1\)
\(\Rightarrow x=0, \ x^2=\frac{1}{4}\)
\(\Rightarrow x=0, \ x=\pm\sqrt{\frac{1}{4}}\)
\(\therefore x=0, \ x=\pm\frac{1}{2}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (h)\) \(\tan{\left(\cos^{-1}{x}\right)}=\sin{left(\cot^{-1}{\frac{1}{2}}\right)}\)উত্তরঃ \(\frac{\sqrt{5}}{3}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan{\left(\cos^{-1}{x}\right)}=\sin{left(\cot^{-1}{\frac{1}{2}}\right)}\)
\(\Rightarrow \tan{\left(\cos^{-1}{x}\right)}=\sin{left(\tan^{-1}{2}\right)}\) ➜ \(\because \cot^{-1}{\frac{1}{x}}=\tan^{-1}{x}\)
\(\Rightarrow \tan{\left(\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}=\sin{\left(\sin^{-1}{\frac{2}{\sqrt{5}}}\right)}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
ডান পাশের ক্ষেত্রে,
\(\text{লম্ব}=2 , \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{2^2+1^2} \)
\(=\sqrt{4+1} \)
\(=\sqrt{5}\)
\(\therefore \tan^{-1}{2}=\sin^{-1}{\frac{2}{\sqrt{5}}}\)
\(\Rightarrow \frac{\sqrt{1-x^2}}{x}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow 2x=\sqrt{5}\sqrt{1-x^2}\)
\(\Rightarrow 4x^2=5(1-x^2)\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow 4x^2=5-5x^2\)
\(\Rightarrow 4x^2+5x^2=5\)
\(\Rightarrow 9x^2=5\)
\(\Rightarrow x^2=\frac{5}{9}\)
\(\Rightarrow x=\sqrt{\frac{5}{9}}\)
\(\therefore x=\frac{\sqrt{5}}{3}\)
ইহাই নির্ণেয় সমাধান।
\(\tan{\left(\cos^{-1}{x}\right)}=\sin{left(\cot^{-1}{\frac{1}{2}}\right)}\)
\(\Rightarrow \tan{\left(\cos^{-1}{x}\right)}=\sin{left(\tan^{-1}{2}\right)}\) ➜ \(\because \cot^{-1}{\frac{1}{x}}=\tan^{-1}{x}\)
\(\Rightarrow \tan{\left(\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}=\sin{\left(\sin^{-1}{\frac{2}{\sqrt{5}}}\right)}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
ডান পাশের ক্ষেত্রে,
\(\text{লম্ব}=2 , \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{2^2+1^2} \)
\(=\sqrt{4+1} \)
\(=\sqrt{5}\)
\(\therefore \tan^{-1}{2}=\sin^{-1}{\frac{2}{\sqrt{5}}}\)
\(\Rightarrow \frac{\sqrt{1-x^2}}{x}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow 2x=\sqrt{5}\sqrt{1-x^2}\)
\(\Rightarrow 4x^2=5(1-x^2)\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow 4x^2=5-5x^2\)
\(\Rightarrow 4x^2+5x^2=5\)
\(\Rightarrow 9x^2=5\)
\(\Rightarrow x^2=\frac{5}{9}\)
\(\Rightarrow x=\sqrt{\frac{5}{9}}\)
\(\therefore x=\frac{\sqrt{5}}{3}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (i)\) \(\sin^{-1}{x}-\cos^{-1}{x}=\frac{\pi}{6}\)উত্তরঃ \(\frac{\sqrt{3}}{2}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\sin^{-1}{x}-\cos^{-1}{x}=\frac{\pi}{6}\)
\(\Rightarrow \sin^{-1}{x}+\cos^{-1}{x}-2\cos^{-1}{x}=\frac{\pi}{6}\)
\(\Rightarrow \frac{\pi}{2}-2\cos^{-1}{x}=\frac{\pi}{6}\) ➜ \(\because \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(\Rightarrow -2\cos^{-1}{x}=\frac{\pi}{6}-\frac{\pi}{2}\)
\(\Rightarrow -2\cos^{-1}{x}=\frac{\pi-3\pi}{6}\)
\(\Rightarrow -2\cos^{-1}{x}=\frac{-2\pi}{6}\)
\(\Rightarrow -2\cos^{-1}{x}=-\frac{\pi}{3}\)
\(\Rightarrow \cos^{-1}{x}=\frac{\pi}{3\times2}\)
\(\Rightarrow \cos^{-1}{x}=\frac{\pi}{6}\)
\(\Rightarrow x=\cos{\frac{\pi}{6}}\)
\(\therefore x=\frac{\sqrt{3}}{2}\) ➜ \(\because \cos{\frac{\pi}{6}}=\frac{\sqrt{3}}{2}\)
ইহাই নির্ণেয় সমাধান।
\(\sin^{-1}{x}-\cos^{-1}{x}=\frac{\pi}{6}\)
\(\Rightarrow \sin^{-1}{x}+\cos^{-1}{x}-2\cos^{-1}{x}=\frac{\pi}{6}\)
\(\Rightarrow \frac{\pi}{2}-2\cos^{-1}{x}=\frac{\pi}{6}\) ➜ \(\because \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(\Rightarrow -2\cos^{-1}{x}=\frac{\pi}{6}-\frac{\pi}{2}\)
\(\Rightarrow -2\cos^{-1}{x}=\frac{\pi-3\pi}{6}\)
\(\Rightarrow -2\cos^{-1}{x}=\frac{-2\pi}{6}\)
\(\Rightarrow -2\cos^{-1}{x}=-\frac{\pi}{3}\)
\(\Rightarrow \cos^{-1}{x}=\frac{\pi}{3\times2}\)
\(\Rightarrow \cos^{-1}{x}=\frac{\pi}{6}\)
\(\Rightarrow x=\cos{\frac{\pi}{6}}\)
\(\therefore x=\frac{\sqrt{3}}{2}\) ➜ \(\because \cos{\frac{\pi}{6}}=\frac{\sqrt{3}}{2}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (j)\) \(\sec^{-1}{\frac{x}{2}}-\sec^{-1}{\frac{x}{3}}=\sec^{-1}{3}-\sec^{-1}{2}\)উত্তরঃ \(6\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\sec^{-1}{\frac{x}{2}}-\sec^{-1}{\frac{x}{3}}=\sec^{-1}{3}-\sec^{-1}{2}\)
\(\Rightarrow \cos^{-1}{\frac{2}{x}}-\cos^{-1}{\frac{3}{x}}=\cos^{-1}{\frac{1}{3}}-\cos^{-1}{\frac{1}{2}}\) ➜ \(\because \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(\Rightarrow \cos^{-1}{\frac{2}{x}}+\cos^{-1}{\frac{1}{2}}=\cos^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{3}{x}}\)
\(\Rightarrow \cos^{-1}{\left\{\frac{2}{x}\times\frac{1}{2}-\sqrt{\left(1-\frac{4}{x^2}\right)\left(1-\frac{1}{4}\right)}\right\}}=\cos^{-1}{\left\{\frac{1}{3}\times\frac{3}{x}-\sqrt{\left(1-\frac{1}{9}\right)\left(1-\frac{9}{x^2}\right)}\right\}}\) ➜ \(\because \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\left\{xy-\sqrt{(1-x^2)(1-y^2)}\right\}}\)
\(\Rightarrow \frac{1}{x}-\sqrt{\frac{x^2-4}{x^2}\times\frac{4-1}{4}}=\frac{1}{x}-\sqrt{\frac{9-1}{9}\times\frac{x^2-9}{x^2}}\)
\(\Rightarrow -\sqrt{\frac{x^2-4}{x^2}\times\frac{3}{4}}=-\sqrt{\frac{8}{9}\times\frac{x^2-9}{x^2}}\)
\(\Rightarrow \frac{x^2-4}{x^2}\times\frac{3}{4}=\frac{8}{9}\times\frac{x^2-9}{x^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{x^2-4}{x^2}\times\frac{x^2}{x^2-9}=\frac{8}{9}\times\frac{4}{3}\)
\(\Rightarrow \frac{x^2-4}{x^2-9}=\frac{32}{27}\)
\(\Rightarrow 32x^2-288=27x^2-108\)
\(\Rightarrow 32x^2-27x^2=288-108\)
\(\Rightarrow 5x^2=180\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=\sqrt{36}\)
\(\therefore x=6\) ➜ যেহেতু ঋণাত্মক মান সমীকরণকে সিদ্ধ করে না।
ইহাই নির্ণেয় সমাধান।
\(\sec^{-1}{\frac{x}{2}}-\sec^{-1}{\frac{x}{3}}=\sec^{-1}{3}-\sec^{-1}{2}\)
\(\Rightarrow \cos^{-1}{\frac{2}{x}}-\cos^{-1}{\frac{3}{x}}=\cos^{-1}{\frac{1}{3}}-\cos^{-1}{\frac{1}{2}}\) ➜ \(\because \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(\Rightarrow \cos^{-1}{\frac{2}{x}}+\cos^{-1}{\frac{1}{2}}=\cos^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{3}{x}}\)
\(\Rightarrow \cos^{-1}{\left\{\frac{2}{x}\times\frac{1}{2}-\sqrt{\left(1-\frac{4}{x^2}\right)\left(1-\frac{1}{4}\right)}\right\}}=\cos^{-1}{\left\{\frac{1}{3}\times\frac{3}{x}-\sqrt{\left(1-\frac{1}{9}\right)\left(1-\frac{9}{x^2}\right)}\right\}}\) ➜ \(\because \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\left\{xy-\sqrt{(1-x^2)(1-y^2)}\right\}}\)
\(\Rightarrow \frac{1}{x}-\sqrt{\frac{x^2-4}{x^2}\times\frac{4-1}{4}}=\frac{1}{x}-\sqrt{\frac{9-1}{9}\times\frac{x^2-9}{x^2}}\)
\(\Rightarrow -\sqrt{\frac{x^2-4}{x^2}\times\frac{3}{4}}=-\sqrt{\frac{8}{9}\times\frac{x^2-9}{x^2}}\)
\(\Rightarrow \frac{x^2-4}{x^2}\times\frac{3}{4}=\frac{8}{9}\times\frac{x^2-9}{x^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{x^2-4}{x^2}\times\frac{x^2}{x^2-9}=\frac{8}{9}\times\frac{4}{3}\)
\(\Rightarrow \frac{x^2-4}{x^2-9}=\frac{32}{27}\)
\(\Rightarrow 32x^2-288=27x^2-108\)
\(\Rightarrow 32x^2-27x^2=288-108\)
\(\Rightarrow 5x^2=180\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=\sqrt{36}\)
\(\therefore x=6\) ➜ যেহেতু ঋণাত্মক মান সমীকরণকে সিদ্ধ করে না।
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (k)\) \(\sin^{-1}{(5x^2-x-3)}=3\sin^{-1}{\frac{x}{2}}\)উত্তরঃ \(1, \ \frac{-11+\sqrt{97}}{2}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\sin^{-1}{(5x^2-x-3)}=3\sin^{-1}{\frac{x}{2}}\)
\(\Rightarrow \sin^{-1}{(5x^2-x-3)}=\sin^{-1}{\left\{3\frac{x}{2}-4\left(\frac{x}{2}\right)^3\right\}}\) ➜ \(\because 3\sin^{-1}{A}=\sin^{-1}{(3A-4A^3)}\)
\(\Rightarrow 5x^2-x-3=3\frac{x}{2}-4\left(\frac{x}{2}\right)^3\)
\(\Rightarrow 5x^2-x-3=\frac{3x}{2}-4\frac{x^3}{8}\)
\(\Rightarrow 5x^2-x-3=\frac{3x}{2}-\frac{x^3}{2}\)
\(\Rightarrow 5x^2-x-3=\frac{3x-x^3}{2}\)
\(\Rightarrow 10x^2-2x-6=3x-x^3\)
\(\Rightarrow 10x^2-2x-6-3x+x^3=0\)
\(\Rightarrow x^3+10x^2-5x-6=0\)
\(\Rightarrow x^3-x^2+11x^2-11x+6x-6=0\)
\(\Rightarrow x^2(x-1)+11x(x-1)+6(x-1)=0\)
\(\Rightarrow (x-1)(x^2+11x+6)=0\)
\(\Rightarrow x-1=0, \ x^2+11x+6=0\)
\(\Rightarrow x=1, \ x=\frac{-11\pm\sqrt{(11)^2-4\times1\times6}}{2\times1}\)
\(\Rightarrow x=1, \ x=\frac{-11\pm\sqrt{121-24}}{2}\)
\(\Rightarrow x=1, \ x=\frac{-11\pm\sqrt{97}}{2}\)
\(\therefore x=1, \ x=\frac{-11+\sqrt{97}}{2}\) ➜ \(\because -1\le{\frac{x}{2}}\le{1}\)
ইহাই নির্ণেয় সমাধান।
\(\sin^{-1}{(5x^2-x-3)}=3\sin^{-1}{\frac{x}{2}}\)
\(\Rightarrow \sin^{-1}{(5x^2-x-3)}=\sin^{-1}{\left\{3\frac{x}{2}-4\left(\frac{x}{2}\right)^3\right\}}\) ➜ \(\because 3\sin^{-1}{A}=\sin^{-1}{(3A-4A^3)}\)
\(\Rightarrow 5x^2-x-3=3\frac{x}{2}-4\left(\frac{x}{2}\right)^3\)
\(\Rightarrow 5x^2-x-3=\frac{3x}{2}-4\frac{x^3}{8}\)
\(\Rightarrow 5x^2-x-3=\frac{3x}{2}-\frac{x^3}{2}\)
\(\Rightarrow 5x^2-x-3=\frac{3x-x^3}{2}\)
\(\Rightarrow 10x^2-2x-6=3x-x^3\)
\(\Rightarrow 10x^2-2x-6-3x+x^3=0\)
\(\Rightarrow x^3+10x^2-5x-6=0\)
\(\Rightarrow x^3-x^2+11x^2-11x+6x-6=0\)
\(\Rightarrow x^2(x-1)+11x(x-1)+6(x-1)=0\)
\(\Rightarrow (x-1)(x^2+11x+6)=0\)
\(\Rightarrow x-1=0, \ x^2+11x+6=0\)
\(\Rightarrow x=1, \ x=\frac{-11\pm\sqrt{(11)^2-4\times1\times6}}{2\times1}\)
\(\Rightarrow x=1, \ x=\frac{-11\pm\sqrt{121-24}}{2}\)
\(\Rightarrow x=1, \ x=\frac{-11\pm\sqrt{97}}{2}\)
\(\therefore x=1, \ x=\frac{-11+\sqrt{97}}{2}\) ➜ \(\because -1\le{\frac{x}{2}}\le{1}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (l)\) \(\tan^{-1}{\frac{2x}{1-x^2}}=\sin^{-1}{\frac{2a}{1+a^2}}+\cos^{-1}{\frac{1-b^2}{1+b^2}}\)উত্তরঃ \(\frac{a+b}{1-ab}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{\frac{2x}{1-x^2}}=\sin^{-1}{\frac{2a}{1+a^2}}+\cos^{-1}{\frac{1-b^2}{1+b^2}}\)
\(\Rightarrow 2\tan^{-1}{x}=2\tan^{-1}{a}+2\tan^{-1}{b}\) ➜ \(\because \tan^{-1}{\frac{2x}{1-x^2}}=2\tan^{-1}{x}\)
\(\sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow 2\tan^{-1}{x}=2\left(\tan^{-1}{a}+\tan^{-1}{b}\right)\)
\(\Rightarrow 2\tan^{-1}{x}=2\tan^{-1}{\left(\frac{a+b}{1-ab}\right)}\) ➜ \(\because \tan^{-1}{A}+\tan^{-1}{B}=\tan^{-1}{\left(\frac{A+B}{1-AB}\right)}\)
\(\therefore x=\frac{a+b}{1-ab}\)
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{\frac{2x}{1-x^2}}=\sin^{-1}{\frac{2a}{1+a^2}}+\cos^{-1}{\frac{1-b^2}{1+b^2}}\)
\(\Rightarrow 2\tan^{-1}{x}=2\tan^{-1}{a}+2\tan^{-1}{b}\) ➜ \(\because \tan^{-1}{\frac{2x}{1-x^2}}=2\tan^{-1}{x}\)
\(\sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow 2\tan^{-1}{x}=2\left(\tan^{-1}{a}+\tan^{-1}{b}\right)\)
\(\Rightarrow 2\tan^{-1}{x}=2\tan^{-1}{\left(\frac{a+b}{1-ab}\right)}\) ➜ \(\because \tan^{-1}{A}+\tan^{-1}{B}=\tan^{-1}{\left(\frac{A+B}{1-AB}\right)}\)
\(\therefore x=\frac{a+b}{1-ab}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (m)\) \(\cot^{-1}{(x-1)}+\cot^{-1}{(x-2)}+\cot^{-1}{(x-3)}=0\)উত্তরঃ \(\frac{6\pm\sqrt{6}}{3}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\cot^{-1}{(x-1)}+\cot^{-1}{(x-2)}+\cot^{-1}{(x-3)}=0\)
\(\Rightarrow \cot^{-1}{(x-1)}+\cot^{-1}{(x-2)}=-\cot^{-1}{(x-3)}\)
\(\Rightarrow \cot^{-1}{\left(\frac{(x-1)(x-2)-1}{(x-2)+(x-1)}\right)}=\cot^{-1}{(3-x)}\) ➜ \(\because \cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\)
\(\Rightarrow \cot^{-1}{\left(\frac{x^2-x-2x+2-1}{x-2+x-1}\right)}=\cot^{-1}{(3-x)}\)
\(\Rightarrow \frac{x^2-3x+1}{2x-3}=3-x\)
\(\Rightarrow x^2-3x+1=(3-x)(2x-3)\)
\(\Rightarrow x^2-3x+1=6x-9-2x^2+3x\)
\(\Rightarrow x^2-3x+1-6x+9+2x^2-3x=0\)
\(\Rightarrow 3x^2-12x+10=0\)
\(\Rightarrow x=\frac{12\pm{\sqrt{(-12)^2-4\times3\times10}}}{2\times3}\) ➜ \(\because ax^2+bx+c=0\)
\(\therefore x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
\(\Rightarrow x=\frac{12\pm{\sqrt{144-120}}}{6}\)
\(\Rightarrow x=\frac{12\pm{\sqrt{24}}}{6}\)
\(\Rightarrow x=\frac{12\pm{\sqrt{4\times6}}}{6}\)
\(\Rightarrow x=\frac{12\pm{2\sqrt{6}}}{6}\)
\(\Rightarrow x=\frac{2(6\pm{\sqrt{6}})}{6}\)
\(\therefore x=\frac{6\pm{\sqrt{6}}}{3}\)
ইহাই নির্ণেয় সমাধান।
\(\cot^{-1}{(x-1)}+\cot^{-1}{(x-2)}+\cot^{-1}{(x-3)}=0\)
\(\Rightarrow \cot^{-1}{(x-1)}+\cot^{-1}{(x-2)}=-\cot^{-1}{(x-3)}\)
\(\Rightarrow \cot^{-1}{\left(\frac{(x-1)(x-2)-1}{(x-2)+(x-1)}\right)}=\cot^{-1}{(3-x)}\) ➜ \(\because \cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy-1}{y+x}\right)}\)
\(\Rightarrow \cot^{-1}{\left(\frac{x^2-x-2x+2-1}{x-2+x-1}\right)}=\cot^{-1}{(3-x)}\)
\(\Rightarrow \frac{x^2-3x+1}{2x-3}=3-x\)
\(\Rightarrow x^2-3x+1=(3-x)(2x-3)\)
\(\Rightarrow x^2-3x+1=6x-9-2x^2+3x\)
\(\Rightarrow x^2-3x+1-6x+9+2x^2-3x=0\)
\(\Rightarrow 3x^2-12x+10=0\)
\(\Rightarrow x=\frac{12\pm{\sqrt{(-12)^2-4\times3\times10}}}{2\times3}\) ➜ \(\because ax^2+bx+c=0\)
\(\therefore x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
\(\Rightarrow x=\frac{12\pm{\sqrt{144-120}}}{6}\)
\(\Rightarrow x=\frac{12\pm{\sqrt{24}}}{6}\)
\(\Rightarrow x=\frac{12\pm{\sqrt{4\times6}}}{6}\)
\(\Rightarrow x=\frac{12\pm{2\sqrt{6}}}{6}\)
\(\Rightarrow x=\frac{2(6\pm{\sqrt{6}})}{6}\)
\(\therefore x=\frac{6\pm{\sqrt{6}}}{3}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (n)\) \(2\tan^{-1}{(\cos{x})}=\tan^{-1}{(2cosec \ {x})}\)উত্তরঃ \(n\pi+\frac{\pi}{4}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(2\tan^{-1}{(\cos{x})}=\tan^{-1}{(2cosec \ {x})}\)
\(\Rightarrow \tan^{-1}{\left(\frac{2\cos{x}}{1-\cos^2{x}}\right)}=\tan^{-1}{(2cosec \ {x})}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(\Rightarrow \frac{2\cos{x}}{1-\cos^2{x}}=2cosec \ {x}\)
\(\Rightarrow \frac{\cos{x}}{\sin^2{x}}=\frac{1}{\sin{x}}\) ➜ \(\because 1-\cos^2{A}=\sin^2{A}\)
এবং \(cosec \ {A}=\frac{1}{\sin{A}}\)
\(\Rightarrow \frac{\cos{x}}{\sin{x}}=1\)
\(\Rightarrow \cot{x}=1\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\Rightarrow \cot{x}=1\)
\(\Rightarrow \frac{1}{\cot{x}}=1\) ➜ ব্যস্তকরণ করে,
\(\Rightarrow \tan{x}=\tan{\frac{\pi}{4}}\) ➜ \(\because \frac{1}{\cot{A}}=\tan{A}\)
এবং \(1=\tan{\frac{\pi}{4}}\)
\(\therefore x=n\pi+\frac{\pi}{4}\) ➜ সাধারণ মান গ্রহন করে,
ইহাই নির্ণেয় সমাধান।
\(2\tan^{-1}{(\cos{x})}=\tan^{-1}{(2cosec \ {x})}\)
\(\Rightarrow \tan^{-1}{\left(\frac{2\cos{x}}{1-\cos^2{x}}\right)}=\tan^{-1}{(2cosec \ {x})}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(\Rightarrow \frac{2\cos{x}}{1-\cos^2{x}}=2cosec \ {x}\)
\(\Rightarrow \frac{\cos{x}}{\sin^2{x}}=\frac{1}{\sin{x}}\) ➜ \(\because 1-\cos^2{A}=\sin^2{A}\)
এবং \(cosec \ {A}=\frac{1}{\sin{A}}\)
\(\Rightarrow \frac{\cos{x}}{\sin{x}}=1\)
\(\Rightarrow \cot{x}=1\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\Rightarrow \cot{x}=1\)
\(\Rightarrow \frac{1}{\cot{x}}=1\) ➜ ব্যস্তকরণ করে,
\(\Rightarrow \tan{x}=\tan{\frac{\pi}{4}}\) ➜ \(\because \frac{1}{\cot{A}}=\tan{A}\)
এবং \(1=\tan{\frac{\pi}{4}}\)
\(\therefore x=n\pi+\frac{\pi}{4}\) ➜ সাধারণ মান গ্রহন করে,
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (o)\) \(\cos^{-1}{x}-\sin^{-1}{x}=\cos^{-1}{(\sqrt{3}x)}\)উত্তরঃ \(0, \ \pm\frac{1}{2}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\cos^{-1}{x}-\sin^{-1}{x}=\cos^{-1}{(\sqrt{3}x)}\)
\(\Rightarrow \cos^{-1}{x}-\cos^{-1}{\sqrt{1-x^2}}=\cos^{-1}{(\sqrt{3}x)}\) ➜ \(\because \sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow \cos^{-1}{\left\{x\sqrt{1-x^2}+\sqrt{(1-x^2)(1-1+x^2)}\right\}}=\cos^{-1}{(\sqrt{3}x)}\) ➜ \(\because \cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\left\{xy+\sqrt{(1-x^2)(1-y^2)}\right\}}\)
\(\Rightarrow x\sqrt{1-x^2}+\sqrt{(1-x^2)x^2}=\sqrt{3}x\)
\(\Rightarrow x\sqrt{1-x^2}+x\sqrt{1-x^2}=\sqrt{3}x\)
\(\Rightarrow 2x\sqrt{1-x^2}=\sqrt{3}x\)
\(\Rightarrow 2x\sqrt{1-x^2}-\sqrt{3}x=0\)
\(\Rightarrow x(2\sqrt{1-x^2}-\sqrt{3})=0\)
\(\Rightarrow x=0, \ 2\sqrt{1-x^2}-\sqrt{3}=0\)
\(\Rightarrow x=0, \ 2\sqrt{1-x^2}=\sqrt{3}\)
\(\Rightarrow x=0, \ 4(1-x^2)=3\)
\(\Rightarrow x=0, \ 1-x^2=\frac{3}{4}\)
\(\Rightarrow x=0, \ 1-\frac{3}{4}=x^2\)
\(\Rightarrow x=0, \ \frac{4-3}{4}=x^2\)
\(\Rightarrow x=0, \ \frac{1}{4}=x^2\)
\(\Rightarrow x=0, \ x^2=\frac{1}{4}\)
\(\Rightarrow x=0, \ x=\pm\sqrt{\frac{1}{4}}\)
\(\therefore x=0, \ x=\pm\frac{1}{2}\)
ইহাই নির্ণেয় সমাধান।
\(\cos^{-1}{x}-\sin^{-1}{x}=\cos^{-1}{(\sqrt{3}x)}\)
\(\Rightarrow \cos^{-1}{x}-\cos^{-1}{\sqrt{1-x^2}}=\cos^{-1}{(\sqrt{3}x)}\) ➜ \(\because \sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow \cos^{-1}{\left\{x\sqrt{1-x^2}+\sqrt{(1-x^2)(1-1+x^2)}\right\}}=\cos^{-1}{(\sqrt{3}x)}\) ➜ \(\because \cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\left\{xy+\sqrt{(1-x^2)(1-y^2)}\right\}}\)
\(\Rightarrow x\sqrt{1-x^2}+\sqrt{(1-x^2)x^2}=\sqrt{3}x\)
\(\Rightarrow x\sqrt{1-x^2}+x\sqrt{1-x^2}=\sqrt{3}x\)
\(\Rightarrow 2x\sqrt{1-x^2}=\sqrt{3}x\)
\(\Rightarrow 2x\sqrt{1-x^2}-\sqrt{3}x=0\)
\(\Rightarrow x(2\sqrt{1-x^2}-\sqrt{3})=0\)
\(\Rightarrow x=0, \ 2\sqrt{1-x^2}-\sqrt{3}=0\)
\(\Rightarrow x=0, \ 2\sqrt{1-x^2}=\sqrt{3}\)
\(\Rightarrow x=0, \ 4(1-x^2)=3\)
\(\Rightarrow x=0, \ 1-x^2=\frac{3}{4}\)
\(\Rightarrow x=0, \ 1-\frac{3}{4}=x^2\)
\(\Rightarrow x=0, \ \frac{4-3}{4}=x^2\)
\(\Rightarrow x=0, \ \frac{1}{4}=x^2\)
\(\Rightarrow x=0, \ x^2=\frac{1}{4}\)
\(\Rightarrow x=0, \ x=\pm\sqrt{\frac{1}{4}}\)
\(\therefore x=0, \ x=\pm\frac{1}{2}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (p)\) \(\tan^{-1}{\sin{\tan^{-1}{x}}}=\cos^{-1}{\sqrt{\frac{3}{5}}}\)উত্তরঃ \(\pm{\sqrt{2}}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{\sin{\tan^{-1}{x}}}=\cos^{-1}{\sqrt{\frac{3}{5}}}\)
\(\Rightarrow \tan^{-1}{\sin{\tan^{-1}{x}}}=\cos^{-1}{\frac{\sqrt{3}}{\sqrt{5}}}\)
\(\Rightarrow \tan^{-1}{\sin{\tan^{-1}{x}}}=\tan^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\) ➜ ডান পাশের ক্ষেত্রে,
\(\text{ভূমি}=\sqrt{3}, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-(\sqrt{3})^2} \)
\(=\sqrt{5-3} \)
\(=\sqrt{2}\)
\(\therefore \cos^{-1}{\frac{\sqrt{3}}{\sqrt{5}}}=\tan^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\)
\(\Rightarrow \sin{\left(\sin^{-1}{\frac{x}{\sqrt{x^2+1}}}\right)}=\frac{\sqrt{2}}{\sqrt{3}}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+1^2} \)
\(=\sqrt{x^2+1} \)
\(\therefore \tan^{-1}{x}=\sin^{-1}{\frac{x}{\sqrt{x^2+1}}}\)
\(\Rightarrow \frac{x}{\sqrt{x^2+1}}=\frac{\sqrt{2}}{\sqrt{3}}\)
\(\Rightarrow \frac{x^2}{x^2+1}=\frac{2}{3}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow 3x^2=2x^2+2\)
\(\Rightarrow 3x^2-2x^2=2\)
\(\Rightarrow x^2=2\)
\(\therefore x=\pm{\sqrt{2}}\)
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{\sin{\tan^{-1}{x}}}=\cos^{-1}{\sqrt{\frac{3}{5}}}\)
\(\Rightarrow \tan^{-1}{\sin{\tan^{-1}{x}}}=\cos^{-1}{\frac{\sqrt{3}}{\sqrt{5}}}\)
\(\Rightarrow \tan^{-1}{\sin{\tan^{-1}{x}}}=\tan^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\) ➜ ডান পাশের ক্ষেত্রে,
\(\text{ভূমি}=\sqrt{3}, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-(\sqrt{3})^2} \)
\(=\sqrt{5-3} \)
\(=\sqrt{2}\)
\(\therefore \cos^{-1}{\frac{\sqrt{3}}{\sqrt{5}}}=\tan^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\)
\(\Rightarrow \sin{\left(\sin^{-1}{\frac{x}{\sqrt{x^2+1}}}\right)}=\frac{\sqrt{2}}{\sqrt{3}}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+1^2} \)
\(=\sqrt{x^2+1} \)
\(\therefore \tan^{-1}{x}=\sin^{-1}{\frac{x}{\sqrt{x^2+1}}}\)
\(\Rightarrow \frac{x}{\sqrt{x^2+1}}=\frac{\sqrt{2}}{\sqrt{3}}\)
\(\Rightarrow \frac{x^2}{x^2+1}=\frac{2}{3}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow 3x^2=2x^2+2\)
\(\Rightarrow 3x^2-2x^2=2\)
\(\Rightarrow x^2=2\)
\(\therefore x=\pm{\sqrt{2}}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (q)\) \(\tan^{-1}{\frac{x-1}{x+1}}+\tan^{-1}{\frac{2x-1}{2x+1}}=\tan^{-1}{\frac{23}{36}}\)উত্তরঃ \(\frac{4}{3}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{\frac{x-1}{x+1}}+\tan^{-1}{\frac{2x-1}{2x+1}}=\tan^{-1}{\frac{23}{36}}\)
\(\Rightarrow \tan^{-1}{\left\{\frac{\frac{x-1}{x+1}+\frac{2x-1}{2x+1}}{1-\frac{x-1}{x+1}\times\frac{2x-1}{2x+1}}\right\}}=\tan^{-1}{\frac{23}{36}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x+y}{1-xy}\right\}}\)
\(\Rightarrow \tan^{-1}{\left\{\frac{\frac{x-1}{x+1}+\frac{2x-1}{2x+1}}{1-\frac{(x-1)(2x-1)}{(x+1)(2x+1)}}\right\}}=\tan^{-1}{\frac{23}{36}}\)
\(\Rightarrow \frac{\frac{x-1}{x+1}+\frac{2x-1}{2x+1}}{1-\frac{(x-1)(2x-1)}{(x+1)(2x+1)}}=\frac{23}{36}\)
\(\Rightarrow \frac{(x-1)(2x+1)+(x+1)(2x-1)}{(x+1)(2x+1)-(x-1)(2x-1)}=\frac{23}{36}\) ➜ বাম পাশের ,
লব ও হরকে \((x+1)(2x+1)\) দ্বারা গুন করে,
\(\Rightarrow \frac{2x^2+x-2x-1+2x^2-x+2x-1}{2x^2+x+2x+1-2x^2+x+2x-1}=\frac{23}{36}\)
\(\Rightarrow \frac{4x^2-2}{6x}=\frac{23}{36}\)
\(\Rightarrow \frac{2(2x^2-1)}{6x}=\frac{23}{36}\)
\(\Rightarrow \frac{2x^2-1}{3x}=\frac{23}{36}\)
\(\Rightarrow \frac{2x^2-1}{x}=\frac{23}{12}\)
\(\Rightarrow 24x^2-12=23x\)
\(\Rightarrow 24x^2-23x-12=0\)
\(\Rightarrow 24x^2-32x+9x-12=0\)
\(\Rightarrow 8x(3x-4)+3(3x-4)=0\)
\(\Rightarrow (8x+3)(3x-4)=0\)
\(\Rightarrow 8x+3=0, \ 3x-4=0\)
\(\Rightarrow 8x=-3, \ 3x=4\)
\(\Rightarrow x=-\frac{3}{8}, \ x=\frac{4}{3}\)
\(\therefore x=\frac{4}{3}\) ➜ ঋণাত্মক মান সমীকরণটিকে সিদ্ধ করে না।
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{\frac{x-1}{x+1}}+\tan^{-1}{\frac{2x-1}{2x+1}}=\tan^{-1}{\frac{23}{36}}\)
\(\Rightarrow \tan^{-1}{\left\{\frac{\frac{x-1}{x+1}+\frac{2x-1}{2x+1}}{1-\frac{x-1}{x+1}\times\frac{2x-1}{2x+1}}\right\}}=\tan^{-1}{\frac{23}{36}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left\{\frac{x+y}{1-xy}\right\}}\)
\(\Rightarrow \tan^{-1}{\left\{\frac{\frac{x-1}{x+1}+\frac{2x-1}{2x+1}}{1-\frac{(x-1)(2x-1)}{(x+1)(2x+1)}}\right\}}=\tan^{-1}{\frac{23}{36}}\)
\(\Rightarrow \frac{\frac{x-1}{x+1}+\frac{2x-1}{2x+1}}{1-\frac{(x-1)(2x-1)}{(x+1)(2x+1)}}=\frac{23}{36}\)
\(\Rightarrow \frac{(x-1)(2x+1)+(x+1)(2x-1)}{(x+1)(2x+1)-(x-1)(2x-1)}=\frac{23}{36}\) ➜ বাম পাশের ,
লব ও হরকে \((x+1)(2x+1)\) দ্বারা গুন করে,
\(\Rightarrow \frac{2x^2+x-2x-1+2x^2-x+2x-1}{2x^2+x+2x+1-2x^2+x+2x-1}=\frac{23}{36}\)
\(\Rightarrow \frac{4x^2-2}{6x}=\frac{23}{36}\)
\(\Rightarrow \frac{2(2x^2-1)}{6x}=\frac{23}{36}\)
\(\Rightarrow \frac{2x^2-1}{3x}=\frac{23}{36}\)
\(\Rightarrow \frac{2x^2-1}{x}=\frac{23}{12}\)
\(\Rightarrow 24x^2-12=23x\)
\(\Rightarrow 24x^2-23x-12=0\)
\(\Rightarrow 24x^2-32x+9x-12=0\)
\(\Rightarrow 8x(3x-4)+3(3x-4)=0\)
\(\Rightarrow (8x+3)(3x-4)=0\)
\(\Rightarrow 8x+3=0, \ 3x-4=0\)
\(\Rightarrow 8x=-3, \ 3x=4\)
\(\Rightarrow x=-\frac{3}{8}, \ x=\frac{4}{3}\)
\(\therefore x=\frac{4}{3}\) ➜ ঋণাত্মক মান সমীকরণটিকে সিদ্ধ করে না।
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (r)\) \(\sec^{-1}{\frac{x}{a}}-\sec^{-1}{\frac{x}{b}}=\sec^{-1}{b}-\sec^{-1}{a}\)উত্তরঃ \(\pm{ab}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\sec^{-1}{\frac{x}{a}}-\sec^{-1}{\frac{x}{b}}=\sec^{-1}{b}-\sec^{-1}{a}\)
\(\Rightarrow \cos^{-1}{\frac{a}{x}}-\cos^{-1}{\frac{b}{x}}=\cos^{-1}{\frac{1}{b}}-\cos^{-1}{\frac{1}{a}}\) ➜ \(\because \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(\Rightarrow \cos^{-1}{\frac{a}{x}}+\cos^{-1}{\frac{1}{a}}=\cos^{-1}{\frac{1}{b}}+\cos^{-1}{\frac{b}{x}}\)
\(\Rightarrow \cos^{-1}{\left\{\frac{a}{x}\times\frac{1}{a}-\sqrt{\left(1-\frac{a^2}{x^2}\right)\left(1-\frac{1}{a^2}\right)}\right\}}=\cos^{-1}{\left\{\frac{1}{b}\times\frac{b}{x}-\sqrt{\left(1-\frac{1}{b^2}\right)\left(1-\frac{b^2}{x^2}\right)}\right\}}\) ➜ \(\because \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\left\{xy-\sqrt{(1-x^2)(1-y^2)}\right\}}\)
\(\Rightarrow \frac{1}{x}-\sqrt{\frac{x^2-a^2}{x^2}\times\frac{a^2-1}{a^2}}=\frac{1}{x}-\sqrt{\frac{b^2-1}{b^2}\times\frac{x^2-b^2}{x^2}}\)
\(\Rightarrow -\frac{\sqrt{(x^2-a^2)(a^2-1)}}{ax}=-\frac{\sqrt{(x^2-b^2)(b^2-1)}}{bx}\)
\(\Rightarrow \frac{\sqrt{(x^2-a^2)(a^2-1)}}{a}=\frac{\sqrt{(x^2-b^2)(b^2-1)}}{b}\)
\(\Rightarrow \frac{(x^2-a^2)(a^2-1)}{a^2}=\frac{(x^2-b^2)(b^2-1)}{b^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{x^2-a^2}{x^2-b^2}=\frac{a^2(b^2-1)}{b^2(a^2-1)}\)
\(\Rightarrow \frac{x^2-a^2+x^2-b^2}{x^2-a^2-x^2+b^2}=\frac{a^2(b^2-1)+b^2(a^2-1)}{a^2(b^2-1)-b^2(a^2-1)}\) ➜ যোজন-বিয়োজন করে,
\(\Rightarrow \frac{2x^2-(a^2+b^2)}{-(a^2-b^2)}=\frac{a^2b^2-a^2+a^2b^2-b^2}{a^2b^2-a^2-a^2b^2+b^2}\)
\(\Rightarrow \frac{2x^2-(a^2+b^2)}{-(a^2-b^2)}=\frac{2a^2b^2-(a^2+b^2)}{-(a^2-b^2)}\)
\(\Rightarrow 2x^2-(a^2+b^2)=2a^2b^2-(a^2+b^2)\)
\(\Rightarrow 2x^2=2a^2b^2-(a^2+b^2)+(a^2+b^2)\)
\(\Rightarrow 2x^2=2a^2b^2\)
\(\Rightarrow x^2=a^2b^2\)
\(\Rightarrow x=\pm\sqrt{a^2b^2}\)
\(\therefore x=\pm{ab}\)
ইহাই নির্ণেয় সমাধান।
\(\sec^{-1}{\frac{x}{a}}-\sec^{-1}{\frac{x}{b}}=\sec^{-1}{b}-\sec^{-1}{a}\)
\(\Rightarrow \cos^{-1}{\frac{a}{x}}-\cos^{-1}{\frac{b}{x}}=\cos^{-1}{\frac{1}{b}}-\cos^{-1}{\frac{1}{a}}\) ➜ \(\because \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(\Rightarrow \cos^{-1}{\frac{a}{x}}+\cos^{-1}{\frac{1}{a}}=\cos^{-1}{\frac{1}{b}}+\cos^{-1}{\frac{b}{x}}\)
\(\Rightarrow \cos^{-1}{\left\{\frac{a}{x}\times\frac{1}{a}-\sqrt{\left(1-\frac{a^2}{x^2}\right)\left(1-\frac{1}{a^2}\right)}\right\}}=\cos^{-1}{\left\{\frac{1}{b}\times\frac{b}{x}-\sqrt{\left(1-\frac{1}{b^2}\right)\left(1-\frac{b^2}{x^2}\right)}\right\}}\) ➜ \(\because \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\left\{xy-\sqrt{(1-x^2)(1-y^2)}\right\}}\)
\(\Rightarrow \frac{1}{x}-\sqrt{\frac{x^2-a^2}{x^2}\times\frac{a^2-1}{a^2}}=\frac{1}{x}-\sqrt{\frac{b^2-1}{b^2}\times\frac{x^2-b^2}{x^2}}\)
\(\Rightarrow -\frac{\sqrt{(x^2-a^2)(a^2-1)}}{ax}=-\frac{\sqrt{(x^2-b^2)(b^2-1)}}{bx}\)
\(\Rightarrow \frac{\sqrt{(x^2-a^2)(a^2-1)}}{a}=\frac{\sqrt{(x^2-b^2)(b^2-1)}}{b}\)
\(\Rightarrow \frac{(x^2-a^2)(a^2-1)}{a^2}=\frac{(x^2-b^2)(b^2-1)}{b^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{x^2-a^2}{x^2-b^2}=\frac{a^2(b^2-1)}{b^2(a^2-1)}\)
\(\Rightarrow \frac{x^2-a^2+x^2-b^2}{x^2-a^2-x^2+b^2}=\frac{a^2(b^2-1)+b^2(a^2-1)}{a^2(b^2-1)-b^2(a^2-1)}\) ➜ যোজন-বিয়োজন করে,
\(\Rightarrow \frac{2x^2-(a^2+b^2)}{-(a^2-b^2)}=\frac{a^2b^2-a^2+a^2b^2-b^2}{a^2b^2-a^2-a^2b^2+b^2}\)
\(\Rightarrow \frac{2x^2-(a^2+b^2)}{-(a^2-b^2)}=\frac{2a^2b^2-(a^2+b^2)}{-(a^2-b^2)}\)
\(\Rightarrow 2x^2-(a^2+b^2)=2a^2b^2-(a^2+b^2)\)
\(\Rightarrow 2x^2=2a^2b^2-(a^2+b^2)+(a^2+b^2)\)
\(\Rightarrow 2x^2=2a^2b^2\)
\(\Rightarrow x^2=a^2b^2\)
\(\Rightarrow x=\pm\sqrt{a^2b^2}\)
\(\therefore x=\pm{ab}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (s)\) \(\tan^{-1}{(x+1)}+\tan^{-1}{(x-1)}=\tan^{-1}{\frac{8}{31}}\)উত্তরঃ \(\frac{1}{4}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\tan^{-1}{(x+1)}+\tan^{-1}{(x-1)}=\tan^{-1}{\frac{8}{31}}\)
\(\Rightarrow \tan^{-1}{\left\{\frac{x+1+x-1}{1-(x+1)(x-1)}\right\}}=\tan^{-1}{\frac{8}{31}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\Rightarrow \frac{2x}{1-x^2+1}=\frac{8}{31}\)
\(\Rightarrow \frac{x}{2-x^2}=\frac{4}{31}\)
\(\Rightarrow 31x=8-4x^2\)
\(\Rightarrow 4x^2+31x-8=0\)
\(\Rightarrow 4x^2+32x-x-8=0\)
\(\Rightarrow 4x(x+8)-1(x+8)=0\)
\(\Rightarrow (x+8)(4x-1)=0\)
\(\Rightarrow x+8=0, \ 4x-1=0\)
\(\Rightarrow x=-8, \ 4x=1\)
\(\Rightarrow x=-8, \ x=\frac{1}{4}\)
\(\therefore x=\frac{1}{4}\) ➜ ঋণাত্মক মান সমীকরণটিকে সিদ্ধ করে না।
ইহাই নির্ণেয় সমাধান।
\(\tan^{-1}{(x+1)}+\tan^{-1}{(x-1)}=\tan^{-1}{\frac{8}{31}}\)
\(\Rightarrow \tan^{-1}{\left\{\frac{x+1+x-1}{1-(x+1)(x-1)}\right\}}=\tan^{-1}{\frac{8}{31}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(\Rightarrow \frac{2x}{1-x^2+1}=\frac{8}{31}\)
\(\Rightarrow \frac{x}{2-x^2}=\frac{4}{31}\)
\(\Rightarrow 31x=8-4x^2\)
\(\Rightarrow 4x^2+31x-8=0\)
\(\Rightarrow 4x^2+32x-x-8=0\)
\(\Rightarrow 4x(x+8)-1(x+8)=0\)
\(\Rightarrow (x+8)(4x-1)=0\)
\(\Rightarrow x+8=0, \ 4x-1=0\)
\(\Rightarrow x=-8, \ 4x=1\)
\(\Rightarrow x=-8, \ x=\frac{1}{4}\)
\(\therefore x=\frac{1}{4}\) ➜ ঋণাত্মক মান সমীকরণটিকে সিদ্ধ করে না।
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (t)\) \(\sin{\cot^{-1}{\cos{\tan^{-1}{x}}}}=\frac{2}{\sqrt{5}}\)উত্তরঃ \(\pm\sqrt{3}\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\sin{\cot^{-1}{\cos{\tan^{-1}{x}}}}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow \sin{\cot^{-1}{\cos{\left(\cos^{-1}{\frac{1}{\sqrt{x^2+1}}}\right)}}}=\frac{2}{\sqrt{5}}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+1^2} \)
\(=\sqrt{x^2+1} \)
\(\therefore \tan^{-1}{x}=\cos^{-1}{\frac{1}{\sqrt{x^2+1}}}\)
\(\Rightarrow \sin{\cot^{-1}{\left(\frac{1}{\sqrt{x^2+1}}\right)}}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow \sin{\left(\sin^{-1}{\frac{\sqrt{x^2+1}}{\sqrt{x^2+2}}}\right)}=\frac{2}{\sqrt{5}}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{লম্ব}=\sqrt{x^2+1}, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{x^2+1})^2+1^2} \)
\(=\sqrt{x^2+1+1} \)
\(=\sqrt{x^2+2} \)
\(\therefore \cot^{-1}{\left(\frac{1}{\sqrt{x^2+1}}\right)}=\sin^{-1}{\frac{\sqrt{x^2+1}}{\sqrt{x^2+2}}}\)
\(\Rightarrow \frac{\sqrt{x^2+1}}{\sqrt{x^2+2}}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow \frac{x^2+1}{x^2+2}=\frac{4}{5}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow 5x^2+5=4x^2+8\)
\(\Rightarrow 5x^2-4x^2=8-5\)
\(\Rightarrow x^2=3\)
\(\therefore x=\pm\sqrt{3}\)
ইহাই নির্ণেয় সমাধান।
\(\sin{\cot^{-1}{\cos{\tan^{-1}{x}}}}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow \sin{\cot^{-1}{\cos{\left(\cos^{-1}{\frac{1}{\sqrt{x^2+1}}}\right)}}}=\frac{2}{\sqrt{5}}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+1^2} \)
\(=\sqrt{x^2+1} \)
\(\therefore \tan^{-1}{x}=\cos^{-1}{\frac{1}{\sqrt{x^2+1}}}\)
\(\Rightarrow \sin{\cot^{-1}{\left(\frac{1}{\sqrt{x^2+1}}\right)}}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow \sin{\left(\sin^{-1}{\frac{\sqrt{x^2+1}}{\sqrt{x^2+2}}}\right)}=\frac{2}{\sqrt{5}}\) ➜ বাম পাশের ক্ষেত্রে,
\(\text{লম্ব}=\sqrt{x^2+1}, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{x^2+1})^2+1^2} \)
\(=\sqrt{x^2+1+1} \)
\(=\sqrt{x^2+2} \)
\(\therefore \cot^{-1}{\left(\frac{1}{\sqrt{x^2+1}}\right)}=\sin^{-1}{\frac{\sqrt{x^2+1}}{\sqrt{x^2+2}}}\)
\(\Rightarrow \frac{\sqrt{x^2+1}}{\sqrt{x^2+2}}=\frac{2}{\sqrt{5}}\)
\(\Rightarrow \frac{x^2+1}{x^2+2}=\frac{4}{5}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow 5x^2+5=4x^2+8\)
\(\Rightarrow 5x^2-4x^2=8-5\)
\(\Rightarrow x^2=3\)
\(\therefore x=\pm\sqrt{3}\)
ইহাই নির্ণেয় সমাধান।
সমাধান করঃ
\(Q.2.(ii) (u)\) \(\sin^{-1}{\frac{5}{x}}+\sin^{-1}{\frac{12}{x}}=\frac{\pi}{2}\)উত্তরঃ \(13\)
সমাধানঃ
প্রদত্ত সমীকরণ,
\(\sin^{-1}{\frac{5}{x}}+\sin^{-1}{\frac{12}{x}}=\frac{\pi}{2}\)
\(\Rightarrow \sin^{-1}{\frac{5}{x}}=\frac{\pi}{2}-\sin^{-1}{\frac{12}{x}}\)
\(\Rightarrow \sin^{-1}{\frac{5}{x}}=\cos^{-1}{\frac{12}{x}}\) ➜ \(\because \frac{\pi}{2}=\sin^{-1}{x}+\cos^{-1}{x}\)
\(\therefore \frac{\pi}{2}-\sin^{-1}{x}=\cos^{-1}{x}\)
\(\Rightarrow \sin^{-1}{\frac{5}{x}}=\sin^{-1}{\left\{\sqrt{1-\left(\frac{12}{x}\right)^2}\right\}}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow \frac{5}{x}=\sqrt{1-\frac{144}{x^2}}\)
\(\Rightarrow \frac{25}{x^2}=1-\frac{144}{x^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{25}{x^2}+\frac{144}{x^2}=1\)
\(\Rightarrow \frac{25+144}{x^2}=1\)
\(\Rightarrow \frac{169}{x^2}=1\)
\(\Rightarrow x^2=169\)
\(\Rightarrow x=\pm\sqrt{169}\)
\(\Rightarrow x=\pm{13}\)
\(\therefore x=13\) ➜ ঋণাত্মক মান সমীকরণটিকে সিদ্ধ করে না।
ইহাই নির্ণেয় সমাধান।
\(\sin^{-1}{\frac{5}{x}}+\sin^{-1}{\frac{12}{x}}=\frac{\pi}{2}\)
\(\Rightarrow \sin^{-1}{\frac{5}{x}}=\frac{\pi}{2}-\sin^{-1}{\frac{12}{x}}\)
\(\Rightarrow \sin^{-1}{\frac{5}{x}}=\cos^{-1}{\frac{12}{x}}\) ➜ \(\because \frac{\pi}{2}=\sin^{-1}{x}+\cos^{-1}{x}\)
\(\therefore \frac{\pi}{2}-\sin^{-1}{x}=\cos^{-1}{x}\)
\(\Rightarrow \sin^{-1}{\frac{5}{x}}=\sin^{-1}{\left\{\sqrt{1-\left(\frac{12}{x}\right)^2}\right\}}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow \frac{5}{x}=\sqrt{1-\frac{144}{x^2}}\)
\(\Rightarrow \frac{25}{x^2}=1-\frac{144}{x^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{25}{x^2}+\frac{144}{x^2}=1\)
\(\Rightarrow \frac{25+144}{x^2}=1\)
\(\Rightarrow \frac{169}{x^2}=1\)
\(\Rightarrow x^2=169\)
\(\Rightarrow x=\pm\sqrt{169}\)
\(\Rightarrow x=\pm{13}\)
\(\therefore x=13\) ➜ ঋণাত্মক মান সমীকরণটিকে সিদ্ধ করে না।
ইহাই নির্ণেয় সমাধান।
নিম্নোক্ত ত্রিকোণমিতিক অভেদটির প্রমাণ কর এবং মুখ্যসীমার প্রভাব আলোচনা করঃ
\(Q.2.(iii) (a)\) \(\tan^{-1}{2}+\tan^{-1}{3}=\frac{3\pi}{4}\)সমাধানঃ
\(L.S=\tan^{-1}{2}+\tan^{-1}{3}\)
\(=\pi+\tan^{-1}{\frac{2+3}{1-2\times3}}\) ➜ এখানে,
\(x=2, \ y=3\)
\(\therefore xy>1\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\pi+\tan^{-1}{\frac{5}{1-6}}\)
\(=\pi+\tan^{-1}{\frac{5}{-5}}\)
\(=\pi+\tan^{-1}{(-1)}\)
\(=\pi-\tan^{-1}{(1)}\)
\(=\pi-\tan^{-1}{(\tan{\frac{\pi}{4}})}\)➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\pi-\frac{\pi}{4}\)
\(=\frac{4\pi-\pi}{4}\)
\(=\frac{3\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(xy>1\)
এই ক্ষেত্রে, \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\) সত্য নয়।
কাজেই, \(xy>1\) হলে,
\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\) হবে।
\(=\pi+\tan^{-1}{\frac{2+3}{1-2\times3}}\) ➜ এখানে,
\(x=2, \ y=3\)
\(\therefore xy>1\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\pi+\tan^{-1}{\frac{5}{1-6}}\)
\(=\pi+\tan^{-1}{\frac{5}{-5}}\)
\(=\pi+\tan^{-1}{(-1)}\)
\(=\pi-\tan^{-1}{(1)}\)
\(=\pi-\tan^{-1}{(\tan{\frac{\pi}{4}})}\)➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\pi-\frac{\pi}{4}\)
\(=\frac{4\pi-\pi}{4}\)
\(=\frac{3\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(xy>1\)
এই ক্ষেত্রে, \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\) সত্য নয়।
কাজেই, \(xy>1\) হলে,
\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\) হবে।
নিম্নোক্ত ত্রিকোণমিতিক অভেদটির প্রমাণ কর এবং মুখ্যসীমার প্রভাব আলোচনা করঃ
\(Q.2.(iii) (b)\) \(\tan^{-1}{2}+\tan^{-1}{5}+\tan^{-1}{8}=\frac{5\pi}{4}\)সমাধানঃ
\(L.S=\tan^{-1}{2}+\tan^{-1}{5}+\tan^{-1}{8}\)
\(=\pi+\tan^{-1}{\frac{2+5+8-2\times5\times8}{1-5\times8-8\times2-2\times5}}\) ➜ এখানে,
\(x=2, \ y=5, \ z=8\)
\(\therefore xy+yz+zx>1\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi+\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\)
\(=\pi+\tan^{-1}{\frac{15-80}{1-40-16-10}}\)
\(=\pi+\tan^{-1}{\frac{-65}{1-66}}\)
\(=\pi+\tan^{-1}{\frac{-65}{-65}}\)
\(=\pi+\tan^{-1}{(1)}\)
\(=\pi+\tan^{-1}{(\tan{\frac{\pi}{4}})}\)➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\pi+\frac{\pi}{4}\)
\(=\frac{4\pi+\pi}{4}\)
\(=\frac{5\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(xy+yz+zx>1\)
এই ক্ষেত্রে, \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\) সত্য নয়।
কাজেই, \(xy+yz+zx>1\) হলে,
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi+\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\) হবে।
\(=\pi+\tan^{-1}{\frac{2+5+8-2\times5\times8}{1-5\times8-8\times2-2\times5}}\) ➜ এখানে,
\(x=2, \ y=5, \ z=8\)
\(\therefore xy+yz+zx>1\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi+\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\)
\(=\pi+\tan^{-1}{\frac{15-80}{1-40-16-10}}\)
\(=\pi+\tan^{-1}{\frac{-65}{1-66}}\)
\(=\pi+\tan^{-1}{\frac{-65}{-65}}\)
\(=\pi+\tan^{-1}{(1)}\)
\(=\pi+\tan^{-1}{(\tan{\frac{\pi}{4}})}\)➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\pi+\frac{\pi}{4}\)
\(=\frac{4\pi+\pi}{4}\)
\(=\frac{5\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(xy+yz+zx>1\)
এই ক্ষেত্রে, \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\) সত্য নয়।
কাজেই, \(xy+yz+zx>1\) হলে,
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi+\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\) হবে।
নিম্নোক্ত ত্রিকোণমিতিক অভেদটির প্রমাণ কর এবং মুখ্যসীমার প্রভাব আলোচনা করঃ
\(Q.2.(iii) (c)\) \(\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{56}{65}}=\pi\)সমাধানঃ
প্রদত্ত সমীকরণ,
\(\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{56}{65}}=\pi\)
\(\Rightarrow \sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{12}{13}}=\pi-\sin^{-1}{\frac{56}{65}}\)
\(L.S=\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{12}{13}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\sqrt{1-\left(\frac{12}{13}\right)^2}+\frac{12}{13}\sqrt{1-\left(\frac{4}{5}\right)^2}}\) ➜ এখানে,
\(x=\frac{4}{5}, \ y=\frac{12}{13}\)
\(\therefore x^2+y^2>1\)
\(\therefore \sin^{-1}{x}+\sin^{-1}{y}=\pi-\sin^{-1}{x\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\sqrt{1-\frac{144}{169}}+\frac{12}{13}\sqrt{1-\frac{16}{25}}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\sqrt{\frac{169-144}{169}}+\frac{12}{13}\sqrt{\frac{25-16}{25}}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\sqrt{\frac{25}{169}}+\frac{12}{13}\sqrt{\frac{9}{25}}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\times\frac{5}{13}+\frac{12}{13}\times\frac{3}{5}}\)
\(=\pi-\sin^{-1}{\frac{4}{13}+\frac{36}{65}}\)
\(=\pi-\sin^{-1}{\frac{20+36}{65}}\)
\(=\pi-\sin^{-1}{\frac{56}{65}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(x^2+y^2>1\)
এই ক্ষেত্রে, \(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{x\sqrt{1-y^2}+y\sqrt{1-x^2}}\) সত্য নয়।
কাজেই, \(x^2+y^2>1\) হলে,
\(\sin^{-1}{x}+\sin^{-1}{y}=\pi-\sin^{-1}{x\sqrt{1-y^2}+y\sqrt{1-x^2}}\) হবে।
\(\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{56}{65}}=\pi\)
\(\Rightarrow \sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{12}{13}}=\pi-\sin^{-1}{\frac{56}{65}}\)
\(L.S=\sin^{-1}{\frac{4}{5}}+\sin^{-1}{\frac{12}{13}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\sqrt{1-\left(\frac{12}{13}\right)^2}+\frac{12}{13}\sqrt{1-\left(\frac{4}{5}\right)^2}}\) ➜ এখানে,
\(x=\frac{4}{5}, \ y=\frac{12}{13}\)
\(\therefore x^2+y^2>1\)
\(\therefore \sin^{-1}{x}+\sin^{-1}{y}=\pi-\sin^{-1}{x\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\sqrt{1-\frac{144}{169}}+\frac{12}{13}\sqrt{1-\frac{16}{25}}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\sqrt{\frac{169-144}{169}}+\frac{12}{13}\sqrt{\frac{25-16}{25}}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\sqrt{\frac{25}{169}}+\frac{12}{13}\sqrt{\frac{9}{25}}}\)
\(=\pi-\sin^{-1}{\frac{4}{5}\times\frac{5}{13}+\frac{12}{13}\times\frac{3}{5}}\)
\(=\pi-\sin^{-1}{\frac{4}{13}+\frac{36}{65}}\)
\(=\pi-\sin^{-1}{\frac{20+36}{65}}\)
\(=\pi-\sin^{-1}{\frac{56}{65}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(x^2+y^2>1\)
এই ক্ষেত্রে, \(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{x\sqrt{1-y^2}+y\sqrt{1-x^2}}\) সত্য নয়।
কাজেই, \(x^2+y^2>1\) হলে,
\(\sin^{-1}{x}+\sin^{-1}{y}=\pi-\sin^{-1}{x\sqrt{1-y^2}+y\sqrt{1-x^2}}\) হবে।
নিম্নোক্ত ত্রিকোণমিতিক অভেদটির প্রমাণ কর এবং মুখ্যসীমার প্রভাব আলোচনা করঃ
\(Q.2.(iii) (d)\) \(2\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{120}{169}}=\pi\)সমাধানঃ
প্রদত্ত সমীকরণ,
\(2\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{120}{169}}=\pi\)
\(\Rightarrow 2\sin^{-1}{\frac{12}{13}}=\pi-\sin^{-1}{\frac{120}{169}}\)
\(L.S=2\sin^{-1}{\frac{12}{13}}\)
\(=\pi-\sin^{-1}{\left\{2\times\frac{12}{13}\sqrt{1-\left(\frac{12}{13}\right)^2}\right\}}\) ➜ এখানে,
\(x=\frac{12}{13}\)
\(\therefore x>\frac{1}{\sqrt{2}}\)
\(\therefore 2\sin^{-1}{x}=\pi-\sin^{-1}{\left\{2x\sqrt{1-x^2}\right\}}\)
\(=\pi-\sin^{-1}{\left\{\frac{24}{13}\sqrt{1-\frac{144}{169}}\right\}}\)
\(=\pi-\sin^{-1}{\left\{\frac{24}{13}\sqrt{\frac{169-144}{169}}\right\}}\)
\(=\pi-\sin^{-1}{\left\{\frac{24}{13}\sqrt{\frac{25}{169}}\right\}}\)
\(=\pi-\sin^{-1}{\left\{\frac{24}{13}\times\frac{5}{13}\right\}}\)
\(=\pi-\sin^{-1}{\frac{120}{169}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(x>\frac{1}{\sqrt{2}}\)
এই ক্ষেত্রে, \(2\sin^{-1}{x}=\sin^{-1}{\left\{2x\sqrt{1-x^2}\right\}}\) সত্য নয়।
কাজেই, \(x>\frac{1}{\sqrt{2}}\) হলে,
\(2\sin^{-1}{x}=\pi-\sin^{-1}{\left\{2x\sqrt{1-x^2}\right\}}\) হবে।
\(2\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{120}{169}}=\pi\)
\(\Rightarrow 2\sin^{-1}{\frac{12}{13}}=\pi-\sin^{-1}{\frac{120}{169}}\)
\(L.S=2\sin^{-1}{\frac{12}{13}}\)
\(=\pi-\sin^{-1}{\left\{2\times\frac{12}{13}\sqrt{1-\left(\frac{12}{13}\right)^2}\right\}}\) ➜ এখানে,
\(x=\frac{12}{13}\)
\(\therefore x>\frac{1}{\sqrt{2}}\)
\(\therefore 2\sin^{-1}{x}=\pi-\sin^{-1}{\left\{2x\sqrt{1-x^2}\right\}}\)
\(=\pi-\sin^{-1}{\left\{\frac{24}{13}\sqrt{1-\frac{144}{169}}\right\}}\)
\(=\pi-\sin^{-1}{\left\{\frac{24}{13}\sqrt{\frac{169-144}{169}}\right\}}\)
\(=\pi-\sin^{-1}{\left\{\frac{24}{13}\sqrt{\frac{25}{169}}\right\}}\)
\(=\pi-\sin^{-1}{\left\{\frac{24}{13}\times\frac{5}{13}\right\}}\)
\(=\pi-\sin^{-1}{\frac{120}{169}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(x>\frac{1}{\sqrt{2}}\)
এই ক্ষেত্রে, \(2\sin^{-1}{x}=\sin^{-1}{\left\{2x\sqrt{1-x^2}\right\}}\) সত্য নয়।
কাজেই, \(x>\frac{1}{\sqrt{2}}\) হলে,
\(2\sin^{-1}{x}=\pi-\sin^{-1}{\left\{2x\sqrt{1-x^2}\right\}}\) হবে।
নিম্নোক্ত ত্রিকোণমিতিক অভেদটির প্রমাণ কর এবং মুখ্যসীমার প্রভাব আলোচনা করঃ
\(Q.2.(iii) (e)\) \(\tan^{-1}{6}+\tan^{-1}{\frac{7}{5}}=\frac{3\pi}{4}\)সমাধানঃ
\(L.S=\tan^{-1}{6}+\tan^{-1}{\frac{7}{5}}\)
\(=\pi+\tan^{-1}{\frac{6+\frac{7}{5}}{1-6\times\frac{7}{5}}}\) ➜ এখানে,
\(x=6, \ y=\frac{7}{5}\)
\(\therefore xy>1\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\pi+\tan^{-1}{\frac{6+\frac{7}{5}}{1-\frac{42}{5}}}\)
\(=\pi+\tan^{-1}{\frac{30+7}{5-42}}\) ➜ লব ও হরকে \(5\) দ্বারা গুন করে,
\(=\pi+\tan^{-1}{\frac{37}{-37}}\)
\(=\pi+\tan^{-1}{(-1)}\)
\(=\pi-\tan^{-1}{(1)}\)
\(=\pi-\tan^{-1}{(\tan{\frac{\pi}{4}})}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\pi-\frac{\pi}{4}\)
\(=\frac{4\pi-\pi}{4}\)
\(=\frac{3\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(xy>1\)
এই ক্ষেত্রে, \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\) সত্য নয়।
কাজেই, \(xy>1\) হলে,
\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\) হবে।
\(=\pi+\tan^{-1}{\frac{6+\frac{7}{5}}{1-6\times\frac{7}{5}}}\) ➜ এখানে,
\(x=6, \ y=\frac{7}{5}\)
\(\therefore xy>1\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\pi+\tan^{-1}{\frac{6+\frac{7}{5}}{1-\frac{42}{5}}}\)
\(=\pi+\tan^{-1}{\frac{30+7}{5-42}}\) ➜ লব ও হরকে \(5\) দ্বারা গুন করে,
\(=\pi+\tan^{-1}{\frac{37}{-37}}\)
\(=\pi+\tan^{-1}{(-1)}\)
\(=\pi-\tan^{-1}{(1)}\)
\(=\pi-\tan^{-1}{(\tan{\frac{\pi}{4}})}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\pi-\frac{\pi}{4}\)
\(=\frac{4\pi-\pi}{4}\)
\(=\frac{3\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(xy>1\)
এই ক্ষেত্রে, \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\) সত্য নয়।
কাজেই, \(xy>1\) হলে,
\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\) হবে।
নিম্নোক্ত ত্রিকোণমিতিক অভেদটির প্রমাণ কর এবং মুখ্যসীমার প্রভাব আলোচনা করঃ
\(Q.2.(iii) (f)\) \(\tan^{-1}{5}+\tan^{-1}{6}+\tan^{-1}{7}+\tan^{-1}{8}=2\pi-\tan^{-1}{\frac{8}{11}}\)সমাধানঃ
\(L.S=\tan^{-1}{5}+\tan^{-1}{6}+\tan^{-1}{7}+\tan^{-1}{8}\)
\(=\pi+\tan^{-1}{\frac{5+6}{1-5\times6}}+\pi+\tan^{-1}{\frac{7+8}{1-7\times8}}\) ➜ প্রথম ক্ষেত্রে,
\(x=5, \ y=6\)
দ্বিতীয় ক্ষেত্রে,
\(x=7, \ y=8\)
উভয় ক্ষেত্রে,
\(\therefore xy>1\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=2\pi+\tan^{-1}{\frac{11}{1-30}}+\tan^{-1}{\frac{15}{1-56}}\)
\(=2\pi+\tan^{-1}{\frac{11}{-29}}+\tan^{-1}{\frac{15}{-55}}\)
\(=2\pi-\tan^{-1}{\frac{11}{29}}-\tan^{-1}{\frac{15}{55}}\)
\(=2\pi-\left\{\tan^{-1}{\frac{11}{29}}+\tan^{-1}{\frac{15}{55}}\right\}\)
\(=2\pi-\left\{\tan^{-1}{\frac{\frac{11}{29}+\frac{15}{55}}{1-\frac{11}{29}\times\frac{15}{55}}}\right\}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=2\pi-\left\{\tan^{-1}{\frac{\frac{11}{29}+\frac{15}{55}}{1-\frac{165}{1595}}}\right\}\)
\(=2\pi-\left\{\tan^{-1}{\frac{605+435}{1595-165}}\right\}\) ➜ লব ও হরকে \(1595\) দ্বারা গুন করে,
\(=2\pi-\left\{\tan^{-1}{\frac{1040}{1430}}\right\}\)
\(=2\pi-\left\{\tan^{-1}{\frac{8}{11}}\right\}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(xy>1\)
এই ক্ষেত্রে, \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\) সত্য নয়।
কাজেই, \(xy>1\) হলে,
\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\) হবে।
\(=\pi+\tan^{-1}{\frac{5+6}{1-5\times6}}+\pi+\tan^{-1}{\frac{7+8}{1-7\times8}}\) ➜ প্রথম ক্ষেত্রে,
\(x=5, \ y=6\)
দ্বিতীয় ক্ষেত্রে,
\(x=7, \ y=8\)
উভয় ক্ষেত্রে,
\(\therefore xy>1\)
\(\therefore \tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=2\pi+\tan^{-1}{\frac{11}{1-30}}+\tan^{-1}{\frac{15}{1-56}}\)
\(=2\pi+\tan^{-1}{\frac{11}{-29}}+\tan^{-1}{\frac{15}{-55}}\)
\(=2\pi-\tan^{-1}{\frac{11}{29}}-\tan^{-1}{\frac{15}{55}}\)
\(=2\pi-\left\{\tan^{-1}{\frac{11}{29}}+\tan^{-1}{\frac{15}{55}}\right\}\)
\(=2\pi-\left\{\tan^{-1}{\frac{\frac{11}{29}+\frac{15}{55}}{1-\frac{11}{29}\times\frac{15}{55}}}\right\}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=2\pi-\left\{\tan^{-1}{\frac{\frac{11}{29}+\frac{15}{55}}{1-\frac{165}{1595}}}\right\}\)
\(=2\pi-\left\{\tan^{-1}{\frac{605+435}{1595-165}}\right\}\) ➜ লব ও হরকে \(1595\) দ্বারা গুন করে,
\(=2\pi-\left\{\tan^{-1}{\frac{1040}{1430}}\right\}\)
\(=2\pi-\left\{\tan^{-1}{\frac{8}{11}}\right\}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
যখন, \(xy>1\)
এই ক্ষেত্রে, \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\) সত্য নয়।
কাজেই, \(xy>1\) হলে,
\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\frac{x+y}{1-xy}}\) হবে।
লেখচিত্র অংকন করঃ
\(Q.2.(iv) (a)\) \(g(x)=p\sin^{-1}{x}\) যখন, \(p=\frac{1}{2}, \ -1\le{x}\le{1}.\) বঃ২০১৭ ।
সমাধানঃ
ধরি,
\(y=g(x)=P\sin^{-1}{x}\)
\(\Rightarrow y=\frac{1}{2}\sin^{-1}{x}\)
\(-1\le{x}\le{1}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
ছক কাগজে কার্তেসীয় অক্ষদ্বয় \(XOX^{\prime}\) এবং \(YOY^{\prime}\) অঙ্কন করি।
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(6\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

\(y=g(x)=P\sin^{-1}{x}\)
\(\Rightarrow y=\frac{1}{2}\sin^{-1}{x}\)
\(-1\le{x}\le{1}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
\(x\) | \(-1\) | \(-0.87\) | \(-0.5\) | \(0\) | \(0.5\) | \(0.87\) | \(1\) |
\(y=\frac{1}{2}\sin^{-1}{x}\) | \(-45^{o}\) | \(-30^{o}\) | \(-15^{o}\) | \(0^{o}\) | \(15^{o}\) | \(30^{o}\) | \(45^{o}\) |
\((x, \ y)\) | \((-1, -45^{o})\) | \((-0.87, -30^{o})\) | \((-0.5, -15^{o})\) | \((0, 0^{o})\) | \((0.5, 15^{o})\) | \((0.87, 30^{o})\) | \((1, 45^{o})\) |
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(6\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

লেখচিত্র অংকন করঃ
\(Q.2.(iv) (b)\) \(y=\cos^{-1}{x}\) যখন, \(-1\le{x}\le{1}.\)সমাধানঃ
দেওয়া আছে,
\(y=\cos^{-1}{x}\) যখন, \(-1\le{x}\le{1}.\)
\(-1\le{x}\le{1}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
ছক কাগজে কার্তেসীয় অক্ষদ্বয় \(XOX^{\prime}\) এবং \(YOY^{\prime}\) অঙ্কন করি।
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(1\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

\(y=\cos^{-1}{x}\) যখন, \(-1\le{x}\le{1}.\)
\(-1\le{x}\le{1}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
\(x\) | \(0\) | \(\pm0.26\) | \(\pm0.5\) | \(\pm0.71\) | \(\pm0.87\) | \(\pm0.97\) | \(\pm1\) |
\(y=\cos^{-1}{x}\) | \(\pm90^{o}\) | \(\pm75^{o}\) | \(\pm60^{o}\) | \(\pm45^{o}\) | \(\pm30^{o}\) | \(\pm15^{o}\) | \(0^{o}\) |
\((x, \ y)\) | \((0, \pm90^{o})\) | \((\pm0.26, \pm75^{o})\) | \((\pm0.5, \pm60^{o})\) | \((\pm0.71, \pm45^{o})\) | \((\pm0.87, \pm30^{o})\) | \((\pm0.97, \pm15^{o})\) | \((\pm1, 0^{o})\) |
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(1\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

লেখচিত্র অংকন করঃ
\(Q.2.(iv) (c)\) \(y=\tan^{-1}{x}\) যখন, \(-1\le{x}\le{1}.\)সমাধানঃ
ধরি,
\(y=\tan^{-1}{x}\)
\(-1\le{x}\le{1}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
ছক কাগজে কার্তেসীয় অক্ষদ্বয় \(XOX^{\prime}\) এবং \(YOY^{\prime}\) অঙ্কন করি।
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(1\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

\(y=\tan^{-1}{x}\)
\(-1\le{x}\le{1}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
\(x\) | \(-1\) | \(-0.58\) | \(-0.27\) | \(0\) | \(0.27\) | \(0.58\) | \(1\) |
\(y=\tan^{-1}{x}\) | \(-45^{o}\) | \(-30^{o}\) | \(-15^{o}\) | \(0^{o}\) | \(15^{o}\) | \(30^{o}\) | \(45^{o}\) |
\((x, \ y)\) | \((-1, -45^{o})\) | \((-0.58, -30^{o})\) | \((-0.27, -15^{o})\) | \((0, 0^{o})\) | \((0.27, 15^{o})\) | \((0.58, 30^{o})\) | \((1, 45^{o})\) |
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(1\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

লেখচিত্র অংকন করঃ
\(Q.2.(iv) (d)\) \(y=\sec^{-1}{x}\) যখন, \(1\le{x}\le{2}.\)সমাধানঃ
ধরি,
\(y=\sec^{-1}{x}\)
\(1\le{x}\le{2}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
ছক কাগজে কার্তেসীয় অক্ষদ্বয় \(XOX^{\prime}\) এবং \(YOY^{\prime}\) অঙ্কন করি।
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(4\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

\(y=\sec^{-1}{x}\)
\(1\le{x}\le{2}\) ব্যবধির মধ্যে \(x\) এর ভিন্ন ভিন্ন মানের জন্য \(y\) এর আনুসঙ্গিক মান নির্ণয় করে নিচে একটি টেবিল তৈরী করি।
\(x\) | \(1\) | \(1.04\) | \(1.15\) | \(1.41\) | \(2\) |
\(y=\sec^{-1}{x}\) | \(0^{o}\) | \(15^{o}\) | \(30^{o}\) | \(45^{o}\) | \(60^{o}\) |
\((x, \ y)\) | \((1, 0^{o})\) | \((1.03, 15^{o})\) | \((1.15, 30^{o})\) | \((1.41, 45^{o})\) | \((2, 60^{o})\) |
স্কেলঃ ধরি, \(x\) অক্ষ বরাবর ক্ষুদ্রতম \(10\) বর্গ ঘর \(=1\) একক।
\(y\) অক্ষ বরাবর ক্ষুদ্রতম \(4\) বর্গ ঘর \(=15^{o}\) ।
ছক কাগজে স্কেল অনুযায়ী উপরের টেবিল হতে প্রাপ্ত বিন্দুগুলি স্থাপন করি। বিন্দুগুলি সাবলীলভাবে সংযুক্ত করে প্রদত্ত ফাংশনের লেখচিত্র অংকন করি।

অধ্যায় \(7H\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ
প্রমাণ করঃ
\(Q.3.(i)\) \(2\tan^{-1}{\frac{1}{3}}+\tan^{-1}{\frac{1}{7}}=\frac{\pi}{4}\) মাঃ২০১১, ২০০৭; রাঃ ২০০৩; যঃ২০০২।
\(Q.3.(ii)\) \(2\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{7}}+2\tan^{-1}{\frac{1}{8}}=\frac{\pi}{4}\)
মাঃ২০০৪ ।
\(Q.3.(iii)\) \(2\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\sqrt{\frac{2}{3}}}=\tan^{-1}{\frac{5}{\sqrt{2}}}\)
বঃ২০১৯ ।
\(Q.3.(iv)\) \(\cos^{-1}{\frac{1}{\sqrt{5}}}-\frac{1}{2}\sin^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{1}{3}}=\tan^{-1}{2}\)
দিঃ২০১৫,২০১৪; সিঃ২০১৫,২০১১,২০০৮; চঃ২০১৫; কুঃ২০১৪,২০০৯,২০০৬; ঢাঃ২০১৪,২০০৭; যঃ২০১৩,২০১০,২০০৬; রাঃ২০০৮,২০০৫; মাঃ২০০৮ ।
\(Q.3.(v)\) \(\sin{\cot^{-1}{\tan{\cos^{-1}{\frac{3}{4}}}}}=\frac{3}{4}\)
ঢাঃ২০১২ ।
\(Q.3.(vi)\) \(\cot{\cos^{-1}{\sin{\tan^{-1}{\frac{3}{4}}}}}=\frac{3}{4}\)
মাঃ২০১৪; জাতীয়ঃভর্তিঃ২০০৪ ।
\(Q.3.(vii)\) \(\sin{\cot^{-1}{\tan{\cos^{-1}{x}}}}=x\)
সিঃ২০১৪,২০০৭; যঃ২০১৪; মাঃ২০১৩,২০০৮; রাঃ২০১২,২০০৮; ঢাঃ২০১২; দিঃ২০১১; বঃ২০০৯ ।
\(Q.3.(viii)\) \(\cot{\cos^{-1}{\sin{\tan^{-1}{x}}}}=x\)
সিঃ২০০৯; বঃ২০১১; দিঃ২০১৬ ।
\(Q.3.(ix)\) \(\sin{\cos^{-1}{\tan{\sec^{-1}{x}}}}=\sqrt{2-x^2}\)
সিঃ২০০৯; বঃ২০১৪ ।
\(Q.3.(x)\) \(\sin{\cos^{-1}{\tan{\sec^{-1}{\frac{x}{y}}}}}=\frac{\sqrt{2y^2-x^2}}{y}\)
বঃ২০১৪; চঃ২০১২; ঢাঃ২০১০; যঃ,দিঃ২০০৯; কুয়েটঃ২০১০-২০১১ ।
\(Q.3.(xi)\) \(\cos{\tan^{-1}{\sin{\cot^{-1}{x}}}}=\sqrt{\frac{1+x^2}{2+x^2}}\)
কুঃ২০০২; বিআইটিঃ১৯৯৯-২০০০ ।
\(Q.3.(xii)\) \(\sec^2{(\tan^{-1}{4})}+\tan^2{(\sec^{-1}{3})}=25\)
কুঃ২০১৩,২০০৬; রাঃ২০১৩;মাঃ২০১১; চুয়েটঃ২০১১-২০১২,২০১০-২০১১ ।
\(Q.3.(xiii)\) \(\sin^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}=\frac{2}{9}\)
রাঃ,চঃ২০০৭; ঢাঃ,যঃ,সিঃ,দিঃ২০১৮; বুটেক্সঃ২০০৯-২০১০ ।
\(Q.3.(xiv)\) \(cosec^2{\left(\tan^{-1}{\frac{1}{2}}\right)}-3\sec^2{\left(\cot^{-1}{\sqrt{3}}\right)}=1\)
চঃ২০০৩,২০০১; কুয়েটঃ২০০৮-২০০৯ ।
\(Q.3.(xv)\) \(\sec^2{\left(\cot^{-1}{3}\right)}+cosec^2{\left(\tan^{-1}{2}\right)}=2\frac{13}{36}\)
বঃ২০০৯; ডুয়েটঃ২০১৫-২০১৬ ।
\(Q.3.(xvi)\) \(\cos{\left(2\tan^{-1}{\frac{1}{7}}\right)}=\sin{\left(4\tan^{-1}{\frac{1}{2}}\right)}\)
বঃ২০১৫; রাঃ২০১৩ ।
\(Q.3.(xvii)\) \(\sin^{-1}{(-\cos{x})}+\sin^{-1}{(\cos{3x})}=-2x\)
সিঃ২০৯; ঢাঃ২০০৩ ।
\(Q.3.(xviii)\) \(\cos^{-1}{\sqrt{\frac{2}{3}}}-\cos^{-1}{\left(\frac{\sqrt{6}+1}{2\sqrt{3}}\right)}=\frac{\pi}{6}\)
কুঃ২০০২ ।
\(Q.3.(xix)\) \(\sin^{-1}{(\sqrt{2}\sin{\theta})}+\sin^{-1}{\left(\sqrt{\cos{2\theta}}\right)}=\frac{\pi}{2}\)
রাঃ২০১৪,২০০৯; দিঃ২০১৪; বঃ২০১৩; চঃ২০১২,২০০৮; সিঃ২০১২; যঃ, কুঃ২০১১ ।
\(Q.3.(xx)\) \(\tan^{-1}{(\cot{3x})}+\tan^{-1}{(-\cot{5x})}=2x\)
যঃ২০১৭ ।
\(Q.3.(xxi)\) \(\cot^{-1}{(\tan{2x})}+\cot^{-1}{(-\tan{3x})}=x\)
বঃ২০১১ ।
\(Q.3.(xxii)\) \(\tan^{-1}{\left(\frac{1}{2}\tan{2A}\right)}+\tan^{-1}{(\cot{A})}+\tan^{-1}{(\cot^3{A})}=0\)
যঃ২০০৫ ।
\(Q.3.(xxiii)\) \(2\tan^{-1}{\left(\sqrt{\frac{a-b}{a+b}}\tan{\frac{\theta}{2}}\right)}=\cos^{-1}{\frac{b+a\cos{\theta}}{a+b\cos{\theta}}}\)
বঃ২০১৬; কুঃ২০১৫,২০১১,২০০৮; ঢাঃ২০১৪,২০০৫; সিঃ২০১৩; দিঃ,যঃ২০০৯ ।
\(Q.3.(xxiv)\) \(2\tan^{-1}{\left(\sqrt{\frac{a}{b}}\tan{\frac{\theta}{2}}\right)}=\sin^{-1}{\left\{\frac{2\sqrt{ab}\sin{\theta}}{(b+a)+(b-a)\cos{\theta}}\right\}}\)
\(Q.3.(xxv)\) \(\tan{\left\{\frac{1}{2}\sin^{-1}{\frac{2x}{1+x^2}}+\frac{1}{2}\cos^{-1}{\frac{1-x^2}{1+x^2}}\right\}}=\frac{2x}{1-x^2}\)
কুঃ২০১৪ ।
\(Q.3.(xxvi)\) \(\tan{(2\tan^{-1}{x})}=2\tan{(\tan^{-1}{x}+\tan^{-1}{x^3})}\)
চঃ২০১৪,২০০৯; কুঃ২০০৭; রাঃ২০০৬; বঃ২০০৫ ।
\(Q.3.(xxvii)\) \(\tan^{-1}{(\sqrt{2}+1)\tan{\alpha}}-\tan^{-1}{(\sqrt{2}-1)\tan{\alpha}}=\tan^{-1}{(\sin{2\alpha})}\)
দিঃ২০১৩; চঃ২০১০ ।
প্রমাণ করঃ
\(Q.3.(xxviii)\) \(\tan^{-1}{(2+\sqrt{3})\tan{x}}+\tan^{-1}{(2-\sqrt{3})\tan{x}}=\tan^{-1}{(2\tan{2x})}\)সিঃ২০১৯ ।
\(Q.3.(xxix)\) \(2\tan^{-1}{(cosec \ {\tan^{-1}{x}}-\tan{\cot^{-1}{x}})}=\tan^{-1}{x}\)
কুঃ২০১৬; রাঃ২০১৫,২০১১,২০০২; যঃ২০১২; দিঃ২০১০,২০০৪,২০০২ ।
\(Q.3.(xxx)\) \(\sec^{-1}{\sqrt{5}}+\frac{1}{2}\sin^{-1}{\frac{4}{5}}-\sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{2}\)
কুঃ২০১৭ ।
\(Q.3.(xxxi)\) \(\tan^{-1}{\frac{1}{4}}+\tan^{-1}{\frac{2}{9}}=\frac{1}{2}\cos^{-1}{\frac{3}{5}}\)
মাঃ২০১৩ ।
\(Q.3.(xxxii)\) \(\sin^2{\left(\cos^{-1}{\frac{1}{x}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{x}}}\right)}=\frac{2}{9}\)
যেখানে, \(\triangle{ABC}\) -এ \(\angle{C}=\theta, \ \angle{B}=\frac{\pi}{2}, \ AB=2, \ BC=\sqrt{5}, \ AC=x\)
রাঃ,কুঃ,চঃ,বঃ২০১৮ ।
\(Q.3.(xxxiii)\) \(2\tan^{-1}{\left\{\tan{\frac{A}{2}}\tan{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}=\tan^{-1}{\left(\frac{\sin{A}\cos{B}}{\cos{A}+\sin{B}}\right)}\)
\(Q.3.(xxxiv)\) \(\tan^{-1}{\frac{b^2-c^2}{1+b^2c^2}}+\tan^{-1}{\frac{c^2-a^2}{1+c^2a^2}}+\tan^{-1}{\frac{a^2-b^2}{1+a^2b^2}}=0\)
\(Q.3.(xxxv)\) \(\cos{\tan^{-1}{\cot{\sin^{-1}{x}}}}=x\)
সিঃ২০০৬; যঃ২০১২; মাঃ২০১৪,২০১০; কুয়েটঃ২০১৩-২০১৪; বুয়েটঃ২০০৫-২০০৬ ।
\(Q.3.(xxxvi)\) \(\tan^{-1}{\frac{x\cos{\theta}}{1-x\sin{\theta}}}-\tan^{-1}{\frac{x-\sin{\theta}}{\cos{\theta}}}=\theta\)
\(Q.3.(xxxvii)\) \(\sin^{-1}{\sqrt{\frac{x-b}{a-b}}}=\cos^{-1}{\sqrt{\frac{a-x}{a-b}}}=\tan^{-1}{\sqrt{\frac{x-b}{a-x}}}\)
\(Q.3.(xxxviii)\) \(\sin^{-1}{\left(\sqrt{2}\sin{\theta}\right)}-\cos^{-1}{\left(\sqrt{\cos{2\theta}}\right)}=0\)
\(Q.3.(xxxix)\) \(4\sin^{-1}{\frac{1}{\sqrt{17}}}-\tan^{-1}{\frac{79}{401}}=\frac{\pi}{4}\)
\(Q.3.(xL)\) \(\cos{\left(2\tan^{-1}{\frac{1}{7}}\right)}=\sin{\left(4\tan^{-1}{\frac{1}{2}}\right)}\)
\(Q.3.(xLi)\) \(\frac{1}{2}\cos^{-1}{\frac{3}{5}}=\frac{\pi}{4}-\tan^{-1}{\frac{1}{3}}\)
\(Q.3.(xLii)\) \(\tan^{-1}{x}+\tan^{-1}{y}=\sin^{-1}{\left\{\frac{x+y}{\sqrt{(1+x^2)(1+y^2)}}\right\}}\)
\(Q.3.(xLiii)\) \(\tan^{-1}{x}+\tan^{-1}{y}=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{(1+x^2)(1+y^2)}\right\}}\)
\(Q.3.(xLiv)\) \(\tan^{-1}{\frac{m}{n}}-\tan^{-1}{\frac{m-n}{m+n}}=\frac{\pi}{4}\)
\(Q.3.(xLv)\) \(\tan^{-1}{\frac{1}{m+n}}-\tan^{-1}{\frac{n}{m^2+mn+1}}=\tan^{-1}{\frac{1}{m}}\)
\(Q.3.(xLvi)\) \(\tan^{-1}{\frac{3}{4}}-2\tan^{-1}{\frac{1}{5}}=\cos^{-1}{\frac{63}{65}}\)
\(Q.3.(xLvii)\) \(\cos^{-1}{\left\{1+\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}\right\}^{\frac{1}{2}}}=\sin^{-1}{\sqrt{\frac{x^2-a^2}{x^2+a^2}}}\)
\(Q.3.(xLviii)\) \(\tan{\left(\frac{\pi}{4}+\frac{1}{2}\cos^{-1}{\frac{a}{b}}\right)}+\tan{\left(\frac{\pi}{4}-\frac{1}{2}\cos^{-1}{\frac{a}{b}}\right)}=\frac{2b}{a}\)
\(Q.3.(xLix)\) \(\sec^2{(\tan^{-1}{3})}+cosec^2{(\cot^{-1}{5})}=36\)
\(Q.3.(L)\) \(\sin{\cot^{-1}{\cos{\tan^{-1}{x}}}}=\sqrt{\frac{1+x^2}{2+x^2}}\)
\(Q.3.(Li)\) \(\tan{\cot^{-1}{\tan{\cos^{-1}{x}}}}=\frac{x}{\sqrt{1-x^2}}\)
\(Q.3.(Lii)\) \(\sin{cosec^{-1}{\cot{\tan^{-1}{x}}}}=x\)
\(Q.3.(Liii)\) \(\tan^{-1}{x}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x^2}{2x}\right)}=\frac{1}{2}\sec^{-1}{\left(\frac{1+x^2}{1-x^2}\right)}\)
\(Q.3.(Liv)\) \(\tan^{-1}{x}=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(Q.3.(Lv)\) \(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x}{1+x}\right)}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x}{2\sqrt{x}}\right)}=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)}\)
\(Q.3.(Lvi)\) \(\left\{\cos{(\sin^{-1}{x})}\right\}^2=\left\{\sin{(\cos^{-1}{x})}\right\}^2\)
\(Q.3.(Lvii)\) \(\sin{\left(\sin^{-1}{\frac{1}{3}}+\sec^{-1}{3}\right)}+\cos{\left(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{2}\right)}=1\)
\(Q.3.(Lviii)\) \(\cos^{-1}{\left\{1+\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}\right\}^{\frac{1}{2}}}=\sin^{-1}{\sqrt{\frac{x-a}{x+a}}}\)
\(Q.3.(Lix)\) \(\cos{\left(2\tan^{-1}{\frac{y}{x}}\right)}=\frac{x^2-y^2}{x^2+y^2}\)
সিঃ২০১৭ ।
\(Q.3.(Lx)\) \(\sin^2{\left(\cos^{-1}{\frac{1}{3}}\right)}+\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}=\frac{14}{9}\)
সিঃ২০১৭ ।
প্রমাণ করঃ
\(Q.3.(i)\) \(2\tan^{-1}{\frac{1}{3}}+\tan^{-1}{\frac{1}{7}}=\frac{\pi}{4}\) মাঃ২০১১, ২০০৭; রাঃ ২০০৩; যঃ২০০২।
সমাধানঃ
\(L.S=2\tan^{-1}{\frac{1}{3}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}\right\}}+\tan^{-1}{\frac{1}{7}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{2}{3}}{1-\frac{1}{9}}\right\}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left\{\frac{6}{9-1}\right\}}+\tan^{-1}{\frac{1}{7}}\) ➜ প্রথম পদের
লব ও হরকে \(9\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{6}{8}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4}\times\frac{1}{7}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{28}}\right)}\)
\(=\tan^{-1}{\left(\frac{21+4}{28-3}\right)}\) ➜ লব ও হরকে \(28\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{25}{25}\right)}\)
\(=\tan^{-1}{\left(1\right)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}\right\}}+\tan^{-1}{\frac{1}{7}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{2}{3}}{1-\frac{1}{9}}\right\}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left\{\frac{6}{9-1}\right\}}+\tan^{-1}{\frac{1}{7}}\) ➜ প্রথম পদের
লব ও হরকে \(9\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{6}{8}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{1}{7}}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4}\times\frac{1}{7}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{28}}\right)}\)
\(=\tan^{-1}{\left(\frac{21+4}{28-3}\right)}\) ➜ লব ও হরকে \(28\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{25}{25}\right)}\)
\(=\tan^{-1}{\left(1\right)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(ii)\) \(2\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{7}}+2\tan^{-1}{\frac{1}{8}}=\frac{\pi}{4}\) মাঃ২০০৪ ।
সমাধানঃ
\(L.S=2\tan^{-1}{\frac{1}{5}}+\tan^{-1}{\frac{1}{7}}+2\tan^{-1}{\frac{1}{8}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{5}}{1-\left(\frac{1}{5}\right)^2}\right\}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\left\{\frac{2\times\frac{1}{8}}{1-\left(\frac{1}{8}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{2}{5}}{1-\frac{1}{25}}\right\}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\left\{\frac{\frac{1}{4}}{1-\frac{1}{64}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{10}{25-1}\right\}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\left\{\frac{16}{64-1}\right\}}\) ➜ প্রথম পদের
লব ও হরকে \(25\) দ্বারা
এবং তৃতীয় পদের
লব ও হরকে \(64\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{10}{24}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\frac{5}{12}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{12}+\frac{1}{7}}{1-\frac{5}{12}\times\frac{1}{7}}\right)}+\tan^{-1}{\frac{16}{63}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{12}+\frac{1}{7}}{1-\frac{5}{84}}\right)}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left(\frac{35+12}{84-5}\right)}+\tan^{-1}{\frac{16}{63}}\) ➜ প্রথম পদের
লব ও হরকে \(84\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{47}{79}\right)}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left(\frac{\frac{47}{79}+\frac{16}{63}}{1-\frac{47}{79}\times\frac{16}{63}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{47}{79}+\frac{16}{63}}{1-\frac{752}{4977}}\right)}\)
\(=\tan^{-1}{\left(\frac{2961+1264}{4977-752}\right)}\) ➜ লব ও হরকে \(4977\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{4225}{4225}\right)}\)
\(=\tan^{-1}{\left(1\right)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{5}}{1-\left(\frac{1}{5}\right)^2}\right\}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\left\{\frac{2\times\frac{1}{8}}{1-\left(\frac{1}{8}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{2}{5}}{1-\frac{1}{25}}\right\}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\left\{\frac{\frac{1}{4}}{1-\frac{1}{64}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{10}{25-1}\right\}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\left\{\frac{16}{64-1}\right\}}\) ➜ প্রথম পদের
লব ও হরকে \(25\) দ্বারা
এবং তৃতীয় পদের
লব ও হরকে \(64\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{10}{24}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\frac{5}{12}}+\tan^{-1}{\frac{1}{7}}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{12}+\frac{1}{7}}{1-\frac{5}{12}\times\frac{1}{7}}\right)}+\tan^{-1}{\frac{16}{63}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{5}{12}+\frac{1}{7}}{1-\frac{5}{84}}\right)}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left(\frac{35+12}{84-5}\right)}+\tan^{-1}{\frac{16}{63}}\) ➜ প্রথম পদের
লব ও হরকে \(84\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{47}{79}\right)}+\tan^{-1}{\frac{16}{63}}\)
\(=\tan^{-1}{\left(\frac{\frac{47}{79}+\frac{16}{63}}{1-\frac{47}{79}\times\frac{16}{63}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{47}{79}+\frac{16}{63}}{1-\frac{752}{4977}}\right)}\)
\(=\tan^{-1}{\left(\frac{2961+1264}{4977-752}\right)}\) ➜ লব ও হরকে \(4977\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{4225}{4225}\right)}\)
\(=\tan^{-1}{\left(1\right)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(iii)\) \(2\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\sqrt{\frac{2}{3}}}=\tan^{-1}{\frac{5}{\sqrt{2}}}\) বঃ২০১৯ ।
সমাধানঃ
\(L.S=2\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\sqrt{\frac{2}{3}}}\)
\(=2\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\)
\(=2\tan^{-1}{\frac{1}{2\sqrt{2}}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=3\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{3^2-1^2} \)
\(=\sqrt{9-1} \)
\(=\sqrt{8}\)
\(=2\sqrt{2}\)
\(\therefore \sin^{-1}{\frac{1}{3}}=\tan^{-1}{\frac{1}{2\sqrt{2}}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=\sqrt{2}, \ \text{অতিভুজ}=\sqrt{3}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{3})^2-(\sqrt{2})^2} \)
\(=\sqrt{3-2} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{1}{\sqrt{2}}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{2\sqrt{2}}}{1-\left(\frac{1}{2\sqrt{2}}\right)^2}\right\}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{1}{\sqrt{2}}}{1-\frac{1}{8}}\right\}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\)
\(=\tan^{-1}{\left\{\frac{4\sqrt{2}}{8-1}\right\}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\) ➜ প্রথম পদের
লব ও হরকে \(8\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{4\sqrt{2}}{7}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\)
\(=\tan^{-1}{\left(\frac{\frac{4\sqrt{2}}{7}+\frac{1}{\sqrt{2}}}{1-\frac{4\sqrt{2}}{7}\times\frac{1}{\sqrt{2}}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4\sqrt{2}}{7}+\frac{1}{\sqrt{2}}}{1-\frac{4\sqrt{2}}{7\sqrt{2}}}\right)}\)
\(=\tan^{-1}{\left(\frac{8+7}{7\sqrt{2}-4\sqrt{2}}\right)}\) ➜ লব ও হরকে \(7\sqrt{2}\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{15}{3\sqrt{2}}\right)}\)
\(=\tan^{-1}{\frac{5}{\sqrt{2}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}\)
\(=2\tan^{-1}{\frac{1}{2\sqrt{2}}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=3\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{3^2-1^2} \)
\(=\sqrt{9-1} \)
\(=\sqrt{8}\)
\(=2\sqrt{2}\)
\(\therefore \sin^{-1}{\frac{1}{3}}=\tan^{-1}{\frac{1}{2\sqrt{2}}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{ভূমি}=\sqrt{2}, \ \text{অতিভুজ}=\sqrt{3}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{3})^2-(\sqrt{2})^2} \)
\(=\sqrt{3-2} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{1}{\sqrt{2}}}\)
\(=\tan^{-1}{\left\{\frac{2\times\frac{1}{2\sqrt{2}}}{1-\left(\frac{1}{2\sqrt{2}}\right)^2}\right\}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{1}{\sqrt{2}}}{1-\frac{1}{8}}\right\}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\)
\(=\tan^{-1}{\left\{\frac{4\sqrt{2}}{8-1}\right\}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\) ➜ প্রথম পদের
লব ও হরকে \(8\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{4\sqrt{2}}{7}}+\tan^{-1}{\frac{1}{\sqrt{2}}}\)
\(=\tan^{-1}{\left(\frac{\frac{4\sqrt{2}}{7}+\frac{1}{\sqrt{2}}}{1-\frac{4\sqrt{2}}{7}\times\frac{1}{\sqrt{2}}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{4\sqrt{2}}{7}+\frac{1}{\sqrt{2}}}{1-\frac{4\sqrt{2}}{7\sqrt{2}}}\right)}\)
\(=\tan^{-1}{\left(\frac{8+7}{7\sqrt{2}-4\sqrt{2}}\right)}\) ➜ লব ও হরকে \(7\sqrt{2}\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{15}{3\sqrt{2}}\right)}\)
\(=\tan^{-1}{\frac{5}{\sqrt{2}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(iv)\) \(\cos^{-1}{\frac{1}{\sqrt{5}}}-\frac{1}{2}\sin^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{1}{3}}=\tan^{-1}{2}\) দিঃ২০১৫,২০১৪; সিঃ২০১৫,২০১১,২০০৮; চঃ২০১৫; কুঃ২০১৪,২০০৯,২০০৬; ঢাঃ২০১৪,২০০৭; যঃ২০১৩,২০১০,২০০৬; রাঃ২০০৮,২০০৫; মাঃ২০০৮ ।
সমাধানঃ
\(L.S=\cos^{-1}{\frac{1}{\sqrt{5}}}-\frac{1}{2}\sin^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{1}{3}}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\times2\tan^{-1}{\frac{1}{3}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \cos^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\left\{\frac{2\times\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\left\{\frac{\frac{2}{3}}{1-\frac{1}{9}}\right\}}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\left\{\frac{6}{9-1}\right\}}\) ➜ শেষ পদের
লব ও হরকে \(9\) দ্বারা গুন করে,
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\frac{6}{8}}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\times2\tan^{-1}{\frac{1}{3}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \cos^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3 , \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\left\{\frac{2\times\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\left\{\frac{\frac{2}{3}}{1-\frac{1}{9}}\right\}}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\left\{\frac{6}{9-1}\right\}}\) ➜ শেষ পদের
লব ও হরকে \(9\) দ্বারা গুন করে,
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\frac{6}{8}}\)
\(=\tan^{-1}{2}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}+\frac{1}{2}\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(v)\) \(\sin{\cot^{-1}{\tan{\cos^{-1}{\frac{3}{4}}}}}=\frac{3}{4}\) ঢাঃ২০১২ ।
সমাধানঃ
\(L.S=\sin{\cot^{-1}{\tan{\cos^{-1}{\frac{3}{4}}}}}\)
\(=\sin{\cot^{-1}{\tan{\tan^{-1}{\frac{\sqrt{7}}{3}}}}}\) ➜ এখানে,
\(\text{ভূমি}=3, \ \text{অতিভুজ}=4\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{4^2-3^2} \)
\(=\sqrt{16-9} \)
\(=\sqrt{7}\)
\(\therefore \cos^{-1}{\frac{3}{4}}=\tan^{-1}{\frac{\sqrt{7}}{3}}\)
\(=\sin{\cot^{-1}{\frac{\sqrt{7}}{3}}}\)
\(=\sin{\sin^{-1}{\frac{3}{4}}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{7}, \ \text{লম্ব}=3\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{3^2+(\sqrt{7})^2} \)
\(=\sqrt{9+7} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \cot^{-1}{\frac{\sqrt{7}}{3}}=\sin^{-1}{\frac{3}{4}}\)
\(=\frac{3}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\cot^{-1}{\tan{\tan^{-1}{\frac{\sqrt{7}}{3}}}}}\) ➜ এখানে,
\(\text{ভূমি}=3, \ \text{অতিভুজ}=4\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{4^2-3^2} \)
\(=\sqrt{16-9} \)
\(=\sqrt{7}\)
\(\therefore \cos^{-1}{\frac{3}{4}}=\tan^{-1}{\frac{\sqrt{7}}{3}}\)
\(=\sin{\cot^{-1}{\frac{\sqrt{7}}{3}}}\)
\(=\sin{\sin^{-1}{\frac{3}{4}}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{7}, \ \text{লম্ব}=3\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{3^2+(\sqrt{7})^2} \)
\(=\sqrt{9+7} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \cot^{-1}{\frac{\sqrt{7}}{3}}=\sin^{-1}{\frac{3}{4}}\)
\(=\frac{3}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(vi)\) \(\cot{\cos^{-1}{\sin{\tan^{-1}{\frac{3}{4}}}}}=\frac{3}{4}\) মাঃ২০১৪; জাতীয়ঃভর্তিঃ২০০৪ ।
সমাধানঃ
\(L.S=\cot{\cos^{-1}{\sin{\tan^{-1}{\frac{3}{4}}}}}\)
\(=\cot{\cos^{-1}{\sin{\sin^{-1}{\frac{3}{5}}}}}\) ➜ এখানে,
\(\text{লম্ব}=3, \ \text{ভূমি}=4\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{4^2+3^2} \)
\(=\sqrt{16+9} \)
\(=\sqrt{25}\)
\(=5\)
\(\therefore \tan^{-1}{\frac{3}{4}}=\sin^{-1}{\frac{3}{5}}\)
\(=\cot{\cos^{-1}{\frac{3}{5}}}\)
\(=\cot{\cot^{-1}{\frac{3}{4}}}\) ➜ এখানে,
\(\text{ভূমি}=3, \ \text{অতিভুজ}=5\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \cos^{-1}{\frac{3}{5}}=\cot^{-1}{\frac{3}{4}}\)
\(=\frac{3}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cot{\cos^{-1}{\sin{\sin^{-1}{\frac{3}{5}}}}}\) ➜ এখানে,
\(\text{লম্ব}=3, \ \text{ভূমি}=4\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{4^2+3^2} \)
\(=\sqrt{16+9} \)
\(=\sqrt{25}\)
\(=5\)
\(\therefore \tan^{-1}{\frac{3}{4}}=\sin^{-1}{\frac{3}{5}}\)
\(=\cot{\cos^{-1}{\frac{3}{5}}}\)
\(=\cot{\cot^{-1}{\frac{3}{4}}}\) ➜ এখানে,
\(\text{ভূমি}=3, \ \text{অতিভুজ}=5\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{5^2-3^2} \)
\(=\sqrt{25-9} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \cos^{-1}{\frac{3}{5}}=\cot^{-1}{\frac{3}{4}}\)
\(=\frac{3}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(vii)\) \(\sin{\cot^{-1}{\tan{\cos^{-1}{x}}}}=x\) সিঃ২০১৪,২০০৭; যঃ২০১৪; মাঃ২০১৩,২০০৮; রাঃ২০১২,২০০৮; ঢাঃ২০১২; দিঃ২০১১; বঃ২০০৯ ।
সমাধানঃ
\(L.S=\sin{\cot^{-1}{\tan{\cos^{-1}{x}}}}\)
\(=\sin{\cot^{-1}{\tan{\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}}}}\) ➜ এখানে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
\(=\sin{\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}}\)
\(=\sin{\sin^{-1}{x}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{1-x^2}, \ \text{লম্ব}=x\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+(\sqrt{1-x^2})^2} \)
\(=\sqrt{x^2+1-x^2} \)
\(=\sqrt{1} \)
\(=1\)
\(\therefore \cot^{-1}{\frac{\sqrt{1-x^2}}{x}}=\sin^{-1}{\frac{x}{1}}\)
\(=\sin^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\cot^{-1}{\tan{\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}}}}\) ➜ এখানে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
\(=\sin{\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}}\)
\(=\sin{\sin^{-1}{x}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{1-x^2}, \ \text{লম্ব}=x\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+(\sqrt{1-x^2})^2} \)
\(=\sqrt{x^2+1-x^2} \)
\(=\sqrt{1} \)
\(=1\)
\(\therefore \cot^{-1}{\frac{\sqrt{1-x^2}}{x}}=\sin^{-1}{\frac{x}{1}}\)
\(=\sin^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(viii)\) \(\cot{\cos^{-1}{\sin{\tan^{-1}{x}}}}=x\) সিঃ২০০৯; বঃ২০১১; দিঃ২০১৬ ।
সমাধানঃ
\(L.S=\cot{\cos^{-1}{\sin{\tan^{-1}{x}}}}\)
\(=\cot{\cos^{-1}{\sin{\sin^{-1}{\frac{x}{\sqrt{x^2+1}}}}}}\) ➜ এখানে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+1^2} \)
\(=\sqrt{x^2+1} \)
\(\therefore \tan^{-1}{x}=\sin^{-1}{\frac{x}{\sqrt{x^2+1}}}\)
\(=\cot{\cos^{-1}{\frac{x}{\sqrt{x^2+1}}}}\)
\(=\cot{\cot^{-1}{x}}\) ➜ এখানে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=\sqrt{x^2+1}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{x^2+1})^2-x^2} \)
\(=\sqrt{x^2+1-x^2} \)
\(=\sqrt{1} \)
\(=1\)
\(\therefore \cos^{-1}{\frac{x}{\sqrt{x^2+1}}}=\cot^{-1}{\frac{x}{1}}\)
\(=\cot^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cot{\cos^{-1}{\sin{\sin^{-1}{\frac{x}{\sqrt{x^2+1}}}}}}\) ➜ এখানে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+1^2} \)
\(=\sqrt{x^2+1} \)
\(\therefore \tan^{-1}{x}=\sin^{-1}{\frac{x}{\sqrt{x^2+1}}}\)
\(=\cot{\cos^{-1}{\frac{x}{\sqrt{x^2+1}}}}\)
\(=\cot{\cot^{-1}{x}}\) ➜ এখানে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=\sqrt{x^2+1}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{x^2+1})^2-x^2} \)
\(=\sqrt{x^2+1-x^2} \)
\(=\sqrt{1} \)
\(=1\)
\(\therefore \cos^{-1}{\frac{x}{\sqrt{x^2+1}}}=\cot^{-1}{\frac{x}{1}}\)
\(=\cot^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(ix)\) \(\sin{\cos^{-1}{\tan{\sec^{-1}{x}}}}=\sqrt{2-x^2}\) সিঃ২০০৯; বঃ২০১৪ ।
সমাধানঃ
\(L.S=\sin{\cos^{-1}{\tan{\sec^{-1}{x}}}}\)
\(=\sin{\cos^{-1}{\tan{\tan^{-1}{(\sqrt{x^2-1})}}}}\) ➜ এখানে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=x\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{x^2-1^2} \)
\(=\sqrt{x^2-1} \)
\(\therefore \sec^{-1}{x}=\tan^{-1}{\frac{\sqrt{x^2-1}}{1}}\)
\(=\tan^{-1}{(\sqrt{x^2-1})}\)
\(=\cot{\cos^{-1}{\frac{x}{\sqrt{x^2+1}}}}\)
\(=\sin{\sin^{-1}{(\sqrt{2-x^2})}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{x^2-1}, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-(\sqrt{x^2-1})^2} \)
\(=\sqrt{1-x^2+1} \)
\(=\sqrt{2-x^2}\)
\(\therefore \cos^{-1}{(\sqrt{x^2-1})}=\sin^{-1}{\frac{\sqrt{2-x^2}}{1}}\)
\(=\sin^{-1}{(\sqrt{2-x^2})}\)
\(=\sqrt{2-x^2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\cos^{-1}{\tan{\tan^{-1}{(\sqrt{x^2-1})}}}}\) ➜ এখানে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=x\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{x^2-1^2} \)
\(=\sqrt{x^2-1} \)
\(\therefore \sec^{-1}{x}=\tan^{-1}{\frac{\sqrt{x^2-1}}{1}}\)
\(=\tan^{-1}{(\sqrt{x^2-1})}\)
\(=\cot{\cos^{-1}{\frac{x}{\sqrt{x^2+1}}}}\)
\(=\sin{\sin^{-1}{(\sqrt{2-x^2})}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{x^2-1}, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-(\sqrt{x^2-1})^2} \)
\(=\sqrt{1-x^2+1} \)
\(=\sqrt{2-x^2}\)
\(\therefore \cos^{-1}{(\sqrt{x^2-1})}=\sin^{-1}{\frac{\sqrt{2-x^2}}{1}}\)
\(=\sin^{-1}{(\sqrt{2-x^2})}\)
\(=\sqrt{2-x^2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(x)\) \(\sin{\cos^{-1}{\tan{\sec^{-1}{\frac{x}{y}}}}}=\frac{\sqrt{2y^2-x^2}}{y}\) বঃ২০১৪; চঃ২০১২; ঢাঃ২০১০; যঃ,দিঃ২০০৯; কুয়েটঃ২০১০-২০১১ ।
সমাধানঃ
\(L.S=\sin{\cos^{-1}{\tan{\sec^{-1}{\frac{x}{y}}}}}\)
\(=\sin{\cos^{-1}{\tan{\tan^{-1}{\frac{\sqrt{x^2-y^2}}{y}}}}}\) ➜ এখানে,
\(\text{ভূমি}=y, \ \text{অতিভুজ}=x\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{x^2-y^2} \)
\(\therefore \sec^{-1}{\frac{x}{y}}=\tan^{-1}{\frac{\sqrt{x^2-y^2}}{y}}\)
\(=\sin{\cos^{-1}{\frac{\sqrt{x^2-y^2}}{y}}}\)
\(=\sin{\sin^{-1}{\frac{\sqrt{2y^2-x^2}}{y}}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{x^2-y^2}, \ \text{অতিভুজ}=y\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{y^2-(\sqrt{x^2-y^2})^2} \)
\(=\sqrt{y^2-x^2+y^2} \)
\(=\sqrt{2y^2-x^2} \)
\(\therefore \cos^{-1}{\frac{\sqrt{x^2-y^2}}{y}}=\sin^{-1}{\frac{\sqrt{2y^2-x^2}}{y}}\)
\(=\frac{\sqrt{2y^2-x^2}}{y}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\cos^{-1}{\tan{\tan^{-1}{\frac{\sqrt{x^2-y^2}}{y}}}}}\) ➜ এখানে,
\(\text{ভূমি}=y, \ \text{অতিভুজ}=x\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{x^2-y^2} \)
\(\therefore \sec^{-1}{\frac{x}{y}}=\tan^{-1}{\frac{\sqrt{x^2-y^2}}{y}}\)
\(=\sin{\cos^{-1}{\frac{\sqrt{x^2-y^2}}{y}}}\)
\(=\sin{\sin^{-1}{\frac{\sqrt{2y^2-x^2}}{y}}}\) ➜ এখানে,
\(\text{ভূমি}=\sqrt{x^2-y^2}, \ \text{অতিভুজ}=y\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{y^2-(\sqrt{x^2-y^2})^2} \)
\(=\sqrt{y^2-x^2+y^2} \)
\(=\sqrt{2y^2-x^2} \)
\(\therefore \cos^{-1}{\frac{\sqrt{x^2-y^2}}{y}}=\sin^{-1}{\frac{\sqrt{2y^2-x^2}}{y}}\)
\(=\frac{\sqrt{2y^2-x^2}}{y}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xi)\) \(\cos{\tan^{-1}{\sin{\cot^{-1}{x}}}}=\sqrt{\frac{1+x}{2+x^2}}\) কুঃ২০০২; বিআইটিঃ১৯৯৯-২০০০ ।
সমাধানঃ
\(L.S=\cos{\tan^{-1}{\sin{\cot^{-1}{x}}}}\)
\(=\cos{\tan^{-1}{\sin{\sin^{-1}{\frac{1}{\sqrt{1+x^2}}}}}}\) ➜ এখানে,
\(\text{ভূমি}=x, \ \text{লম্ব}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{1^2+x^2} \)
\(=\sqrt{1+x^2} \)
\(\therefore \cot^{-1}{x}=\sin^{-1}{\frac{1}{\sqrt{1+x^2}}}\)
\(=\cos{\tan^{-1}{\frac{1}{\sqrt{1+x^2}}}}\)
\(=\cos{\cos^{-1}{\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}}}\) ➜ এখানে,
\(\text{লম্ব}=1, \ \text{ভূমি}=\sqrt{1+x^2}\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2+(\sqrt{1+x^2})^2} \)
\(=\sqrt{1+1+x^2} \)
\(=\sqrt{2+x^2} \)
\(\therefore \tan^{-1}{\frac{1}{\sqrt{1+x^2}}}=\cos^{-1}{\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}}\)
\(=\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}\)
\(=\sqrt{\frac{1+x^2}{2+x^2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\tan^{-1}{\sin{\sin^{-1}{\frac{1}{\sqrt{1+x^2}}}}}}\) ➜ এখানে,
\(\text{ভূমি}=x, \ \text{লম্ব}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{1^2+x^2} \)
\(=\sqrt{1+x^2} \)
\(\therefore \cot^{-1}{x}=\sin^{-1}{\frac{1}{\sqrt{1+x^2}}}\)
\(=\cos{\tan^{-1}{\frac{1}{\sqrt{1+x^2}}}}\)
\(=\cos{\cos^{-1}{\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}}}\) ➜ এখানে,
\(\text{লম্ব}=1, \ \text{ভূমি}=\sqrt{1+x^2}\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2+(\sqrt{1+x^2})^2} \)
\(=\sqrt{1+1+x^2} \)
\(=\sqrt{2+x^2} \)
\(\therefore \tan^{-1}{\frac{1}{\sqrt{1+x^2}}}=\cos^{-1}{\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}}\)
\(=\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}\)
\(=\sqrt{\frac{1+x^2}{2+x^2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xii)\) \(\sec^2{(\tan^{-1}{4})}+\tan^2{(\sec^{-1}{3})}=25\) কুঃ২০১৩,২০০৬; রাঃ২০১৩;মাঃ২০১১; চুয়েটঃ২০১১-২০১২,২০১০-২০১১ ।
সমাধানঃ
\(L.S=\sec^2{(\tan^{-1}{4})}+\tan^2{(\sec^{-1}{3})}\)
\(=1+\tan^2{(\tan^{-1}{4})}+\sec^2{(\sec^{-1}{3})}-1\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
এবং \(\tan^2{A}=\sec^2{A}-1\)
\(=\left\{\tan{(\tan^{-1}{4})}\right\}^2+\left\{\sec{(\sec^{-1}{3})}\right\}^2\)
\(=\left\{4\right\}^2+\left\{3\right\}^2\)
\(=16+9\)
\(=25\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=1+\tan^2{(\tan^{-1}{4})}+\sec^2{(\sec^{-1}{3})}-1\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
এবং \(\tan^2{A}=\sec^2{A}-1\)
\(=\left\{\tan{(\tan^{-1}{4})}\right\}^2+\left\{\sec{(\sec^{-1}{3})}\right\}^2\)
\(=\left\{4\right\}^2+\left\{3\right\}^2\)
\(=16+9\)
\(=25\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xiii)\) \(\sin^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}=\frac{2}{9}\) রাঃ,চঃ২০০৭; ঢাঃ,যঃ,সিঃ,দিঃ২০১৮; বুটেক্সঃ২০০৯-২০১০ ।
সমাধানঃ
\(L.S=\sin^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\)
\(=1-\cos^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-1+\sin^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
এবং \(\cos^2{A}=1-\sin^2{A}\)
\(=-\cos^2{\left(\cos^{-1}{\frac{1}{3}}\right)}+\sin^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\)
\(=-\left\{\cos{\left(\cos^{-1}{\frac{1}{3}}\right)}\right\}^2+\left\{\sin{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\right\}^2\)
\(=-\left\{\frac{1}{3}\right\}^2+\left\{\frac{1}{\sqrt{3}}\right\}^2\)
\(=-\frac{1}{9}+\frac{1}{3}\)
\(=\frac{-1+3}{9}\)
\(=\frac{2}{9}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=1-\cos^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-1+\sin^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
এবং \(\cos^2{A}=1-\sin^2{A}\)
\(=-\cos^2{\left(\cos^{-1}{\frac{1}{3}}\right)}+\sin^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\)
\(=-\left\{\cos{\left(\cos^{-1}{\frac{1}{3}}\right)}\right\}^2+\left\{\sin{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\right\}^2\)
\(=-\left\{\frac{1}{3}\right\}^2+\left\{\frac{1}{\sqrt{3}}\right\}^2\)
\(=-\frac{1}{9}+\frac{1}{3}\)
\(=\frac{-1+3}{9}\)
\(=\frac{2}{9}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xiv)\) \(cosec^2{\left(\tan^{-1}{\frac{1}{2}}\right)}-3\sec^2{\left(\cot^{-1}{\sqrt{3}}\right)}=1\) চঃ২০০৩,২০০১; কুয়েটঃ২০০৮-২০০৯ ।
সমাধানঃ
\(L.S=cosec^2{\left(\tan^{-1}{\frac{1}{2}}\right)}-3\sec^2{\left(\cot^{-1}{\sqrt{3}}\right)}\)
\(=cosec^2{\left(\tan^{-1}{2}\right)}-3\sec^2{\left(\cot^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
এবং \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=1+\cot^2{\left(\cot^{-1}{2}\right)}-3\left\{1+\tan^2{\left(\tan^{-1}{\frac{1}{\sqrt{3}}}\right)}\right\}\)
\(=1+\cot^2{\left(\cot^{-1}{2}\right)}-3-3\tan^2{\left(\tan^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because cosec^2{A}=1+\cot^2{A}\)
এবং \(\sec^2{A}=1+\tan^2{A}\)
\(=-2+\cot^2{\left(\cot^{-1}{2}\right)}-3\tan^2{\left(\tan^{-1}{\frac{1}{\sqrt{3}}}\right)}\)
\(=-2+\left\{\cot{\left(\cot^{-1}{2}\right)}\right\}^2-3\left\{\tan{\left(\tan^{-1}{\frac{1}{\sqrt{3}}}\right)}\right\}^2\)
\(=-2+\left\{2\right\}^2-3\left\{\frac{1}{\sqrt{3}}\right\}^2\)
\(=-2+4-3\left\{\frac{1}{3}\right\}\)
\(=-2+4-1\)
\(=-3+4\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=cosec^2{\left(\tan^{-1}{2}\right)}-3\sec^2{\left(\cot^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
এবং \(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=1+\cot^2{\left(\cot^{-1}{2}\right)}-3\left\{1+\tan^2{\left(\tan^{-1}{\frac{1}{\sqrt{3}}}\right)}\right\}\)
\(=1+\cot^2{\left(\cot^{-1}{2}\right)}-3-3\tan^2{\left(\tan^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because cosec^2{A}=1+\cot^2{A}\)
এবং \(\sec^2{A}=1+\tan^2{A}\)
\(=-2+\cot^2{\left(\cot^{-1}{2}\right)}-3\tan^2{\left(\tan^{-1}{\frac{1}{\sqrt{3}}}\right)}\)
\(=-2+\left\{\cot{\left(\cot^{-1}{2}\right)}\right\}^2-3\left\{\tan{\left(\tan^{-1}{\frac{1}{\sqrt{3}}}\right)}\right\}^2\)
\(=-2+\left\{2\right\}^2-3\left\{\frac{1}{\sqrt{3}}\right\}^2\)
\(=-2+4-3\left\{\frac{1}{3}\right\}\)
\(=-2+4-1\)
\(=-3+4\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xv)\) \(\sec^2{\left(\cot^{-1}{3}\right)}+cosec^2{\left(\tan^{-1}{2}\right)}=2\frac{13}{36}\) বঃ২০০৯; ডুয়েটঃ২০১৫-২০১৬ ।
সমাধানঃ
\(L.S=\sec^2{\left(\cot^{-1}{3}\right)}+cosec^2{\left(\tan^{-1}{2}\right)}\)
\(=\sec^2{\left(\tan^{-1}{\frac{1}{3}}\right)}+cosec^2{\left(\cot^{-1}{\frac{1}{2}}\right)}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং \(\tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(=1+\tan^2{\left(\tan^{-1}{\frac{1}{3}}\right)}+1+\cot^2{\left(\cot^{-1}{\frac{1}{2}}\right)}\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
এবং \(cosec^2{A}=1+\cot^2{A}\)
\(=2+\tan^2{\left(\tan^{-1}{\frac{1}{3}}\right)}+\cot^2{\left(\cot^{-1}{\frac{1}{2}}\right)}\)
\(=2+\left\{\tan{\left(\tan^{-1}{\frac{1}{3}}\right)}\right\}^2+\left\{\cot{\left(\cot^{-1}{\frac{1}{2}}\right)}\right\}^2\)
\(=2+\left\{\frac{1}{3}\right\}^2+\left\{\frac{1}{2}\right\}^2\)
\(=2+\frac{1}{9}+\frac{1}{4}\)
\(=\frac{72+4+9}{36}\)
\(=\frac{85}{36}\)
\(=2\frac{13}{36}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sec^2{\left(\tan^{-1}{\frac{1}{3}}\right)}+cosec^2{\left(\cot^{-1}{\frac{1}{2}}\right)}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
এবং \(\tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(=1+\tan^2{\left(\tan^{-1}{\frac{1}{3}}\right)}+1+\cot^2{\left(\cot^{-1}{\frac{1}{2}}\right)}\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
এবং \(cosec^2{A}=1+\cot^2{A}\)
\(=2+\tan^2{\left(\tan^{-1}{\frac{1}{3}}\right)}+\cot^2{\left(\cot^{-1}{\frac{1}{2}}\right)}\)
\(=2+\left\{\tan{\left(\tan^{-1}{\frac{1}{3}}\right)}\right\}^2+\left\{\cot{\left(\cot^{-1}{\frac{1}{2}}\right)}\right\}^2\)
\(=2+\left\{\frac{1}{3}\right\}^2+\left\{\frac{1}{2}\right\}^2\)
\(=2+\frac{1}{9}+\frac{1}{4}\)
\(=\frac{72+4+9}{36}\)
\(=\frac{85}{36}\)
\(=2\frac{13}{36}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xvi)\) \(\cos{\left(2\tan^{-1}{\frac{1}{7}}\right)}=\sin{\left(4\tan^{-1}{\frac{1}{2}}\right)}\) বঃ২০১৫; রাঃ২০১৩ ।
সমাধানঃ
\(L.S=\cos{\left(2\tan^{-1}{\frac{1}{7}}\right)}\)
\(=\cos{\left\{\cos^{-1}{\frac{1-\left(\frac{1}{7}\right)^2}{1+\left(\frac{1}{7}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\frac{1-\frac{1}{49}}{1+\frac{1}{49}}\)
\(=\frac{49-1}{49+1}\) ➜ লব ও হরকে \(49\) দ্বারা গুন করে,
\(=\frac{48}{50}\)
\(=\frac{24}{25}\)
আবার,
\(R.S=\sin{\left(4\tan^{-1}{\frac{1}{2}}\right)}\)
\(=\sin{\left(2\times2\tan^{-1}{\frac{1}{2}}\right)}\)
\(=\sin{\left(2\tan^{-1}{\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\sin{\left(2\tan^{-1}{\frac{1}{1-\frac{1}{4}}}\right)}\)
\(=\sin{\left(2\tan^{-1}{\frac{4}{4-1}}\right)}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\sin{\left(2\tan^{-1}{\frac{4}{3}}\right)}\)
\(=\sin{\left(\sin^{-1}{\frac{2\times\frac{4}{3}}{1+\left(\frac{4}{3}\right)^2}}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
\(=\frac{\frac{8}{3}}{1+\frac{16}{9}}\)
\(=\frac{24}{9+16}\) ➜ লব ও হরকে \(9\) দ্বারা গুন করে,
\(=\frac{24}{25}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\left\{\cos^{-1}{\frac{1-\left(\frac{1}{7}\right)^2}{1+\left(\frac{1}{7}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\frac{1-\frac{1}{49}}{1+\frac{1}{49}}\)
\(=\frac{49-1}{49+1}\) ➜ লব ও হরকে \(49\) দ্বারা গুন করে,
\(=\frac{48}{50}\)
\(=\frac{24}{25}\)
আবার,
\(R.S=\sin{\left(4\tan^{-1}{\frac{1}{2}}\right)}\)
\(=\sin{\left(2\times2\tan^{-1}{\frac{1}{2}}\right)}\)
\(=\sin{\left(2\tan^{-1}{\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\sin{\left(2\tan^{-1}{\frac{1}{1-\frac{1}{4}}}\right)}\)
\(=\sin{\left(2\tan^{-1}{\frac{4}{4-1}}\right)}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\sin{\left(2\tan^{-1}{\frac{4}{3}}\right)}\)
\(=\sin{\left(\sin^{-1}{\frac{2\times\frac{4}{3}}{1+\left(\frac{4}{3}\right)^2}}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
\(=\frac{\frac{8}{3}}{1+\frac{16}{9}}\)
\(=\frac{24}{9+16}\) ➜ লব ও হরকে \(9\) দ্বারা গুন করে,
\(=\frac{24}{25}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xvii)\) \(\sin^{-1}{(-\cos{x})}+\sin^{-1}{(\cos{3x})}=-2x\) সিঃ২০৯; ঢাঃ২০০৩ ।
সমাধানঃ
\(L.S=\sin^{-1}{(-\cos{x})}+\sin^{-1}{(\cos{3x})}\)
\(=-\sin^{-1}{(\cos{x})}+\sin^{-1}{(\cos{3x})}\)
\(=-\sin^{-1}{\left\{\sin{\left(\frac{\pi}{2}-x\right)}\right\}}+\sin^{-1}{\left\{\sin{\left(\frac{\pi}{2}-3x\right)}\right\}}\) ➜ \(\because \cos{A}=\sin{\left(\frac{\pi}{2}-A\right)}\)
\(=-\frac{\pi}{2}+x+\frac{\pi}{2}-3x\)
\(=-2x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=-\sin^{-1}{(\cos{x})}+\sin^{-1}{(\cos{3x})}\)
\(=-\sin^{-1}{\left\{\sin{\left(\frac{\pi}{2}-x\right)}\right\}}+\sin^{-1}{\left\{\sin{\left(\frac{\pi}{2}-3x\right)}\right\}}\) ➜ \(\because \cos{A}=\sin{\left(\frac{\pi}{2}-A\right)}\)
\(=-\frac{\pi}{2}+x+\frac{\pi}{2}-3x\)
\(=-2x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xviii)\) \(\cos^{-1}{\sqrt{\frac{2}{3}}}-\cos^{-1}{\left(\frac{\sqrt{6}+1}{2\sqrt{3}}\right)}=\frac{\pi}{6}\) কুঃ২০০২ ।
সমাধানঃ
\(L.S=\cos^{-1}{\sqrt{\frac{2}{3}}}-\cos^{-1}{\left(\frac{\sqrt{6}+1}{2\sqrt{3}}\right)}\)
\(=\cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}-\cos^{-1}{\left(\frac{\sqrt{6}+1}{2\sqrt{3}}\right)}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}}{\sqrt{3}}\times\frac{\sqrt{6}+1}{2\sqrt{3}}+\sqrt{\left\{1-\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2\right\}\left\{1-\left(\frac{\sqrt{6}+1}{2\sqrt{3}}\right)^2\right\}}\right]}\) ➜ \(\because \cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\left\{xy+\sqrt{(1-x^2)(1-y^2)}\right\}}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\left\{1-\frac{2}{3}\right\}\left\{1-\frac{(\sqrt{6}+1)^2}{12}\right\}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{3-2}{3}\times\frac{12-(\sqrt{6}+1)^2}{12}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{1}{3}\times\frac{12-6-2\sqrt{6}-1}{12}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{12-7-2\sqrt{6}}{36}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{5-2\sqrt{6}}{36}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{(\sqrt{3})^2-2\sqrt{3}\sqrt{2}+(\sqrt{2})^2}{36}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{(\sqrt{3}-\sqrt{2})^2}{36}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{12}+\sqrt{2}}{6}+\frac{\sqrt{3}-\sqrt{2}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{12}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{4\times3}+\sqrt{3}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{2\sqrt{3}+\sqrt{3}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{3\sqrt{3}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{3}}{2}\right]}\)
\(=\cos^{-1}{\left[\cos{\frac{\pi}{6}}\right]}\) ➜ \(\because \frac{\sqrt{3}}{2}=\cos{\frac{\pi}{6}}\)
\(=\frac{\pi}{6}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^{-1}{\frac{\sqrt{2}}{\sqrt{3}}}-\cos^{-1}{\left(\frac{\sqrt{6}+1}{2\sqrt{3}}\right)}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}}{\sqrt{3}}\times\frac{\sqrt{6}+1}{2\sqrt{3}}+\sqrt{\left\{1-\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2\right\}\left\{1-\left(\frac{\sqrt{6}+1}{2\sqrt{3}}\right)^2\right\}}\right]}\) ➜ \(\because \cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\left\{xy+\sqrt{(1-x^2)(1-y^2)}\right\}}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\left\{1-\frac{2}{3}\right\}\left\{1-\frac{(\sqrt{6}+1)^2}{12}\right\}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{3-2}{3}\times\frac{12-(\sqrt{6}+1)^2}{12}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{1}{3}\times\frac{12-6-2\sqrt{6}-1}{12}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{12-7-2\sqrt{6}}{36}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{5-2\sqrt{6}}{36}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{(\sqrt{3})^2-2\sqrt{3}\sqrt{2}+(\sqrt{2})^2}{36}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{2}(\sqrt{6}+1)}{6}+\sqrt{\frac{(\sqrt{3}-\sqrt{2})^2}{36}}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{12}+\sqrt{2}}{6}+\frac{\sqrt{3}-\sqrt{2}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{12}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{4\times3}+\sqrt{3}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{2\sqrt{3}+\sqrt{3}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{3\sqrt{3}}{6}\right]}\)
\(=\cos^{-1}{\left[\frac{\sqrt{3}}{2}\right]}\)
\(=\cos^{-1}{\left[\cos{\frac{\pi}{6}}\right]}\) ➜ \(\because \frac{\sqrt{3}}{2}=\cos{\frac{\pi}{6}}\)
\(=\frac{\pi}{6}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xix)\) \(\sin^{-1}{(\sqrt{2}\sin{\theta})}+\sin^{-1}{\left(\sqrt{\cos{2\theta}}\right)}=\frac{\pi}{2}\)রাঃ২০১৪,২০০৯; দিঃ২০১৪; বঃ২০১৩; চঃ২০১২,২০০৮; সিঃ২০১২; যঃ, কুঃ২০১১ ।
সমাধানঃ
\(L.S=\sin^{-1}{\left(\sqrt{2}\sin{\theta}\right)}+\sin^{-1}{\left(\sqrt{\cos{2\theta}}\right)}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{1-(\sqrt{\cos{2\theta}})^2}+\sqrt{\cos{2\theta}}\sqrt{1-(\sqrt{2}\sin{\theta})^2}\right\}}\) ➜ \(\because \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{\left\{x\sqrt{1-y^2}+y\sqrt{1-x^2}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{1-\cos{2\theta}}+\sqrt{\cos{2\theta}}\sqrt{1-2\sin^2{\theta}}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{2\sin^2{\theta}}+\sqrt{\cos{2\theta}}\sqrt{\cos{2\theta}}\right\}}\) ➜ \(\because 1-\cos{2A}=2\sin^2{A}\)
এবং \(1-2\sin^2{A}=\cos{2A}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{2}\sin{\theta}+\cos{2\theta}\right\}}\)
\(=\sin^{-1}{\left\{2\sin^2{\theta}+\cos{2\theta}\right\}}\)
\(=\sin^{-1}{\left\{1-\cos{2\theta}+\cos{2\theta}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sin^{-1}{\left\{1\right\}}\)
\(=\sin^{-1}{\left\{\sin{\frac{\pi}{2}}\right\}}\) ➜ \(\because 1=\sin{\frac{\pi}{2}}\)
\(=\frac{\pi}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{1-(\sqrt{\cos{2\theta}})^2}+\sqrt{\cos{2\theta}}\sqrt{1-(\sqrt{2}\sin{\theta})^2}\right\}}\) ➜ \(\because \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{\left\{x\sqrt{1-y^2}+y\sqrt{1-x^2}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{1-\cos{2\theta}}+\sqrt{\cos{2\theta}}\sqrt{1-2\sin^2{\theta}}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{2\sin^2{\theta}}+\sqrt{\cos{2\theta}}\sqrt{\cos{2\theta}}\right\}}\) ➜ \(\because 1-\cos{2A}=2\sin^2{A}\)
এবং \(1-2\sin^2{A}=\cos{2A}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{2}\sin{\theta}+\cos{2\theta}\right\}}\)
\(=\sin^{-1}{\left\{2\sin^2{\theta}+\cos{2\theta}\right\}}\)
\(=\sin^{-1}{\left\{1-\cos{2\theta}+\cos{2\theta}\right\}}\) ➜ \(\because 2\sin^2{A}=1-\cos{2A}\)
\(=\sin^{-1}{\left\{1\right\}}\)
\(=\sin^{-1}{\left\{\sin{\frac{\pi}{2}}\right\}}\) ➜ \(\because 1=\sin{\frac{\pi}{2}}\)
\(=\frac{\pi}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xx)\) \(\tan^{-1}{(\cot{3x})}+\tan^{-1}{(-\cot{5x})}=2x\)যঃ২০১৭ ।
সমাধানঃ
\(L.S=\tan^{-1}{(\cot{3x})}+\tan^{-1}{(-\cot{5x})}\)
\(=\tan^{-1}{(\cot{3x})}-\tan^{-1}{(\cot{5x})}\)
\(=\tan^{-1}{\left\{\tan{\left(\frac{\pi}{2}-3x\right)}\right\}}-\tan^{-1}{\left\{\tan{\left(\frac{\pi}{2}-5x\right)}\right\}}\) ➜ \(\because \cot{A}=\tan{\left(\frac{\pi}{2}-A\right)}\)
\(=\frac{\pi}{2}-3x-\left(\frac{\pi}{2}-5x\right)\)
\(=\frac{\pi}{2}-3x-\frac{\pi}{2}+5x\)
\(=2x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{(\cot{3x})}-\tan^{-1}{(\cot{5x})}\)
\(=\tan^{-1}{\left\{\tan{\left(\frac{\pi}{2}-3x\right)}\right\}}-\tan^{-1}{\left\{\tan{\left(\frac{\pi}{2}-5x\right)}\right\}}\) ➜ \(\because \cot{A}=\tan{\left(\frac{\pi}{2}-A\right)}\)
\(=\frac{\pi}{2}-3x-\left(\frac{\pi}{2}-5x\right)\)
\(=\frac{\pi}{2}-3x-\frac{\pi}{2}+5x\)
\(=2x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxi)\) \(\cot^{-1}{(\tan{2x})}+\cot^{-1}{(-\tan{3x})}=x\)বঃ২০১১ ।
সমাধানঃ
\(L.S=\cot^{-1}{(\tan{2x})}+\cot^{-1}{(-\tan{3x})}\)
\(=\cot^{-1}{(\tan{2x})}-\cot^{-1}{(\tan{3x})}\)
\(=\cot^{-1}{\left\{\cot{\left(\frac{\pi}{2}-2x\right)}\right\}}-\cot^{-1}{\left\{\cot{\left(\frac{\pi}{2}-3x\right)}\right\}}\) ➜ \(\because \tan{A}=\cot{\left(\frac{\pi}{2}-A\right)}\)
\(=\frac{\pi}{2}-2x-\left(\frac{\pi}{2}-3x\right)\)
\(=\frac{\pi}{2}-2x-\frac{\pi}{2}+3x\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cot^{-1}{(\tan{2x})}-\cot^{-1}{(\tan{3x})}\)
\(=\cot^{-1}{\left\{\cot{\left(\frac{\pi}{2}-2x\right)}\right\}}-\cot^{-1}{\left\{\cot{\left(\frac{\pi}{2}-3x\right)}\right\}}\) ➜ \(\because \tan{A}=\cot{\left(\frac{\pi}{2}-A\right)}\)
\(=\frac{\pi}{2}-2x-\left(\frac{\pi}{2}-3x\right)\)
\(=\frac{\pi}{2}-2x-\frac{\pi}{2}+3x\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxii)\) \(\tan^{-1}{\left(\frac{1}{2}\tan{2A}\right)}+\tan^{-1}{(\cot{A})}+\tan^{-1}{(\cot^3{A})}=0\)যঃ২০০৫ ।
সমাধানঃ
\(L.S=\tan^{-1}{\left(\frac{1}{2}\tan{2A}\right)}+\tan^{-1}{(\cot{A})}+\tan^{-1}{(\cot^3{A})}\)
\(=\tan^{-1}{\left(\frac{1}{2}\times\frac{2\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\cot{A}+\cot^3{A}}{1-\cot{A}\times\cot^3{A}}\right)}\) ➜ \(\because \tan{2x}=\frac{2\tan{x}}{1-\tan^2{x}}\)
এবং \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\cot{A}+\cot^3{A}}{1-\cot^4{A}}\right)}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left\{\frac{\cot{A}(1+\cot^2{A})}{(1+\cot^2{A})(1-\cot^2{A})}\right\}}\) ➜ \(\because a^2-b^2=(a+b)(a-b)\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\cot{A}}{1-\cot^2{A}}\right)}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\frac{1}{\tan{A}}}{1-\frac{1}{\tan^2{A}}}\right)}\) ➜ \(\because \cot{x}=\frac{1}{\tan{x}}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\tan{A}}{\tan^2{A}-1}\right)}\) ➜ শেষ পদের
লব ও হরকে \(\tan^2{A}\) দ্বারা গুন করে।
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left\{\frac{\tan{A}}{-(1-\tan^2{A})}\right\}}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}-\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{1}{2}\times\frac{2\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\cot{A}+\cot^3{A}}{1-\cot{A}\times\cot^3{A}}\right)}\) ➜ \(\because \tan{2x}=\frac{2\tan{x}}{1-\tan^2{x}}\)
এবং \(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\cot{A}+\cot^3{A}}{1-\cot^4{A}}\right)}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left\{\frac{\cot{A}(1+\cot^2{A})}{(1+\cot^2{A})(1-\cot^2{A})}\right\}}\) ➜ \(\because a^2-b^2=(a+b)(a-b)\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\cot{A}}{1-\cot^2{A}}\right)}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\frac{1}{\tan{A}}}{1-\frac{1}{\tan^2{A}}}\right)}\) ➜ \(\because \cot{x}=\frac{1}{\tan{x}}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left(\frac{\tan{A}}{\tan^2{A}-1}\right)}\) ➜ শেষ পদের
লব ও হরকে \(\tan^2{A}\) দ্বারা গুন করে।
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}+\tan^{-1}{\left\{\frac{\tan{A}}{-(1-\tan^2{A})}\right\}}\)
\(=\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}-\tan^{-1}{\left(\frac{\tan{A}}{1-\tan^2{A}}\right)}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxiii)\) \(2\tan^{-1}{\left(\sqrt{\frac{a-b}{a+b}}\tan{\frac{\theta}{2}}\right)}=\cos^{-1}{\frac{b+a\cos{\theta}}{a+b\cos{\theta}}}\)বঃ২০১৬; কুঃ২০১৫,২০১১,২০০৮; ঢাঃ২০১৪,২০০৫; সিঃ২০১৩; দিঃ,যঃ২০০৯ ।
সমাধানঃ
\(L.S=2\tan^{-1}{\left(\sqrt{\frac{a-b}{a+b}}\tan{\frac{\theta}{2}}\right)}\)
\(=\cos^{-1}{\left\{\frac{1-\left(\sqrt{\frac{a-b}{a+b}}\tan{\frac{\theta}{2}}\right)^2}{1+\left(\sqrt{\frac{a-b}{a+b}}\tan{\frac{\theta}{2}}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\cos^{-1}{\left\{\frac{1-\frac{a-b}{a+b}\tan^2{\frac{\theta}{2}}}{1+\frac{a-b}{a+b}\tan^2{\frac{\theta}{2}}}\right\}}\)
\(=\cos^{-1}{\left\{\frac{(a+b)-(a-b)\tan^2{\frac{\theta}{2}}}{(a+b)+(a-b)\tan^2{\frac{\theta}{2}}}\right\}}\) ➜ লব ও হরকে \((a+b)\) দ্বারা গুন করে।
\(=\cos^{-1}{\left\{\frac{a+b-a\tan^2{\frac{\theta}{2}}+b\tan^2{\frac{\theta}{2}}}{a+b+a\tan^2{\frac{\theta}{2}}-b\tan^2{\frac{\theta}{2}}}\right\}}\)
\(=\cos^{-1}{\left\{\frac{a\left(1-\tan^2{\frac{\theta}{2}}\right)+b\left(1+\tan^2{\frac{\theta}{2}}\right)}{a\left(1+\tan^2{\frac{\theta}{2}}\right)+b\left(1-\tan^2{\frac{\theta}{2}}\right)}\right\}}\)
\(=\cos^{-1}{\left\{\frac{a\frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}+b}{a+b\frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}}\right\}}\) ➜ লব ও হরকে \(\left(1+\tan^2{\frac{\theta}{2}}\right)\) দ্বারা ভাগ করে।
\(=\cos^{-1}{\left\{\frac{a\cos{\theta}+b}{a+b\cos{\theta}}\right\}}\) ➜ \(\because \frac{1-\tan^2{\frac{x}{2}}}{1+\tan^2{\frac{x}{2}}}=\cos{x}\)
\(=\cos^{-1}{\left\{\frac{b+a\cos{\theta}}{a+b\cos{\theta}}\right\}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^{-1}{\left\{\frac{1-\left(\sqrt{\frac{a-b}{a+b}}\tan{\frac{\theta}{2}}\right)^2}{1+\left(\sqrt{\frac{a-b}{a+b}}\tan{\frac{\theta}{2}}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\cos^{-1}{\left\{\frac{1-\frac{a-b}{a+b}\tan^2{\frac{\theta}{2}}}{1+\frac{a-b}{a+b}\tan^2{\frac{\theta}{2}}}\right\}}\)
\(=\cos^{-1}{\left\{\frac{(a+b)-(a-b)\tan^2{\frac{\theta}{2}}}{(a+b)+(a-b)\tan^2{\frac{\theta}{2}}}\right\}}\) ➜ লব ও হরকে \((a+b)\) দ্বারা গুন করে।
\(=\cos^{-1}{\left\{\frac{a+b-a\tan^2{\frac{\theta}{2}}+b\tan^2{\frac{\theta}{2}}}{a+b+a\tan^2{\frac{\theta}{2}}-b\tan^2{\frac{\theta}{2}}}\right\}}\)
\(=\cos^{-1}{\left\{\frac{a\left(1-\tan^2{\frac{\theta}{2}}\right)+b\left(1+\tan^2{\frac{\theta}{2}}\right)}{a\left(1+\tan^2{\frac{\theta}{2}}\right)+b\left(1-\tan^2{\frac{\theta}{2}}\right)}\right\}}\)
\(=\cos^{-1}{\left\{\frac{a\frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}+b}{a+b\frac{1-\tan^2{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}}}\right\}}\) ➜ লব ও হরকে \(\left(1+\tan^2{\frac{\theta}{2}}\right)\) দ্বারা ভাগ করে।
\(=\cos^{-1}{\left\{\frac{a\cos{\theta}+b}{a+b\cos{\theta}}\right\}}\) ➜ \(\because \frac{1-\tan^2{\frac{x}{2}}}{1+\tan^2{\frac{x}{2}}}=\cos{x}\)
\(=\cos^{-1}{\left\{\frac{b+a\cos{\theta}}{a+b\cos{\theta}}\right\}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxiv)\) \(2\tan^{-1}{\left(\sqrt{\frac{a}{b}}\tan{\frac{\theta}{2}}\right)}=\sin^{-1}{\left\{\frac{2\sqrt{ab}\sin{\theta}}{(b+a)+(b-a)\cos{\theta}}\right\}}\)সমাধানঃ
\(L.S=2\tan^{-1}{\left(\sqrt{\frac{a}{b}}\tan{\frac{\theta}{2}}\right)}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{\frac{a}{b}}\tan{\frac{\theta}{2}}}{1+\left(\sqrt{\frac{a}{b}}\tan{\frac{\theta}{2}}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
\(=\sin^{-1}{\left\{\frac{\frac{2\sqrt{a}}{\sqrt{b}}\tan{\frac{\theta}{2}}}{1+\frac{a}{b}\tan^2{\frac{\theta}{2}}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{a}\sqrt{b}\tan{\frac{\theta}{2}}}{b+a\tan^2{\frac{\theta}{2}}}\right\}}\) ➜ লব ও হরকে \(b\) দ্বারা গুন করে।
\(=\sin^{-1}{\left\{\frac{2\sqrt{a}\sqrt{b}\times\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}{b+a\times\frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{a}\sqrt{b}\times2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}{b\times2\cos^2{\frac{\theta}{2}}+a\times2\sin^2{\frac{\theta}{2}}}\right\}}\) ➜ লব ও হরকে \(2\cos^2{\frac{\theta}{2}}\) দ্বারা গুন করে।
\(=\sin^{-1}{\left\{\frac{2\sqrt{ab}\sin{\theta}}{b(1+\cos{\theta})+a(1-\cos{\theta})}\right\}}\) ➜ \(\because 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(2\cos^2{\frac{A}{2}}=1+\cos{A}\)
এবং \(2\sin^2{\frac{A}{2}}=1-\cos{A}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{ab}\sin{\theta}}{b+b\cos{\theta}+a-a\cos{\theta}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{ab}\sin{\theta}}{(b+a)+(b-a)\cos{\theta}}\right\}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin^{-1}{\left\{\frac{2\sqrt{\frac{a}{b}}\tan{\frac{\theta}{2}}}{1+\left(\sqrt{\frac{a}{b}}\tan{\frac{\theta}{2}}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
\(=\sin^{-1}{\left\{\frac{\frac{2\sqrt{a}}{\sqrt{b}}\tan{\frac{\theta}{2}}}{1+\frac{a}{b}\tan^2{\frac{\theta}{2}}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{a}\sqrt{b}\tan{\frac{\theta}{2}}}{b+a\tan^2{\frac{\theta}{2}}}\right\}}\) ➜ লব ও হরকে \(b\) দ্বারা গুন করে।
\(=\sin^{-1}{\left\{\frac{2\sqrt{a}\sqrt{b}\times\frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}}}{b+a\times\frac{\sin^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{a}\sqrt{b}\times2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}}}{b\times2\cos^2{\frac{\theta}{2}}+a\times2\sin^2{\frac{\theta}{2}}}\right\}}\) ➜ লব ও হরকে \(2\cos^2{\frac{\theta}{2}}\) দ্বারা গুন করে।
\(=\sin^{-1}{\left\{\frac{2\sqrt{ab}\sin{\theta}}{b(1+\cos{\theta})+a(1-\cos{\theta})}\right\}}\) ➜ \(\because 2\sin{\frac{A}{2}}\cos{\frac{A}{2}}=\sin{A}\)
\(2\cos^2{\frac{A}{2}}=1+\cos{A}\)
এবং \(2\sin^2{\frac{A}{2}}=1-\cos{A}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{ab}\sin{\theta}}{b+b\cos{\theta}+a-a\cos{\theta}}\right\}}\)
\(=\sin^{-1}{\left\{\frac{2\sqrt{ab}\sin{\theta}}{(b+a)+(b-a)\cos{\theta}}\right\}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxv)\) \(\tan{\left\{\frac{1}{2}\sin^{-1}{\frac{2x}{1+x^2}}+\frac{1}{2}\cos^{-1}{\frac{1-x^2}{1+x^2}}\right\}}=\frac{2x}{1-x^2}\) কুঃ২০১৪ ।
সমাধানঃ
\(L.S=\tan{\left\{\frac{1}{2}\sin^{-1}{\frac{2x}{1+x^2}}+\frac{1}{2}\cos^{-1}{\frac{1-x^2}{1+x^2}}\right\}}\)
\(=\tan{\left\{\frac{1}{2}\times2\tan^{-1}{x}+\frac{1}{2}\times2\tan^{-1}{x}\right\}}\) ➜ \(\because \sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
\(=\tan{\left\{\tan^{-1}{x}+\tan^{-1}{x}\right\}}\)
\(=\tan{\left\{2\tan^{-1}{x}\right\}}\)
\(=\tan{\left\{\tan^{-1}{\frac{2x}{1-x^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\frac{2x}{1-x^2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{\left\{\frac{1}{2}\times2\tan^{-1}{x}+\frac{1}{2}\times2\tan^{-1}{x}\right\}}\) ➜ \(\because \sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
\(=\tan{\left\{\tan^{-1}{x}+\tan^{-1}{x}\right\}}\)
\(=\tan{\left\{2\tan^{-1}{x}\right\}}\)
\(=\tan{\left\{\tan^{-1}{\frac{2x}{1-x^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\frac{2x}{1-x^2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxvi)\) \(\tan{(2\tan^{-1}{x})}=2\tan{(\tan^{-1}{x}+\tan^{-1}{x^3})}\) চঃ২০১৪,২০০৯; কুঃ২০০৭; রাঃ২০০৬; বঃ২০০৫ ।
সমাধানঃ
\(L.S=\tan{(2\tan^{-1}{x})}\)
\(=\tan{\left\{\tan^{-1}{\frac{2x}{1-x^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=\tan^{-1}{\frac{2A}{1-A^2}}\)
\(=\frac{2x}{1-x^2}\)
আবার,
\(R.S=2\tan{(\tan^{-1}{x}+\tan^{-1}{x^3})}\)
\(=2\tan{\left(\tan^{-1}{\frac{x+x^3}{1-x.x^3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=2\frac{x+x^3}{1-x.x^3}\)
\(=2\frac{x(1+x^2)}{1-x^4}\)
\(=2\frac{x(1+x^2)}{(1+x^2)(1-x^2)}\)➜ \(\because a^2-b^2=(a+b)(a-b)\)
\(=\frac{2x}{1-x^2}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{\left\{\tan^{-1}{\frac{2x}{1-x^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=\tan^{-1}{\frac{2A}{1-A^2}}\)
\(=\frac{2x}{1-x^2}\)
আবার,
\(R.S=2\tan{(\tan^{-1}{x}+\tan^{-1}{x^3})}\)
\(=2\tan{\left(\tan^{-1}{\frac{x+x^3}{1-x.x^3}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=2\frac{x+x^3}{1-x.x^3}\)
\(=2\frac{x(1+x^2)}{1-x^4}\)
\(=2\frac{x(1+x^2)}{(1+x^2)(1-x^2)}\)➜ \(\because a^2-b^2=(a+b)(a-b)\)
\(=\frac{2x}{1-x^2}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxvii)\) \(\tan^{-1}{(\sqrt{2}+1)\tan{\alpha}}-\tan^{-1}{(\sqrt{2}-1)\tan{\alpha}}=\tan^{-1}{(\sin{2\alpha})}\)দিঃ২০১৩; চঃ২০১০ ।
সমাধানঃ
\(L.S=\tan^{-1}{(\sqrt{2}+1)\tan{\alpha}}-\tan^{-1}{(\sqrt{2}-1)\tan{\alpha}}\)
\(=\tan^{-1}{\left\{\frac{(\sqrt{2}+1)\tan{\alpha}-(\sqrt{2}-1)\tan{\alpha}}{1+(\sqrt{2}+1)\tan{\alpha}(\sqrt{2}-1)\tan{\alpha}}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\left\{\frac{\sqrt{2}\tan{\alpha}+\tan{\alpha}-\sqrt{2}\tan{\alpha}+\tan{\alpha}}{1+\{(\sqrt{2})^2-1^2\}\tan^2{\alpha}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\tan{\alpha}}{1+\{2-1\}\tan^2{\alpha}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\tan{\alpha}}{1+\tan^2{\alpha}}\right\}}\)
\(=\tan^{-1}{(\sin{2\alpha})}\) ➜ \(\because \frac{2\tan{x}}{1+\tan^2{x}}=\sin{2x}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left\{\frac{(\sqrt{2}+1)\tan{\alpha}-(\sqrt{2}-1)\tan{\alpha}}{1+(\sqrt{2}+1)\tan{\alpha}(\sqrt{2}-1)\tan{\alpha}}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\left\{\frac{\sqrt{2}\tan{\alpha}+\tan{\alpha}-\sqrt{2}\tan{\alpha}+\tan{\alpha}}{1+\{(\sqrt{2})^2-1^2\}\tan^2{\alpha}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\tan{\alpha}}{1+\{2-1\}\tan^2{\alpha}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\tan{\alpha}}{1+\tan^2{\alpha}}\right\}}\)
\(=\tan^{-1}{(\sin{2\alpha})}\) ➜ \(\because \frac{2\tan{x}}{1+\tan^2{x}}=\sin{2x}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxviii)\) \(\tan^{-1}{(2+\sqrt{3})\tan{x}}+\tan^{-1}{(2-\sqrt{3})\tan{x}}=\tan^{-1}{(2\tan{2x})}\)সিঃ২০১৯ ।
সমাধানঃ
\(L.S=\tan^{-1}{(2+\sqrt{3})\tan{x}}+\tan^{-1}{(2-\sqrt{3})\tan{x}}\)
\(=\tan^{-1}{\left\{\frac{(2+\sqrt{3})\tan{x}+(2-\sqrt{3})\tan{x}}{1-(2+\sqrt{3})\tan{x}(2-\sqrt{3})\tan{x}}\right\}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\left[\frac{2\tan{x}+\sqrt{3}\tan{x}+2\tan{x}-\sqrt{3}\tan{x}}{1-\{2^2-(\sqrt{3})^2\}\tan^2{x}}\right]}\)
\(=\tan^{-1}{\left[\frac{4\tan{x}}{1-\{4-3\}\tan^2{x}}\right]}\)
\(=\tan^{-1}{\left(2\frac{2\tan{x}}{1-\tan^2{x}}\right)}\)
\(=\tan^{-1}{\left(2\tan{2x}\right)}\) ➜ \(\because \frac{2\tan{A}}{1-\tan^2{A}}=\tan{2A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left\{\frac{(2+\sqrt{3})\tan{x}+(2-\sqrt{3})\tan{x}}{1-(2+\sqrt{3})\tan{x}(2-\sqrt{3})\tan{x}}\right\}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\left[\frac{2\tan{x}+\sqrt{3}\tan{x}+2\tan{x}-\sqrt{3}\tan{x}}{1-\{2^2-(\sqrt{3})^2\}\tan^2{x}}\right]}\)
\(=\tan^{-1}{\left[\frac{4\tan{x}}{1-\{4-3\}\tan^2{x}}\right]}\)
\(=\tan^{-1}{\left(2\frac{2\tan{x}}{1-\tan^2{x}}\right)}\)
\(=\tan^{-1}{\left(2\tan{2x}\right)}\) ➜ \(\because \frac{2\tan{A}}{1-\tan^2{A}}=\tan{2A}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxix)\) \(2\tan^{-1}{(cosec \ {\tan^{-1}{x}}-\tan{\cot^{-1}{x}})}=\tan^{-1}{x}\)কুঃ২০১৬; রাঃ২০১৫,২০১১,২০০২; যঃ২০১২; দিঃ২০১০,২০০৪,২০০২ ।
সমাধানঃ
\(L.S=2\tan^{-1}{(cosec \ {\tan^{-1}{x}}-\tan{\cot^{-1}{x}})}\)
\(=2\tan^{-1}{\left\{cosec \ {\left(cosec^{-1}{\frac{\sqrt{x^2+1}}{x}}\right)}-\tan{\left(\tan^{-1}{\frac{1}{x}}\right)}\right\}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+1^2}\)
\(=\sqrt{x^2+1}\)
\(\therefore \tan^{-1}{x}=cosec^{-1}{\frac{\sqrt{x^2+1}}{x}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=2\tan^{-1}{\left\{\frac{\sqrt{x^2+1}}{x}-\frac{1}{x}\right\}}\)
\(=2\tan^{-1}{\left\{\frac{\sqrt{x^2+1}-1}{x}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\frac{\sqrt{x^2+1}-1}{x}}{1-\left(\frac{\sqrt{x^2+1}-1}{x}\right)^2}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\frac{\sqrt{x^2+1}-1}{x}}{1-\frac{(\sqrt{x^2+1}-1)^2}{x^2}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{x^2-(\sqrt{x^2+1}-1)^2}\right\}}\) ➜ লব ও হরকে \(x^2\) দ্বারা গুন করে।
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{x^2-(x^2+1-2\sqrt{x^2+1}+1)}\right\}}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{x^2-x^2-1+2\sqrt{x^2+1}-1}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{2\sqrt{x^2+1}-2}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{2(\sqrt{x^2+1}-1)}\right\}}\)
\(=\tan^{-1}{x}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=2\tan^{-1}{\left\{cosec \ {\left(cosec^{-1}{\frac{\sqrt{x^2+1}}{x}}\right)}-\tan{\left(\tan^{-1}{\frac{1}{x}}\right)}\right\}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{x^2+1^2}\)
\(=\sqrt{x^2+1}\)
\(\therefore \tan^{-1}{x}=cosec^{-1}{\frac{\sqrt{x^2+1}}{x}}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=2\tan^{-1}{\left\{\frac{\sqrt{x^2+1}}{x}-\frac{1}{x}\right\}}\)
\(=2\tan^{-1}{\left\{\frac{\sqrt{x^2+1}-1}{x}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\frac{\sqrt{x^2+1}-1}{x}}{1-\left(\frac{\sqrt{x^2+1}-1}{x}\right)^2}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\frac{\sqrt{x^2+1}-1}{x}}{1-\frac{(\sqrt{x^2+1}-1)^2}{x^2}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{x^2-(\sqrt{x^2+1}-1)^2}\right\}}\) ➜ লব ও হরকে \(x^2\) দ্বারা গুন করে।
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{x^2-(x^2+1-2\sqrt{x^2+1}+1)}\right\}}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{x^2-x^2-1+2\sqrt{x^2+1}-1}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{2\sqrt{x^2+1}-2}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2x(\sqrt{x^2+1}-1)}{2(\sqrt{x^2+1}-1)}\right\}}\)
\(=\tan^{-1}{x}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxx)\) \(\sec^{-1}{\sqrt{5}}+\frac{1}{2}\sin^{-1}{\frac{4}{5}}-\sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{2}\) কুঃ২০১৭ ।
সমাধানঃ
\(L.S=\sec^{-1}{\sqrt{5}}+\frac{1}{2}\sin^{-1}{\frac{4}{5}}-\sin^{-1}{\frac{1}{\sqrt{5}}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sec^{-1}{\sqrt{5}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=4 , \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
তৃতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\times2\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\tan^{-1}{\left(\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\tan^{-1}{\left(\frac{1}{1-\frac{1}{4}}\right)}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\tan^{-1}{\left(\frac{4}{4-1}\right)}\) ➜ শেষ পদের
লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\tan^{-1}{\frac{4}{3}}\)
\(=\tan^{-1}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sec^{-1}{\sqrt{5}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=4 , \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2} \)
\(=\sqrt{25-16} \)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
তৃতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=1 , \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2} \)
\(=\sqrt{5-1} \)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\times2\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\tan^{-1}{\left(\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\tan^{-1}{\left(\frac{1}{1-\frac{1}{4}}\right)}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\tan^{-1}{\left(\frac{4}{4-1}\right)}\) ➜ শেষ পদের
লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\frac{1}{2}\tan^{-1}{\frac{4}{3}}\)
\(=\tan^{-1}{2}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxi)\) \(\tan^{-1}{\frac{1}{4}}+\tan^{-1}{\frac{2}{9}}=\frac{1}{2}\cos^{-1}{\frac{3}{5}}\) মাঃ২০১৩ ।
সমাধানঃ
\(L.S=\tan^{-1}{\frac{1}{4}}+\tan^{-1}{\frac{2}{9}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4}\times\frac{2}{9}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{2}{36}}\right)}\)
\(=\tan^{-1}{\left(\frac{9+8}{36-2}\right)}\) ➜ লব ও হরকে \(36\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{17}{34}\right)}\)
\(=\tan^{-1}{\left(\frac{1}{2}\right)}\)
\(=\frac{1}{2}\times2\tan^{-1}{\left(\frac{1}{2}\right)}\)
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{1-\left(\frac{1}{2}\right)^2}{1+\left(\frac{1}{2}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{1-\frac{1}{4}}{1+\frac{1}{4}}\right\}}\)
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{4-1}{4+1}\right\}}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{3}{5}\right\}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4}\times\frac{2}{9}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{2}{36}}\right)}\)
\(=\tan^{-1}{\left(\frac{9+8}{36-2}\right)}\) ➜ লব ও হরকে \(36\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{17}{34}\right)}\)
\(=\tan^{-1}{\left(\frac{1}{2}\right)}\)
\(=\frac{1}{2}\times2\tan^{-1}{\left(\frac{1}{2}\right)}\)
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{1-\left(\frac{1}{2}\right)^2}{1+\left(\frac{1}{2}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{1-\frac{1}{4}}{1+\frac{1}{4}}\right\}}\)
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{4-1}{4+1}\right\}}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{3}{5}\right\}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxii)\) \(\sin^2{\left(\cos^{-1}{\frac{1}{x}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{x}}}\right)}=\frac{2}{9}\)যেখানে, \(\triangle{ABC}\) -এ \(\angle{C}=\theta, \ \angle{B}=\frac{\pi}{2}, \ AB=2, \ BC=\sqrt{5}, \ AC=x\)
রাঃ,কুঃ,চঃ,বঃ২০১৮ ।
সমাধানঃ
দেওয়া আছে,
\(\triangle{ABC}\) -এ \(\angle{C}=\theta, \ \angle{B}=\frac{\pi}{2}, \ AB=2, \ BC=\sqrt{5}, \ AC=x\)
\(\therefore \text{লম্ব}=2 , \ \text{ভূমি}=\sqrt{5}, \ \text{অতিভুজ}=x\)
এখন, \(\text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(\Rightarrow x=\sqrt{2^2+(\sqrt{5})^2} \)
\(=\sqrt{4+5}\)
\(=\sqrt{9}\)
\(=3\)
\(\therefore x=3\)
\(L.S=\sin^2{\left(\cos^{-1}{\frac{1}{x}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{x}}}\right)}\)
\(=\sin^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because x=3\)
\(=1-\cos^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-1+\sin^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
এবং \(\cos^2{A}=1-\sin^2{A}\)
\(=-\cos^2{\left(\cos^{-1}{\frac{1}{3}}\right)}+\sin^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\)
\(=-\left\{\cos{\left(\cos^{-1}{\frac{1}{3}}\right)}\right\}^2+\left\{\sin{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\right\}^2\)
\(=-\left\{\frac{1}{3}\right\}^2+\left\{\frac{1}{\sqrt{3}}\right\}^2\)
\(=-\frac{1}{9}+\frac{1}{3}\)
\(=\frac{-1+3}{9}\)
\(=\frac{2}{9}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\triangle{ABC}\) -এ \(\angle{C}=\theta, \ \angle{B}=\frac{\pi}{2}, \ AB=2, \ BC=\sqrt{5}, \ AC=x\)
\(\therefore \text{লম্ব}=2 , \ \text{ভূমি}=\sqrt{5}, \ \text{অতিভুজ}=x\)
এখন, \(\text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(\Rightarrow x=\sqrt{2^2+(\sqrt{5})^2} \)
\(=\sqrt{4+5}\)
\(=\sqrt{9}\)
\(=3\)
\(\therefore x=3\)
\(L.S=\sin^2{\left(\cos^{-1}{\frac{1}{x}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{x}}}\right)}\)
\(=\sin^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because x=3\)
\(=1-\cos^2{\left(\cos^{-1}{\frac{1}{3}}\right)}-1+\sin^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\) ➜ \(\because \sin^2{A}=1-\cos^2{A}\)
এবং \(\cos^2{A}=1-\sin^2{A}\)
\(=-\cos^2{\left(\cos^{-1}{\frac{1}{3}}\right)}+\sin^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\)
\(=-\left\{\cos{\left(\cos^{-1}{\frac{1}{3}}\right)}\right\}^2+\left\{\sin{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\right\}^2\)
\(=-\left\{\frac{1}{3}\right\}^2+\left\{\frac{1}{\sqrt{3}}\right\}^2\)
\(=-\frac{1}{9}+\frac{1}{3}\)
\(=\frac{-1+3}{9}\)
\(=\frac{2}{9}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxiii)\) \(2\tan^{-1}{\left\{\tan{\frac{A}{2}}\tan{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}=\tan^{-1}{\left(\frac{\sin{A}\cos{B}}{\cos{A}+\sin{B}}\right)}\)সমাধানঃ
\(L.S=2\tan^{-1}{\left\{\tan{\frac{A}{2}}\tan{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}\)
\(=\tan^{-1}{\left\{\frac{2\tan{\frac{A}{2}}\tan{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{1-\tan^2{\frac{A}{2}}\tan^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{2\sin{\frac{A}{2}}\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{\cos{\frac{A}{2}}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}}{1-\frac{\sin^2{\frac{A}{2}}\sin^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{\cos^2{\frac{A}{2}}\cos^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}}\right\}}\) ➜ \(\because \tan{x}=\frac{sin{x}}{\cos{x}}\)
\(=\tan^{-1}{\left[\frac{4\sin{\frac{A}{2}}\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\cos{\frac{A}{2}}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{2\left\{\cos^2{\frac{A}{2}}\cos^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}-\sin^2{\frac{A}{2}}\sin^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}\right]}\) ➜ লব ও হরকে \(2\cos^2{\frac{A}{2}}\cos^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\) দ্বারা গুন করে,
\(=\tan^{-1}{\left[\frac{2\sin{\frac{A}{2}}\cos{\frac{A}{2}}2\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{2\left\{\cos^2{\frac{A}{2}}\cos^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}-\sin^2{\frac{A}{2}}\sin^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}\right]}\)
\(=\tan^{-1}{\left[\frac{\sin{A}\sin{\left(\frac{\pi}{2}-B\right)}}{2\left\{\cos{\frac{A}{2}}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}+\sin{\frac{A}{2}}\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}\left\{\cos{\frac{A}{2}}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}-\sin{\frac{A}{2}}\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}\right]}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
এবং \( a^2-b^2=(a+b)(a-b)\)
\(=\tan^{-1}{\left[\frac{\sin{A}\cos{B}}{2\cos{\left(\frac{A}{2}-\frac{\pi}{4}+\frac{B}{2}\right)}\cos{\left(\frac{A}{2}+\frac{\pi}{4}-\frac{B}{2}\right)}}\right]}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\( \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
এবং \(\sin{\left(\frac{\pi}{2}-B\right)}=\cos{B}\)
\(=\tan^{-1}{\left[\frac{\sin{A}\cos{B}}{\cos{\left(\frac{A}{2}-\frac{\pi}{4}+\frac{B}{2}+\frac{A}{2}+\frac{\pi}{4}-\frac{B}{2}\right)}+\cos{\left(\frac{A}{2}-\frac{\pi}{4}+\frac{B}{2}-\frac{A}{2}-\frac{\pi}{4}+\frac{B}{2}\right)}}\right]}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A+B)}+\cos{(A-B)}\)
\(=\tan^{-1}{\left[\frac{\sin{A}\cos{B}}{\cos{\left(\frac{2A}{2}\right)}+\cos{\left(-\frac{2\pi}{4}+\frac{2B}{2}\right)}}\right]}\)
\(=\tan^{-1}{\left[\frac{\sin{A}\cos{B}}{\cos{A}+\cos{\left(-\frac{\pi}{2}+B\right)}}\right]}\)
\(=\tan^{-1}{\left(\frac{\sin{A}\cos{B}}{\cos{A}+\sin{B}}\right)}\) ➜ \(\because \cos{\left(-\frac{\pi}{2}+B\right)}=\sin{B}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left\{\frac{2\tan{\frac{A}{2}}\tan{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{1-\tan^2{\frac{A}{2}}\tan^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\left(\frac{2x}{1-x^2}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{2\sin{\frac{A}{2}}\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{\cos{\frac{A}{2}}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}}{1-\frac{\sin^2{\frac{A}{2}}\sin^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{\cos^2{\frac{A}{2}}\cos^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}}\right\}}\) ➜ \(\because \tan{x}=\frac{sin{x}}{\cos{x}}\)
\(=\tan^{-1}{\left[\frac{4\sin{\frac{A}{2}}\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\cos{\frac{A}{2}}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{2\left\{\cos^2{\frac{A}{2}}\cos^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}-\sin^2{\frac{A}{2}}\sin^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}\right]}\) ➜ লব ও হরকে \(2\cos^2{\frac{A}{2}}\cos^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\) দ্বারা গুন করে,
\(=\tan^{-1}{\left[\frac{2\sin{\frac{A}{2}}\cos{\frac{A}{2}}2\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}}{2\left\{\cos^2{\frac{A}{2}}\cos^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}-\sin^2{\frac{A}{2}}\sin^2{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}\right]}\)
\(=\tan^{-1}{\left[\frac{\sin{A}\sin{\left(\frac{\pi}{2}-B\right)}}{2\left\{\cos{\frac{A}{2}}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}+\sin{\frac{A}{2}}\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}\left\{\cos{\frac{A}{2}}\cos{\left(\frac{\pi}{4}-\frac{B}{2}\right)}-\sin{\frac{A}{2}}\sin{\left(\frac{\pi}{4}-\frac{B}{2}\right)}\right\}}\right]}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
এবং \( a^2-b^2=(a+b)(a-b)\)
\(=\tan^{-1}{\left[\frac{\sin{A}\cos{B}}{2\cos{\left(\frac{A}{2}-\frac{\pi}{4}+\frac{B}{2}\right)}\cos{\left(\frac{A}{2}+\frac{\pi}{4}-\frac{B}{2}\right)}}\right]}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
\( \cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
এবং \(\sin{\left(\frac{\pi}{2}-B\right)}=\cos{B}\)
\(=\tan^{-1}{\left[\frac{\sin{A}\cos{B}}{\cos{\left(\frac{A}{2}-\frac{\pi}{4}+\frac{B}{2}+\frac{A}{2}+\frac{\pi}{4}-\frac{B}{2}\right)}+\cos{\left(\frac{A}{2}-\frac{\pi}{4}+\frac{B}{2}-\frac{A}{2}-\frac{\pi}{4}+\frac{B}{2}\right)}}\right]}\) ➜ \(\because 2\cos{A}\cos{B}=\cos{(A+B)}+\cos{(A-B)}\)
\(=\tan^{-1}{\left[\frac{\sin{A}\cos{B}}{\cos{\left(\frac{2A}{2}\right)}+\cos{\left(-\frac{2\pi}{4}+\frac{2B}{2}\right)}}\right]}\)
\(=\tan^{-1}{\left[\frac{\sin{A}\cos{B}}{\cos{A}+\cos{\left(-\frac{\pi}{2}+B\right)}}\right]}\)
\(=\tan^{-1}{\left(\frac{\sin{A}\cos{B}}{\cos{A}+\sin{B}}\right)}\) ➜ \(\because \cos{\left(-\frac{\pi}{2}+B\right)}=\sin{B}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxiv)\) \(\tan^{-1}{\frac{b^2-c^2}{1+b^2c^2}}+\tan^{-1}{\frac{c^2-a^2}{1+c^2a^2}}+\tan^{-1}{\frac{a^2-b^2}{1+a^2b^2}}=0\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{b^2-c^2}{1+b^2c^2}}+\tan^{-1}{\frac{c^2-a^2}{1+c^2a^2}}+\tan^{-1}{\frac{a^2-b^2}{1+a^2b^2}}\)
\(=\tan^{-1}{b^2}-\tan^{-1}{c^2}+\tan^{-1}{c^2}-\tan^{-1}{a^2}+\tan^{-1}{a^2}-\tan^{-1}{b^2}\) ➜ \(\because \tan^{-1}{\left(\frac{x-y}{1+xy}\right)}=\tan^{-1}{x}-\tan^{-1}{y}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{b^2}-\tan^{-1}{c^2}+\tan^{-1}{c^2}-\tan^{-1}{a^2}+\tan^{-1}{a^2}-\tan^{-1}{b^2}\) ➜ \(\because \tan^{-1}{\left(\frac{x-y}{1+xy}\right)}=\tan^{-1}{x}-\tan^{-1}{y}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxv)\) \(\cos{\tan^{-1}{\cot{\sin^{-1}{x}}}}=x\) সিঃ২০০৬; যঃ২০১২; মাঃ২০১৪,২০১০; কুয়েটঃ২০১৩-২০১৪; বুয়েটঃ২০০৫-২০০৬ ।
সমাধানঃ
\(L.S=\cos{\tan^{-1}{\cot{\sin^{-1}{x}}}}\)
\(=\cos{\tan^{-1}{\cot{\left(\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}}}\) ➜ এখানে, \(\text{লম্ব}=x , \ \text{অতিভুজ}=1 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \sin^{-1}{x}=\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
\(=\cos{\left(\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}\)
\(=\cos{\left(\cos^{-1}{x}\right)}\) ➜ এখানে, \(\text{লম্ব}=\sqrt{1-x^2} , \ \text{ভূমি}=x \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{1-x^2})^2+x^2} \)
\(=\sqrt{1-x^2+x^2} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \tan^{-1}{\frac{\sqrt{1-x^2}}{x}}=\cos^{-1}{\frac{x}{1}}\)
\(=\cos^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\tan^{-1}{\cot{\left(\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}}}\) ➜ এখানে, \(\text{লম্ব}=x , \ \text{অতিভুজ}=1 \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \sin^{-1}{x}=\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\)
\(=\cos{\left(\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\right)}\)
\(=\cos{\left(\cos^{-1}{x}\right)}\) ➜ এখানে, \(\text{লম্ব}=\sqrt{1-x^2} , \ \text{ভূমি}=x \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{1-x^2})^2+x^2} \)
\(=\sqrt{1-x^2+x^2} \)
\(=\sqrt{1}\)
\(=1\)
\(\therefore \tan^{-1}{\frac{\sqrt{1-x^2}}{x}}=\cos^{-1}{\frac{x}{1}}\)
\(=\cos^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxvi)\) \(\tan^{-1}{\frac{x\cos{\theta}}{1-x\sin{\theta}}}-\tan^{-1}{\frac{x-\sin{\theta}}{\cos{\theta}}}=\theta\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{x\cos{\theta}}{1-x\sin{\theta}}}-\tan^{-1}{\frac{x-\sin{\theta}}{\cos{\theta}}}\)
\(=\tan^{-1}{\left(\frac{\frac{x\cos{\theta}}{1-x\sin{\theta}}-\frac{x-\sin{\theta}}{\cos{\theta}}}{1+\frac{x\cos{\theta}}{1-x\sin{\theta}}\times\frac{x-\sin{\theta}}{\cos{\theta}}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{x\cos{\theta}}{1-x\sin{\theta}}-\frac{x-\sin{\theta}}{\cos{\theta}}}{1+\frac{x\cos{\theta}(x-\sin{\theta})}{\cos{\theta}(1-x\sin{\theta})}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{x\cos^2{\theta}-(x-\sin{\theta})(1-x\sin{\theta})}{\cos{\theta}(1-x\sin{\theta})+x\cos{\theta}(x-\sin{\theta})}\right\}}\) ➜ লব ও হরকে \(\cos{\theta}(1-x\sin{\theta})\) দ্বারা গুন করে,
\(=\tan^{-1}{\left\{\frac{x\cos^2{\theta}-x+x^2\sin{\theta}+\sin{\theta}-x\sin^2{\theta}}{\cos{\theta}-x\sin{\theta}\cos{\theta}+x^2\cos{\theta}-x\sin{\theta}\cos{\theta}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{x(1-\sin^2{\theta})-x+x^2\sin{\theta}+\sin{\theta}-x\sin^2{\theta}}{\cos{\theta}-2x\sin{\theta}\cos{\theta}+x^2\cos{\theta}}\right\}}\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(=\tan^{-1}{\left\{\frac{x-x\sin^2{\theta}-x+x^2\sin{\theta}+\sin{\theta}-x\sin^2{\theta}}{\cos{\theta}-2x\sin{\theta}\cos{\theta}+x^2\cos{\theta}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\sin{\theta}-2x\sin^2{\theta}+x^2\sin{\theta}}{\cos{\theta}-2x\sin{\theta}\cos{\theta}+x^2\cos{\theta}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\sin{\theta}(1-2x\sin{\theta}+x^2)}{\cos{\theta}(1-2x\sin{\theta}+x^2)}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\sin{\theta}(1-2x\sin{\theta}+x^2)}{\cos{\theta}(1-2x\sin{\theta}+x^2)}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\sin{\theta}}{\cos{\theta}}\right\}}\)
\(=\tan^{-1}{\left\{\tan{\theta}\right\}}\)
\(=\theta\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{x\cos{\theta}}{1-x\sin{\theta}}-\frac{x-\sin{\theta}}{\cos{\theta}}}{1+\frac{x\cos{\theta}}{1-x\sin{\theta}}\times\frac{x-\sin{\theta}}{\cos{\theta}}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{x\cos{\theta}}{1-x\sin{\theta}}-\frac{x-\sin{\theta}}{\cos{\theta}}}{1+\frac{x\cos{\theta}(x-\sin{\theta})}{\cos{\theta}(1-x\sin{\theta})}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{x\cos^2{\theta}-(x-\sin{\theta})(1-x\sin{\theta})}{\cos{\theta}(1-x\sin{\theta})+x\cos{\theta}(x-\sin{\theta})}\right\}}\) ➜ লব ও হরকে \(\cos{\theta}(1-x\sin{\theta})\) দ্বারা গুন করে,
\(=\tan^{-1}{\left\{\frac{x\cos^2{\theta}-x+x^2\sin{\theta}+\sin{\theta}-x\sin^2{\theta}}{\cos{\theta}-x\sin{\theta}\cos{\theta}+x^2\cos{\theta}-x\sin{\theta}\cos{\theta}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{x(1-\sin^2{\theta})-x+x^2\sin{\theta}+\sin{\theta}-x\sin^2{\theta}}{\cos{\theta}-2x\sin{\theta}\cos{\theta}+x^2\cos{\theta}}\right\}}\) ➜ \(\because \cos^2{A}=1-\sin^2{A}\)
\(=\tan^{-1}{\left\{\frac{x-x\sin^2{\theta}-x+x^2\sin{\theta}+\sin{\theta}-x\sin^2{\theta}}{\cos{\theta}-2x\sin{\theta}\cos{\theta}+x^2\cos{\theta}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\sin{\theta}-2x\sin^2{\theta}+x^2\sin{\theta}}{\cos{\theta}-2x\sin{\theta}\cos{\theta}+x^2\cos{\theta}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\sin{\theta}(1-2x\sin{\theta}+x^2)}{\cos{\theta}(1-2x\sin{\theta}+x^2)}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\sin{\theta}(1-2x\sin{\theta}+x^2)}{\cos{\theta}(1-2x\sin{\theta}+x^2)}\right\}}\)
\(=\tan^{-1}{\left\{\frac{\sin{\theta}}{\cos{\theta}}\right\}}\)
\(=\tan^{-1}{\left\{\tan{\theta}\right\}}\)
\(=\theta\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxvii)\) \(\sin^{-1}{\sqrt{\frac{x-b}{a-b}}}=\cos^{-1}{\sqrt{\frac{a-x}{a-b}}}=\tan^{-1}{\sqrt{\frac{x-b}{a-x}}}\)সমাধানঃ
\(\sin^{-1}{\sqrt{\frac{x-b}{a-b}}}\)
\(=\sin^{-1}{\frac{\sqrt{x-b}}{\sqrt{a-b}}}\)
এখানে, \(\text{লম্ব}=\sqrt{x-b} , \ \text{অতিভুজ}=\sqrt{a-b} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{a-b})^2-(\sqrt{x-b})^2} \)
\(=\sqrt{a-b-x+b} \)
\(=\sqrt{a-x} \)
এখন, \(\sin^{-1}{\frac{\sqrt{x-b}}{\sqrt{a-b}}}=\cos^{-1}{\frac{\sqrt{a-x}}{\sqrt{a-b}}}\)
\(\therefore \sin^{-1}{\sqrt{\frac{x-b}{a-b}}}=\cos^{-1}{\sqrt{\frac{a-x}{a-b}}} ......(1)\)
আবার,
\(\sin^{-1}{\frac{\sqrt{x-b}}{\sqrt{a-b}}}=\tan^{-1}{\frac{\sqrt{x-b}}{\sqrt{a-x}}}\)
\(\therefore \sin^{-1}{\sqrt{\frac{x-b}{a-b}}}=\tan^{-1}{\sqrt{\frac{x-b}{a-x}}} .....(2)\)
\((1)\) ও \((2)\) হতে,
\(\sin^{-1}{\sqrt{\frac{x-b}{a-b}}}=\cos^{-1}{\sqrt{\frac{a-x}{a-b}}}=\tan^{-1}{\sqrt{\frac{x-b}{a-x}}}\)
(প্রমাণিত)
\(=\sin^{-1}{\frac{\sqrt{x-b}}{\sqrt{a-b}}}\)
এখানে, \(\text{লম্ব}=\sqrt{x-b} , \ \text{অতিভুজ}=\sqrt{a-b} \)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{a-b})^2-(\sqrt{x-b})^2} \)
\(=\sqrt{a-b-x+b} \)
\(=\sqrt{a-x} \)
এখন, \(\sin^{-1}{\frac{\sqrt{x-b}}{\sqrt{a-b}}}=\cos^{-1}{\frac{\sqrt{a-x}}{\sqrt{a-b}}}\)
\(\therefore \sin^{-1}{\sqrt{\frac{x-b}{a-b}}}=\cos^{-1}{\sqrt{\frac{a-x}{a-b}}} ......(1)\)
আবার,
\(\sin^{-1}{\frac{\sqrt{x-b}}{\sqrt{a-b}}}=\tan^{-1}{\frac{\sqrt{x-b}}{\sqrt{a-x}}}\)
\(\therefore \sin^{-1}{\sqrt{\frac{x-b}{a-b}}}=\tan^{-1}{\sqrt{\frac{x-b}{a-x}}} .....(2)\)
\((1)\) ও \((2)\) হতে,
\(\sin^{-1}{\sqrt{\frac{x-b}{a-b}}}=\cos^{-1}{\sqrt{\frac{a-x}{a-b}}}=\tan^{-1}{\sqrt{\frac{x-b}{a-x}}}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxviii)\) \(\sin^{-1}{\left(\sqrt{2}\sin{\theta}\right)}-\cos^{-1}{\left(\sqrt{\cos{2\theta}}\right)}=0\)সমাধানঃ
\(L.S=\sin^{-1}{\left(\sqrt{2}\sin{\theta}\right)}-\cos^{-1}{\left(\sqrt{\cos{2\theta}}\right)}\)
\(=sin^{-1}{(\sqrt{2}\sin{\theta})}-\sin^{-1}{\left\{\sqrt{1-\left(\sqrt{\cos{2\theta}}\right)^2}\right\}}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(=\sin^{-1}{(\sqrt{2}\sin{\theta})}-\sin^{-1}{\left\{\sqrt{1-\cos{2\theta}}\right\}}\)
\(=\sin^{-1}{(\sqrt{2}\sin{\theta})}-\sin^{-1}{\left(\sqrt{2\sin^2{\theta}}\right)}\) ➜ \(\because 1-\cos{2A}=2\sin^2{A}\)
\(=\sin^{-1}{(\sqrt{2}\sin{\theta})}-\sin^{-1}{(\sqrt{2}\sin{\theta})}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=sin^{-1}{(\sqrt{2}\sin{\theta})}-\sin^{-1}{\left\{\sqrt{1-\left(\sqrt{\cos{2\theta}}\right)^2}\right\}}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(=\sin^{-1}{(\sqrt{2}\sin{\theta})}-\sin^{-1}{\left\{\sqrt{1-\cos{2\theta}}\right\}}\)
\(=\sin^{-1}{(\sqrt{2}\sin{\theta})}-\sin^{-1}{\left(\sqrt{2\sin^2{\theta}}\right)}\) ➜ \(\because 1-\cos{2A}=2\sin^2{A}\)
\(=\sin^{-1}{(\sqrt{2}\sin{\theta})}-\sin^{-1}{(\sqrt{2}\sin{\theta})}\)
\(=0\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xxxix)\) \(4\sin^{-1}{\frac{1}{\sqrt{17}}}-\tan^{-1}{\frac{79}{401}}=\frac{\pi}{4}\)সমাধানঃ
\(L.S=4\sin^{-1}{\frac{1}{\sqrt{17}}}-\tan^{-1}{\frac{79}{401}}\)
\(=4\tan^{-1}{\frac{1}{4}}-\tan^{-1}{\frac{79}{401}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=1, \ \text{অতিভুজ}=\sqrt{17}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{17})^2-1^2} \)
\(=\sqrt{17-1} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{17}}}=\tan^{-1}{\frac{1}{4}}\)
\(=2\times2\tan^{-1}{\frac{1}{4}}-\tan^{-1}{\frac{79}{401}}\)
\(=2\tan^{-1}{\left(\frac{2\times\frac{1}{4}}{1-\left(\frac{1}{4}\right)^2}\right)}-\tan^{-1}{\frac{79}{401}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=2\tan^{-1}{\left(\frac{\frac{1}{2}}{1-\frac{1}{16}}\right)}-\tan^{-1}{\frac{79}{401}}\)
\(=2\tan^{-1}{\left(\frac{8}{16-1}\right)}-\tan^{-1}{\frac{79}{401}}\) ➜ প্রথম পদের,
লব ও হরকে \(16\) দ্বারা গুন করে,
\(=2\tan^{-1}{\frac{8}{15}}-\tan^{-1}{\frac{79}{401}}\)
\(=\tan^{-1}{\left(\frac{2\times\frac{8}{15}}{1-\left(\frac{8}{15}\right)^2}\right)}-\tan^{-1}{\frac{79}{401}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\tan^{-1}{\left(\frac{\frac{16}{15}}{1-\frac{64}{225}}\right)}-\tan^{-1}{\frac{79}{401}}\)
\(=\tan^{-1}{\left(\frac{240}{225-64}\right)}-\tan^{-1}{\frac{79}{401}}\) ➜ প্রথম পদের,
লব ও হরকে \(225\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{240}{161}}-\tan^{-1}{\frac{79}{401}}\)
\(=\tan^{-1}{\left(\frac{\frac{240}{161}-\frac{79}{401}}{1+\frac{240}{161}\times\frac{79}{401}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\left(\frac{\frac{240}{161}-\frac{79}{401}}{1+\frac{18960}{64561}}\right)}\)
\(=\tan^{-1}{\left(\frac{96240-12719}{64561+18960}\right)}\) ➜ লব ও হরকে \(64561\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{83521}{83521}\right)}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\tan{\frac{\pi}{4}}}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=4\tan^{-1}{\frac{1}{4}}-\tan^{-1}{\frac{79}{401}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=1, \ \text{অতিভুজ}=\sqrt{17}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{17})^2-1^2} \)
\(=\sqrt{17-1} \)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{17}}}=\tan^{-1}{\frac{1}{4}}\)
\(=2\times2\tan^{-1}{\frac{1}{4}}-\tan^{-1}{\frac{79}{401}}\)
\(=2\tan^{-1}{\left(\frac{2\times\frac{1}{4}}{1-\left(\frac{1}{4}\right)^2}\right)}-\tan^{-1}{\frac{79}{401}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=2\tan^{-1}{\left(\frac{\frac{1}{2}}{1-\frac{1}{16}}\right)}-\tan^{-1}{\frac{79}{401}}\)
\(=2\tan^{-1}{\left(\frac{8}{16-1}\right)}-\tan^{-1}{\frac{79}{401}}\) ➜ প্রথম পদের,
লব ও হরকে \(16\) দ্বারা গুন করে,
\(=2\tan^{-1}{\frac{8}{15}}-\tan^{-1}{\frac{79}{401}}\)
\(=\tan^{-1}{\left(\frac{2\times\frac{8}{15}}{1-\left(\frac{8}{15}\right)^2}\right)}-\tan^{-1}{\frac{79}{401}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\tan^{-1}{\left(\frac{\frac{16}{15}}{1-\frac{64}{225}}\right)}-\tan^{-1}{\frac{79}{401}}\)
\(=\tan^{-1}{\left(\frac{240}{225-64}\right)}-\tan^{-1}{\frac{79}{401}}\) ➜ প্রথম পদের,
লব ও হরকে \(225\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{240}{161}}-\tan^{-1}{\frac{79}{401}}\)
\(=\tan^{-1}{\left(\frac{\frac{240}{161}-\frac{79}{401}}{1+\frac{240}{161}\times\frac{79}{401}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\left(\frac{\frac{240}{161}-\frac{79}{401}}{1+\frac{18960}{64561}}\right)}\)
\(=\tan^{-1}{\left(\frac{96240-12719}{64561+18960}\right)}\) ➜ লব ও হরকে \(64561\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{83521}{83521}\right)}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\tan{\frac{\pi}{4}}}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xL)\) \(\cos{\left(2\tan^{-1}{\frac{1}{7}}\right)}=\sin{\left(4\tan^{-1}{\frac{1}{2}}\right)}\)সমাধানঃ
\(L.S=\cos{\left(2\tan^{-1}{\frac{1}{7}}\right)}\)
\(=\cos{\left\{\cos^{-1}{\frac{1-\left(\frac{1}{7}\right)^2}{1+\left(\frac{1}{7}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\cos{\left\{\cos^{-1}{\frac{1-\frac{1}{49}}{1+\frac{1}{49}}}\right\}}\)
\(=\frac{49-1}{49+1}\) ➜ লব ও হরকে \(49\) দ্বারা গুন করে,
\(=\frac{48}{50}\)
\(=\frac{24}{25}\)
আবার,
\(R.S=\sin{\left(4\tan^{-1}{\frac{1}{2}}\right)}\)
\(=\sin{\left(2\times2\tan^{-1}{\frac{1}{2}}\right)}\)
\(=\sin{\left\{2\tan^{-1}{\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\sin{\left\{2\tan^{-1}{\frac{1}{1-\frac{1}{4}}}\right\}}\)
\(=\sin{\left\{2\tan^{-1}{\frac{4}{4-1}}\right\}}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\sin{\left\{2\tan^{-1}{\frac{4}{3}}\right\}}\)
\(=\sin{\left\{\sin^{-1}{\frac{2\times\frac{4}{3}}{1+\left(\frac{4}{3}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
\(=\frac{\frac{8}{3}}{1+\frac{16}{9}}\)
\(=\frac{24}{9+16}\) ➜ লব ও হরকে \(9\) দ্বারা গুন করে,
\(=\frac{24}{25}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\left\{\cos^{-1}{\frac{1-\left(\frac{1}{7}\right)^2}{1+\left(\frac{1}{7}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\cos{\left\{\cos^{-1}{\frac{1-\frac{1}{49}}{1+\frac{1}{49}}}\right\}}\)
\(=\frac{49-1}{49+1}\) ➜ লব ও হরকে \(49\) দ্বারা গুন করে,
\(=\frac{48}{50}\)
\(=\frac{24}{25}\)
আবার,
\(R.S=\sin{\left(4\tan^{-1}{\frac{1}{2}}\right)}\)
\(=\sin{\left(2\times2\tan^{-1}{\frac{1}{2}}\right)}\)
\(=\sin{\left\{2\tan^{-1}{\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\sin{\left\{2\tan^{-1}{\frac{1}{1-\frac{1}{4}}}\right\}}\)
\(=\sin{\left\{2\tan^{-1}{\frac{4}{4-1}}\right\}}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\sin{\left\{2\tan^{-1}{\frac{4}{3}}\right\}}\)
\(=\sin{\left\{\sin^{-1}{\frac{2\times\frac{4}{3}}{1+\left(\frac{4}{3}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
\(=\frac{\frac{8}{3}}{1+\frac{16}{9}}\)
\(=\frac{24}{9+16}\) ➜ লব ও হরকে \(9\) দ্বারা গুন করে,
\(=\frac{24}{25}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLi)\) \(\frac{1}{2}\cos^{-1}{\frac{3}{5}}=\frac{\pi}{4}-\tan^{-1}{\frac{1}{3}}\)সমাধানঃ
\(R.S=\frac{\pi}{4}-\tan^{-1}{\frac{1}{3}}\)
\(=\tan^{-1}{(1)}-\tan^{-1}{\frac{1}{3}}\) ➜ \(\because \frac{\pi}{4}=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\frac{1-\frac{1}{3}}{1+1\times\frac{1}{3}}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\frac{1-\frac{1}{3}}{1+\frac{1}{3}}}\)
\(=\tan^{-1}{\frac{3-1}{3+1}}\) ➜ লব ও হরকে \(3\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{2}{4}}\)
\(=\tan^{-1}{\frac{1}{2}}\)
\(=\frac{1}{2}\times2\tan^{-1}{\frac{1}{2}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{1-\left(\frac{1}{2}\right)^2}{1+\left(\frac{1}{2}\right)^2}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{1-\frac{1}{4}}{1+\frac{1}{4}}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{4-1}{4+1}}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\frac{1}{2}\cos^{-1}{\frac{3}{5}}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{(1)}-\tan^{-1}{\frac{1}{3}}\) ➜ \(\because \frac{\pi}{4}=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\frac{1-\frac{1}{3}}{1+1\times\frac{1}{3}}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\frac{1-\frac{1}{3}}{1+\frac{1}{3}}}\)
\(=\tan^{-1}{\frac{3-1}{3+1}}\) ➜ লব ও হরকে \(3\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{2}{4}}\)
\(=\tan^{-1}{\frac{1}{2}}\)
\(=\frac{1}{2}\times2\tan^{-1}{\frac{1}{2}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{1-\left(\frac{1}{2}\right)^2}{1+\left(\frac{1}{2}\right)^2}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{1-\frac{1}{4}}{1+\frac{1}{4}}}\)
\(=\frac{1}{2}\cos^{-1}{\frac{4-1}{4+1}}\) ➜ লব ও হরকে \(4\) দ্বারা গুন করে,
\(=\frac{1}{2}\cos^{-1}{\frac{3}{5}}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLii)\) \(\tan^{-1}{x}+\tan^{-1}{y}=\sin^{-1}{\left\{\frac{x+y}{\sqrt{(1+x^2)(1+y^2)}}\right\}}\)সমাধানঃ
\(L.S=\tan^{-1}{x}+\tan^{-1}{y}\)
\(=\tan^{-1}{\frac{x+y}{1-xy}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\sin^{-1}{\left\{\frac{x+y}{\sqrt{(1+x^2)(1+y^2)}}\right\}}\) ➜ এখানে,
\(\text{লম্ব}=x+y, \ \text{ভূমি}=1-xy\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(x+y)^2+(1-xy)^2} \)
\(=\sqrt{x^2+2xy+y^2+1-2xy+x^2y^2} \)
\(=\sqrt{x^2+x^2y^2+1+y^2}\)
\(=\sqrt{x^2(1+y^2)+1(1+y^2)}\)
\(=\sqrt{(x^2+1)(1+y^2)}\)
\(=\sqrt{(1+x^2)(1+y^2)}\)
\(\therefore \tan^{-1}{\frac{x+y}{1-xy}}=\sin^{-1}{\frac{x+y}{\sqrt{(1+x^2)(1+y^2)}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{x+y}{1-xy}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\sin^{-1}{\left\{\frac{x+y}{\sqrt{(1+x^2)(1+y^2)}}\right\}}\) ➜ এখানে,
\(\text{লম্ব}=x+y, \ \text{ভূমি}=1-xy\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(x+y)^2+(1-xy)^2} \)
\(=\sqrt{x^2+2xy+y^2+1-2xy+x^2y^2} \)
\(=\sqrt{x^2+x^2y^2+1+y^2}\)
\(=\sqrt{x^2(1+y^2)+1(1+y^2)}\)
\(=\sqrt{(x^2+1)(1+y^2)}\)
\(=\sqrt{(1+x^2)(1+y^2)}\)
\(\therefore \tan^{-1}{\frac{x+y}{1-xy}}=\sin^{-1}{\frac{x+y}{\sqrt{(1+x^2)(1+y^2)}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLiii)\) \(\tan^{-1}{x}+\tan^{-1}{y}=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{(1+x^2)(1+y^2)}\right\}}\)সমাধানঃ
\(L.S=\tan^{-1}{x}+\tan^{-1}{y}\)
\(=\tan^{-1}{\frac{x+y}{1-xy}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\frac{1}{2}\times2\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2\times\frac{x+y}{1-xy}}{1+\left(\frac{x+y}{1-xy}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{\frac{2(x+y)}{1-xy}}{1+\frac{(x+y)^2}{(1-xy)^2}}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{(1-xy)^2+(x+y)^2}\right\}}\) ➜ লব ও হরকে \((1-xy)^2\) দ্বারা গুন করে,
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{1-2xy+x^2y^2+x^2+2xy+y^2}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{1+x^2y^2+x^2+y^2}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{1+x^2+y^2+x^2y^2}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{1(1+x^2)+y^2(1+x^2)}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{(1+x^2)(1+y^2)}\right\}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{x+y}{1-xy}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\frac{1}{2}\times2\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2\times\frac{x+y}{1-xy}}{1+\left(\frac{x+y}{1-xy}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\frac{2x}{1+x^2}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{\frac{2(x+y)}{1-xy}}{1+\frac{(x+y)^2}{(1-xy)^2}}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{(1-xy)^2+(x+y)^2}\right\}}\) ➜ লব ও হরকে \((1-xy)^2\) দ্বারা গুন করে,
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{1-2xy+x^2y^2+x^2+2xy+y^2}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{1+x^2y^2+x^2+y^2}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{1+x^2+y^2+x^2y^2}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{1(1+x^2)+y^2(1+x^2)}\right\}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2(x+y)(1-xy)}{(1+x^2)(1+y^2)}\right\}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLiv)\) \(\tan^{-1}{\frac{m}{n}}-\tan^{-1}{\frac{m-n}{m+n}}=\frac{\pi}{4}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{m}{n}}-\tan^{-1}{\frac{m-n}{m+n}}\)
\(=\tan^{-1}{\left(\frac{\frac{m}{n}-\frac{m-n}{m+n}}{1+\frac{m}{n}\times\frac{m-n}{m+n}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\left(\frac{\frac{m}{n}-\frac{m-n}{m+n}}{1+\frac{m(m-n)}{n(m+n)}}\right)}\)
\(=\tan^{-1}{\left(\frac{m(m+n)-n(m-n)}{n(m+n)+m(m-n)}\right)}\) ➜ লব ও হরকে \(n(m+n)\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{m^2+mn-mn+n^2}{mn+n^2+m^2-mn}\right)}\)
\(=\tan^{-1}{\left(\frac{m^2+n^2}{m^2+n^2}\right)}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{m}{n}-\frac{m-n}{m+n}}{1+\frac{m}{n}\times\frac{m-n}{m+n}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\left(\frac{\frac{m}{n}-\frac{m-n}{m+n}}{1+\frac{m(m-n)}{n(m+n)}}\right)}\)
\(=\tan^{-1}{\left(\frac{m(m+n)-n(m-n)}{n(m+n)+m(m-n)}\right)}\) ➜ লব ও হরকে \(n(m+n)\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{m^2+mn-mn+n^2}{mn+n^2+m^2-mn}\right)}\)
\(=\tan^{-1}{\left(\frac{m^2+n^2}{m^2+n^2}\right)}\)
\(=\tan^{-1}{(1)}\)
\(=\tan^{-1}{\left(\tan{\frac{\pi}{4}}\right)}\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(=\frac{\pi}{4}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLv)\) \(\tan^{-1}{\frac{1}{m+n}}+\tan^{-1}{\frac{n}{m^2+mn+1}}=\tan^{-1}{\frac{1}{m}}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{1}{m+n}}+\tan^{-1}{\frac{n}{m^2+mn+1}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{m+n}+\frac{n}{m^2+mn+1}}{1-\frac{1}{m+n}\times\frac{n}{m^2+mn+1}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{m+n}+\frac{n}{m^2+mn+1}}{1-\frac{n}{(m+n)(m^2+mn+1)}}\right)}\)
\(=\tan^{-1}{\left(\frac{m^2+mn+1+n(m+n)}{(m+n)(m^2+mn+1)-n}\right)}\) ➜ লব ও হরকে \((m+n)(m^2+mn+1)\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{m^2+mn+1+mn+n^2}{m^3+m^2n+m+m^2n+mn^2+n-n}\right)}\)
\(=\tan^{-1}{\left(\frac{m^2+2mn+n^2+1}{m^3+2m^2n+mn^2+m}\right)}\)
\(=\tan^{-1}{\left(\frac{m^2+2mn+n^2+1}{m(m^2+2mn+n^2+1)}\right)}\)
\(=\tan^{-1}{\frac{1}{m}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\left(\frac{\frac{1}{m+n}+\frac{n}{m^2+mn+1}}{1-\frac{1}{m+n}\times\frac{n}{m^2+mn+1}}\right)}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{m+n}+\frac{n}{m^2+mn+1}}{1-\frac{n}{(m+n)(m^2+mn+1)}}\right)}\)
\(=\tan^{-1}{\left(\frac{m^2+mn+1+n(m+n)}{(m+n)(m^2+mn+1)-n}\right)}\) ➜ লব ও হরকে \((m+n)(m^2+mn+1)\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{m^2+mn+1+mn+n^2}{m^3+m^2n+m+m^2n+mn^2+n-n}\right)}\)
\(=\tan^{-1}{\left(\frac{m^2+2mn+n^2+1}{m^3+2m^2n+mn^2+m}\right)}\)
\(=\tan^{-1}{\left(\frac{m^2+2mn+n^2+1}{m(m^2+2mn+n^2+1)}\right)}\)
\(=\tan^{-1}{\frac{1}{m}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLvi)\) \(\tan^{-1}{\frac{3}{4}}-2\tan^{-1}{\frac{1}{5}}=\cos^{-1}{\frac{63}{65}}\)সমাধানঃ
\(L.S=\tan^{-1}{\frac{3}{4}}-2\tan^{-1}{\frac{1}{5}}\)
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\left\{\frac{2\times\frac{1}{5}}{1-\left(\frac{1}{5}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\left\{\frac{\frac{2}{5}}{1-\frac{1}{25}}\right\}}\)
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\left\{\frac{10}{25-1}\right\}}\) ➜ দ্বিতীয় পদের,
লব ও হরকে \(25\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\left\{\frac{10}{24}\right\}}\)
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\frac{5}{12}}\)
\(=\tan^{-1}{\left\{\frac{\frac{3}{4}-\frac{5}{12}}{1+\frac{3}{4}\times\frac{5}{12}}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\left\{\frac{\frac{3}{4}-\frac{5}{12}}{1+\frac{15}{48}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{36-20}{48+15}\right\}}\) ➜ লব ও হরকে \(48\) দ্বারা গুন করে,
\(=\tan^{-1}{\left\{\frac{16}{63}\right\}}\)
\(=\cos^{-1}{\frac{63}{65}}\) ➜ এখানে, \(\text{লম্ব}=16 , \ \text{ভূমি}=63 \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(63)^2+(16)^2} \)
\(=\sqrt{3969+256} \)
\(=\sqrt{4225} \)
\(=65\)
\(\therefore \tan^{-1}{\left\{\frac{16}{63}\right\}}=\cos^{-1}{\frac{63}{65}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\left\{\frac{2\times\frac{1}{5}}{1-\left(\frac{1}{5}\right)^2}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\left\{\frac{\frac{2}{5}}{1-\frac{1}{25}}\right\}}\)
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\left\{\frac{10}{25-1}\right\}}\) ➜ দ্বিতীয় পদের,
লব ও হরকে \(25\) দ্বারা গুন করে,
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\left\{\frac{10}{24}\right\}}\)
\(=\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\frac{5}{12}}\)
\(=\tan^{-1}{\left\{\frac{\frac{3}{4}-\frac{5}{12}}{1+\frac{3}{4}\times\frac{5}{12}}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\left\{\frac{\frac{3}{4}-\frac{5}{12}}{1+\frac{15}{48}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{36-20}{48+15}\right\}}\) ➜ লব ও হরকে \(48\) দ্বারা গুন করে,
\(=\tan^{-1}{\left\{\frac{16}{63}\right\}}\)
\(=\cos^{-1}{\frac{63}{65}}\) ➜ এখানে, \(\text{লম্ব}=16 , \ \text{ভূমি}=63 \)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{(63)^2+(16)^2} \)
\(=\sqrt{3969+256} \)
\(=\sqrt{4225} \)
\(=65\)
\(\therefore \tan^{-1}{\left\{\frac{16}{63}\right\}}=\cos^{-1}{\frac{63}{65}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLvii)\) \(\cos^{-1}{\left\{1+\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}\right\}^{\frac{1}{2}}}=\sin^{-1}{\sqrt{\frac{x^2-a^2}{x^2+a^2}}}\)সমাধানঃ
\(L.S=\cos^{-1}{\left\{1+\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}\right\}^{\frac{1}{2}}}\)
\(=\cos^{-1}{\left\{\sqrt{1+\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}}\right\}}\)
\(=\sin^{-1}{\left[\sqrt{1-\left\{\sqrt{1+\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}}\right\}^2}\right]}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(=\sin^{-1}{\left\{\sqrt{1-1-\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{-\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}}\right\}}\)
\(=\sin^{-1}{\left[\sqrt{-\cos{\cos^{-1}{\left\{\frac{1-\left(\frac{x}{a}\right)^2}{1+\left(\frac{x}{a}\right)^2}\right\}}}}\right]}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\sin^{-1}{\sqrt{-\left\{\frac{1-\frac{x^2}{a^2}}{1+\frac{x^2}{a^2}}\right\}}}\)
\(=\sin^{-1}{\sqrt{-\left\{\frac{a^2-x^2}{a^2+x^2}\right\}}}\) ➜ লব ও হরকে \(a^2\) দ্বারা গুন করে,
\(=\sin^{-1}{\sqrt{-\left\{-\frac{x^2-a^2}{x^2+a^2}\right\}}}\)
\(=\sin^{-1}{\sqrt{\frac{x^2-a^2}{x^2+a^2}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^{-1}{\left\{\sqrt{1+\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}}\right\}}\)
\(=\sin^{-1}{\left[\sqrt{1-\left\{\sqrt{1+\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}}\right\}^2}\right]}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(=\sin^{-1}{\left\{\sqrt{1-1-\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{-\cos{\left(2\tan^{-1}{\frac{x}{a}}\right)}}\right\}}\)
\(=\sin^{-1}{\left[\sqrt{-\cos{\cos^{-1}{\left\{\frac{1-\left(\frac{x}{a}\right)^2}{1+\left(\frac{x}{a}\right)^2}\right\}}}}\right]}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\sin^{-1}{\sqrt{-\left\{\frac{1-\frac{x^2}{a^2}}{1+\frac{x^2}{a^2}}\right\}}}\)
\(=\sin^{-1}{\sqrt{-\left\{\frac{a^2-x^2}{a^2+x^2}\right\}}}\) ➜ লব ও হরকে \(a^2\) দ্বারা গুন করে,
\(=\sin^{-1}{\sqrt{-\left\{-\frac{x^2-a^2}{x^2+a^2}\right\}}}\)
\(=\sin^{-1}{\sqrt{\frac{x^2-a^2}{x^2+a^2}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLviii)\) \(\tan{\left(\frac{\pi}{4}+\frac{1}{2}\cos^{-1}{\frac{a}{b}}\right)}+\tan{\left(\frac{\pi}{4}-\frac{1}{2}\cos^{-1}{\frac{a}{b}}\right)}=\frac{2b}{a}\)সমাধানঃ
ধরি,
\(x=\cos^{-1}{\frac{a}{b}}\)
\(\Rightarrow \cos{x}=\frac{a}{b}\)
\(L.S=\tan{\left(\frac{\pi}{4}+\frac{1}{2}\cos^{-1}{\frac{a}{b}}\right)}+\tan{\left(\frac{\pi}{4}-\frac{1}{2}\cos^{-1}{\frac{a}{b}}\right)}\)
\(=\tan{\left(\frac{\pi}{4}+\frac{1}{2}x\right)}+\tan{\left(\frac{\pi}{4}-\frac{1}{2}x\right)}\) ➜ \(\because x=\cos^{-1}{\frac{a}{b}}\)
\(=\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}+\tan{\left(\frac{\pi}{4}-\frac{x}{2}\right)}\)
\(=\frac{\sin{\left(\frac{\pi}{4}+\frac{x}{2}\right)}}{\cos{\left(\frac{\pi}{4}+\frac{x}{2}\right)}}+\frac{\sin{\left(\frac{\pi}{4}-\frac{x}{2}\right)}}{\cos{\left(\frac{\pi}{4}-\frac{x}{2}\right)}}+\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\sin{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\cos{\left(\frac{\pi}{4}-\frac{x}{2}\right)}+\cos{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\sin{\left(\frac{\pi}{4}-\frac{x}{2}\right)}}{\cos{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\cos{\left(\frac{\pi}{4}-\frac{x}{2}\right)}}\)
\(=\frac{\sin{\left(\frac{\pi}{4}+\frac{x}{2}+\frac{\pi}{4}-\frac{x}{2}\right)}}{\cos^2{\left(\frac{\pi}{4}\right)}-\sin^2{\left(\frac{x}{2}\right)}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=\frac{\sin{\left(\frac{2\pi}{4}\right)}}{\left(\frac{1}{\sqrt{2}}\right)^2-\sin^2{\left(\frac{x}{2}\right)}}\) ➜ \(\because \cos{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\frac{\sin{\left(\frac{\pi}{2}\right)}}{\frac{1}{2}-\sin^2{\left(\frac{x}{2}\right)}}\)
\(=\frac{1}{\frac{1}{2}-\sin^2{\left(\frac{x}{2}\right)}}\) ➜ \(\because \sin{\left(\frac{\pi}{2}\right)}=1\)
\(=\frac{2}{1-2\sin^2{\left(\frac{x}{2}\right)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুন করে,
\(=\frac{2}{\cos{x}}\) ➜ \(\because 1-2\sin^2{\left(\frac{A}{2}\right)}=\cos{A}\)
\(=\frac{2}{\frac{a}{b}}\) ➜ \(\because \cos{x}=\frac{a}{b}\)
\(=\frac{2b}{a}\) ➜ লব ও হরকে \(b\) দ্বারা গুন করে,
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(x=\cos^{-1}{\frac{a}{b}}\)
\(\Rightarrow \cos{x}=\frac{a}{b}\)
\(L.S=\tan{\left(\frac{\pi}{4}+\frac{1}{2}\cos^{-1}{\frac{a}{b}}\right)}+\tan{\left(\frac{\pi}{4}-\frac{1}{2}\cos^{-1}{\frac{a}{b}}\right)}\)
\(=\tan{\left(\frac{\pi}{4}+\frac{1}{2}x\right)}+\tan{\left(\frac{\pi}{4}-\frac{1}{2}x\right)}\) ➜ \(\because x=\cos^{-1}{\frac{a}{b}}\)
\(=\tan{\left(\frac{\pi}{4}+\frac{x}{2}\right)}+\tan{\left(\frac{\pi}{4}-\frac{x}{2}\right)}\)
\(=\frac{\sin{\left(\frac{\pi}{4}+\frac{x}{2}\right)}}{\cos{\left(\frac{\pi}{4}+\frac{x}{2}\right)}}+\frac{\sin{\left(\frac{\pi}{4}-\frac{x}{2}\right)}}{\cos{\left(\frac{\pi}{4}-\frac{x}{2}\right)}}+\) ➜ \(\because \tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(=\frac{\sin{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\cos{\left(\frac{\pi}{4}-\frac{x}{2}\right)}+\cos{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\sin{\left(\frac{\pi}{4}-\frac{x}{2}\right)}}{\cos{\left(\frac{\pi}{4}+\frac{x}{2}\right)}\cos{\left(\frac{\pi}{4}-\frac{x}{2}\right)}}\)
\(=\frac{\sin{\left(\frac{\pi}{4}+\frac{x}{2}+\frac{\pi}{4}-\frac{x}{2}\right)}}{\cos^2{\left(\frac{\pi}{4}\right)}-\sin^2{\left(\frac{x}{2}\right)}}\) ➜ \(\because \sin{A}\cos{B}+\cos{A}\sin{B}=\sin{(A+B)}\)
এবং \(\cos{(A+B)}\cos{(A-B)}=\cos^2{A}-\sin^2{B}\)
\(=\frac{\sin{\left(\frac{2\pi}{4}\right)}}{\left(\frac{1}{\sqrt{2}}\right)^2-\sin^2{\left(\frac{x}{2}\right)}}\) ➜ \(\because \cos{\left(\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}\)
\(=\frac{\sin{\left(\frac{\pi}{2}\right)}}{\frac{1}{2}-\sin^2{\left(\frac{x}{2}\right)}}\)
\(=\frac{1}{\frac{1}{2}-\sin^2{\left(\frac{x}{2}\right)}}\) ➜ \(\because \sin{\left(\frac{\pi}{2}\right)}=1\)
\(=\frac{2}{1-2\sin^2{\left(\frac{x}{2}\right)}}\) ➜ লব ও হরকে \(2\) দ্বারা গুন করে,
\(=\frac{2}{\cos{x}}\) ➜ \(\because 1-2\sin^2{\left(\frac{A}{2}\right)}=\cos{A}\)
\(=\frac{2}{\frac{a}{b}}\) ➜ \(\because \cos{x}=\frac{a}{b}\)
\(=\frac{2b}{a}\) ➜ লব ও হরকে \(b\) দ্বারা গুন করে,
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(xLix)\) \(\sec^2{(\tan^{-1}{3})}+cosec^2{(\cot^{-1}{5})}=36\)সমাধানঃ
\(L.S=\sec^2{(\tan^{-1}{3})}+cosec^2{(\cot^{-1}{5})}\)
\(=1+\tan^2{(\tan^{-1}{3})}+1+\cot^2{(\cot^{-1}{5})}\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
এবং \(cosec^2{A}=1+\cot^2{A}\)
\(=2+\left\{\tan{(\tan^{-1}{3})}\right\}^2+\left\{\cot{(\cot^{-1}{5})}\right\}^2\)
\(=2+\left\{3\right\}^2+\left\{5\right\}^2\)
\(=2+9+25\)
\(=36\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=1+\tan^2{(\tan^{-1}{3})}+1+\cot^2{(\cot^{-1}{5})}\) ➜ \(\because \sec^2{A}=1+\tan^2{A}\)
এবং \(cosec^2{A}=1+\cot^2{A}\)
\(=2+\left\{\tan{(\tan^{-1}{3})}\right\}^2+\left\{\cot{(\cot^{-1}{5})}\right\}^2\)
\(=2+\left\{3\right\}^2+\left\{5\right\}^2\)
\(=2+9+25\)
\(=36\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(L)\) \(\sin{\cot^{-1}{\cos{\tan^{-1}{x}}}}=\sqrt{\frac{1+x^2}{2+x^2}}\)সমাধানঃ
\(L.S=\sin{\cot^{-1}{\cos{\tan^{-1}{x}}}}\)
\(=\sin{\cot^{-1}{\cos{\left(\cos^{-1}{\frac{1}{\sqrt{1+x^2}}}\right)}}}\) ➜ এখানে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{1^2+x^2} \)
\(=\sqrt{1+x^2} \)
\(\therefore \tan^{-1}{x}=\cos^{-1}{\frac{1}{\sqrt{1+x^2}}}\)
\(=\sin{\cot^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}}\)
\(=\sin{\left(\sin^{-1}{\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}}\right)}\) ➜ এখানে,
\(\text{ভূমি}=1, \ \text{লম্ব}=\sqrt{1+x^2}\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{1^2+(\sqrt{1+x^2})^2} \)
\(=\sqrt{1+1+x^2} \)
\(=\sqrt{2+x^2} \)
\(\therefore \cot^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}=\sin^{-1}{\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}}\)
\(=\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}\)
\(=\sqrt{\frac{1+x^2}{2+x^2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\cot^{-1}{\cos{\left(\cos^{-1}{\frac{1}{\sqrt{1+x^2}}}\right)}}}\) ➜ এখানে,
\(\text{লম্ব}=x, \ \text{ভূমি}=1\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{1^2+x^2} \)
\(=\sqrt{1+x^2} \)
\(\therefore \tan^{-1}{x}=\cos^{-1}{\frac{1}{\sqrt{1+x^2}}}\)
\(=\sin{\cot^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}}\)
\(=\sin{\left(\sin^{-1}{\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}}\right)}\) ➜ এখানে,
\(\text{ভূমি}=1, \ \text{লম্ব}=\sqrt{1+x^2}\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{1^2+(\sqrt{1+x^2})^2} \)
\(=\sqrt{1+1+x^2} \)
\(=\sqrt{2+x^2} \)
\(\therefore \cot^{-1}{\left(\frac{1}{\sqrt{1+x^2}}\right)}=\sin^{-1}{\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}}\)
\(=\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}\)
\(=\sqrt{\frac{1+x^2}{2+x^2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Li)\) \(\tan{\cot^{-1}{\tan{\cos^{-1}{x}}}}=\frac{x}{\sqrt{1-x^2}}\)সমাধানঃ
\(L.S=\tan{\cot^{-1}{\tan{\cos^{-1}{x}}}}\)
\(=\tan{\cot^{-1}{\tan{\left(\tan^{-1}{\frac{\sqrt{1-x^2} }{x}}\right)}}}\) ➜ এখানে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2} }{x}}\)
\(=\tan{\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}}\)
\(=\tan{\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\frac{x}{\sqrt{1-x^2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\tan{\cot^{-1}{\tan{\left(\tan^{-1}{\frac{\sqrt{1-x^2} }{x}}\right)}}}\) ➜ এখানে,
\(\text{ভূমি}=x, \ \text{অতিভুজ}=1\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{1^2-x^2} \)
\(=\sqrt{1-x^2} \)
\(\therefore \cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2} }{x}}\)
\(=\tan{\cot^{-1}{\left(\frac{\sqrt{1-x^2}}{x}\right)}}\)
\(=\tan{\tan^{-1}{\left(\frac{x}{\sqrt{1-x^2}}\right)}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\frac{x}{\sqrt{1-x^2}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Lii)\) \(\sin{cosec^{-1}{\cot{\tan^{-1}{x}}}}=x\)সমাধানঃ
\(L.S=\sin{cosec^{-1}{\cot{\tan^{-1}{x}}}}\)
\(=\sin{cosec^{-1}{\cot{\left(\cot^{-1}{\frac{1}{x}}\right)}}}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(=\sin{cosec^{-1}{\left(\frac{1}{x}\right)}}\)
\(=\sin{\sin^{-1}{x}}\) ➜ \(\because cosec^{-1}{\left(\frac{1}{x}\right)}=\sin^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{cosec^{-1}{\cot{\left(\cot^{-1}{\frac{1}{x}}\right)}}}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(=\sin{cosec^{-1}{\left(\frac{1}{x}\right)}}\)
\(=\sin{\sin^{-1}{x}}\) ➜ \(\because cosec^{-1}{\left(\frac{1}{x}\right)}=\sin^{-1}{x}\)
\(=x\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Liii)\) \(\tan^{-1}{x}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x^2}{2x}\right)}=\frac{1}{2}\sec^{-1}{\left(\frac{1+x^2}{1-x^2}\right)}\)সমাধানঃ
এখনে,
\(\tan^{-1}{x}=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\)
\(=\frac{1}{2}cosec^{-1}{\left(\frac{1+x^2}{2x}\right)}\) ➜ \(\because \sin^{-1}{x}=cosec^{-1}{\frac{1}{x}}\)
\(\therefore \tan^{-1}{x}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x^2}{2x}\right)} .......(1)\)
আবার,
\(\tan^{-1}{x}=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(=\frac{1}{2}\sec^{-1}{\left(\frac{1+x^2}{1-x^2}\right)}\) ➜ \(\because \sin^{-1}{x}=cosec^{-1}{\frac{1}{x}}\)
\(\therefore \tan^{-1}{x}=\frac{1}{2}\sec^{-1}{\left(\frac{1+x^2}{1-x^2}\right)} .......(2)\)
\((1)\) ও \((2)\) হতে,
\(\tan^{-1}{x}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x^2}{2x}\right)}=\frac{1}{2}\sec^{-1}{\left(\frac{1+x^2}{1-x^2}\right)}\)
(প্রমাণিত)
\(\tan^{-1}{x}=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\)
\(=\frac{1}{2}cosec^{-1}{\left(\frac{1+x^2}{2x}\right)}\) ➜ \(\because \sin^{-1}{x}=cosec^{-1}{\frac{1}{x}}\)
\(\therefore \tan^{-1}{x}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x^2}{2x}\right)} .......(1)\)
আবার,
\(\tan^{-1}{x}=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(=\frac{1}{2}\sec^{-1}{\left(\frac{1+x^2}{1-x^2}\right)}\) ➜ \(\because \sin^{-1}{x}=cosec^{-1}{\frac{1}{x}}\)
\(\therefore \tan^{-1}{x}=\frac{1}{2}\sec^{-1}{\left(\frac{1+x^2}{1-x^2}\right)} .......(2)\)
\((1)\) ও \((2)\) হতে,
\(\tan^{-1}{x}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x^2}{2x}\right)}=\frac{1}{2}\sec^{-1}{\left(\frac{1+x^2}{1-x^2}\right)}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Liv)\) \(\tan^{-1}{x}=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)সমাধানঃ
এখনে,
\(\tan^{-1}{x}=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\)
\(\therefore \tan^{-1}{x}=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)} .......(1)\)
আবার,
\(\tan^{-1}{x}=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(\therefore \tan^{-1}{x}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)} .......(2)\)
\((1)\) ও \((2)\) হতে,
\(\tan^{-1}{x}=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
(প্রমাণিত)
\(\tan^{-1}{x}=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}\)
\(\therefore \tan^{-1}{x}=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)} .......(1)\)
আবার,
\(\tan^{-1}{x}=\frac{1}{2}\times2\tan^{-1}{x}\)
\(=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
\(\therefore \tan^{-1}{x}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)} .......(2)\)
\((1)\) ও \((2)\) হতে,
\(\tan^{-1}{x}=\frac{1}{2}\sin^{-1}{\left(\frac{2x}{1+x^2}\right)}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x^2}{1+x^2}\right)}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Lv)\) \(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x}{1+x}\right)}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x}{2\sqrt{x}}\right)}=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)}\)সমাধানঃ
এখনে,
\(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\times2\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{1-(\sqrt{x})^2}{1+(\sqrt{x})^2}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=\sin^{-1}{\left(\frac{1-A^2}{1+A^2}\right)}\)
\(=\frac{1}{2}\cos^{-1}{\left(\frac{1-x}{1+x}\right)}\)
\(\therefore \tan^{-1}{\sqrt{x}}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x}{1+x}\right)} .......(1)\)
আবার,
\(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\times2\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2\sqrt{x}}{1+(\sqrt{x})^2}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=\sin^{-1}{\left(\frac{2A}{1+A^2}\right)}\)
\(=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)}\)
\(=\frac{1}{2}cosec^{-1}{\left(\frac{1+x}{2\sqrt{x}}\right)}\)
\(\therefore \tan^{-1}{\sqrt{x}}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x}{2\sqrt{x}}\right)} .......(2)\)
আবার,
\(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\times2\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2\sqrt{x}}{1+(\sqrt{x})^2}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=\sin^{-1}{\left(\frac{2A}{1+A^2}\right)}\)
\(=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)}\)
\(\therefore \tan^{-1}{\sqrt{x}}=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)} .......(3)\)
\((1)\), \((2)\) ও \((3)\) হতে,
\(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x}{1+x}\right)}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x}{2\sqrt{x}}\right)}=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)}\)
(প্রমাণিত)
\(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\times2\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\cos^{-1}{\left\{\frac{1-(\sqrt{x})^2}{1+(\sqrt{x})^2}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=\sin^{-1}{\left(\frac{1-A^2}{1+A^2}\right)}\)
\(=\frac{1}{2}\cos^{-1}{\left(\frac{1-x}{1+x}\right)}\)
\(\therefore \tan^{-1}{\sqrt{x}}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x}{1+x}\right)} .......(1)\)
আবার,
\(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\times2\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2\sqrt{x}}{1+(\sqrt{x})^2}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=\sin^{-1}{\left(\frac{2A}{1+A^2}\right)}\)
\(=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)}\)
\(=\frac{1}{2}cosec^{-1}{\left(\frac{1+x}{2\sqrt{x}}\right)}\)
\(\therefore \tan^{-1}{\sqrt{x}}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x}{2\sqrt{x}}\right)} .......(2)\)
আবার,
\(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\times2\tan^{-1}{\sqrt{x}}\)
\(=\frac{1}{2}\sin^{-1}{\left\{\frac{2\sqrt{x}}{1+(\sqrt{x})^2}\right\}}\) ➜ \(\because 2\tan^{-1}{A}=\sin^{-1}{\left(\frac{2A}{1+A^2}\right)}\)
\(=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)}\)
\(\therefore \tan^{-1}{\sqrt{x}}=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)} .......(3)\)
\((1)\), \((2)\) ও \((3)\) হতে,
\(\tan^{-1}{\sqrt{x}}=\frac{1}{2}\cos^{-1}{\left(\frac{1-x}{1+x}\right)}=\frac{1}{2}cosec^{-1}{\left(\frac{1+x}{2\sqrt{x}}\right)}=\frac{1}{2}\sin^{-1}{\left(\frac{2\sqrt{x}}{1+x}\right)}\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Lvi)\) \(\left\{\cos{(\sin^{-1}{x})}\right\}^2=\left\{\sin{(\cos^{-1}{x})}\right\}^2\)সমাধানঃ
\(L.S=\left\{\cos{(\sin^{-1}{x})}\right\}^2\)
\(=\left\{\cos{\left(\cos^{-1}{\sqrt{1-x^2}}\right)}\right\}^2\) ➜ \(\because \sin^{-1}{A}=\cos^{-1}{\left(\sqrt{1-A^2}\right)}\)
\(=\left\{\sqrt{1-x^2}\right\}^2\)
\(=1-x^2\)
আবার,
\(R.S=\left\{\sin{(\cos^{-1}{x})}\right\}^2\)
\(=\left\{\sin{\left(\sin^{-1}{\sqrt{1-x^2}}\right)}\right\}^2\) ➜ \(\because \cos^{-1}{A}=\sin^{-1}{\left(\sqrt{1-A^2}\right)}\)
\(=\left\{\sqrt{1-x^2}\right\}^2\)
\(=1-x^2\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\left\{\cos{\left(\cos^{-1}{\sqrt{1-x^2}}\right)}\right\}^2\) ➜ \(\because \sin^{-1}{A}=\cos^{-1}{\left(\sqrt{1-A^2}\right)}\)
\(=\left\{\sqrt{1-x^2}\right\}^2\)
\(=1-x^2\)
আবার,
\(R.S=\left\{\sin{(\cos^{-1}{x})}\right\}^2\)
\(=\left\{\sin{\left(\sin^{-1}{\sqrt{1-x^2}}\right)}\right\}^2\) ➜ \(\because \cos^{-1}{A}=\sin^{-1}{\left(\sqrt{1-A^2}\right)}\)
\(=\left\{\sqrt{1-x^2}\right\}^2\)
\(=1-x^2\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Lvii)\) \(\sin{\left(\sin^{-1}{\frac{1}{3}}+\sec^{-1}{3}\right)}+\cos{\left(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{2}\right)}=1\)সমাধানঃ
\(L.S=\sin{\left(\sin^{-1}{\frac{1}{3}}+\sec^{-1}{3}\right)}+\cos{\left(\tan^{-1}{\frac{1}{2}}+\tan^{-1}{2}\right)}\)
\(=\sin{\left(\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{1}{3}}\right)}+\cos{\left(\tan^{-1}{\frac{1}{2}}+\cot^{-1}{\frac{1}{2}}\right)}\) ➜ \(\because \sec^{-1}{A}=\cos^{-1}{\left(\frac{1}{A}\right)}\)
এবং \(\tan^{-1}{A}=\cot^{-1}{\left(\frac{1}{A}\right)}\)
\(=\sin{\left(\frac{\pi}{2}\right)}+\cos{\left(\frac{\pi}{2}\right)}\) ➜ \(\because \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
এবং \(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(=1+0\) ➜ \(\because \sin{\left(\frac{\pi}{2}\right)}=1\)
এবং \(\cos{\left(\frac{\pi}{2}\right)}=0\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin{\left(\sin^{-1}{\frac{1}{3}}+\cos^{-1}{\frac{1}{3}}\right)}+\cos{\left(\tan^{-1}{\frac{1}{2}}+\cot^{-1}{\frac{1}{2}}\right)}\) ➜ \(\because \sec^{-1}{A}=\cos^{-1}{\left(\frac{1}{A}\right)}\)
এবং \(\tan^{-1}{A}=\cot^{-1}{\left(\frac{1}{A}\right)}\)
\(=\sin{\left(\frac{\pi}{2}\right)}+\cos{\left(\frac{\pi}{2}\right)}\) ➜ \(\because \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
এবং \(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)
\(=1+0\) ➜ \(\because \sin{\left(\frac{\pi}{2}\right)}=1\)
এবং \(\cos{\left(\frac{\pi}{2}\right)}=0\)
\(=1\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Lviii)\) \(\cos^{-1}{\left\{1+\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}\right\}^{\frac{1}{2}}}=\sin^{-1}{\sqrt{\frac{x-a}{x+a}}}\)সমাধানঃ
\(L.S=\cos^{-1}{\left\{1+\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}\right\}^{\frac{1}{2}}}\)
\(=\cos^{-1}{\left\{\sqrt{1+\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}}\right\}}\)
\(=\sin^{-1}{\left[\sqrt{1-\left\{\sqrt{1+\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}}\right\}^2}\right]}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(=\sin^{-1}{\left\{\sqrt{1-1-\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{-\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}}\right\}}\)
\(=\sin^{-1}{\left[\sqrt{-\cos{\cos^{-1}{\left\{\frac{1-\left(\sqrt{\frac{x}{a}}\right)^2}{1+\left(\sqrt{\frac{x}{a}}\right)^2}\right\}}}}\right]}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\sin^{-1}{\sqrt{-\left\{\frac{1-\frac{x}{a}}{1+\frac{x}{a}}\right\}}}\)
\(=\sin^{-1}{\sqrt{-\left\{\frac{a-x}{a+x}\right\}}}\) ➜ লব ও হরকে \(a\) দ্বারা গুন করে,
\(=\sin^{-1}{\sqrt{-\left\{-\frac{x-a}{x+a}\right\}}}\)
\(=\sin^{-1}{\sqrt{\frac{x-a}{x+a}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos^{-1}{\left\{\sqrt{1+\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}}\right\}}\)
\(=\sin^{-1}{\left[\sqrt{1-\left\{\sqrt{1+\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}}\right\}^2}\right]}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(=\sin^{-1}{\left\{\sqrt{1-1-\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{-\cos{\left(2\tan^{-1}{\sqrt{\frac{x}{a}}}\right)}}\right\}}\)
\(=\sin^{-1}{\left[\sqrt{-\cos{\cos^{-1}{\left\{\frac{1-\left(\sqrt{\frac{x}{a}}\right)^2}{1+\left(\sqrt{\frac{x}{a}}\right)^2}\right\}}}}\right]}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\sin^{-1}{\sqrt{-\left\{\frac{1-\frac{x}{a}}{1+\frac{x}{a}}\right\}}}\)
\(=\sin^{-1}{\sqrt{-\left\{\frac{a-x}{a+x}\right\}}}\) ➜ লব ও হরকে \(a\) দ্বারা গুন করে,
\(=\sin^{-1}{\sqrt{-\left\{-\frac{x-a}{x+a}\right\}}}\)
\(=\sin^{-1}{\sqrt{\frac{x-a}{x+a}}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Lix)\) \(\cos{\left(2\tan^{-1}{\frac{y}{x}}\right)}=\frac{x^2-y^2}{x^2+y^2}\) সিঃ২০১৭ ।
সমাধানঃ
\(L.S=\cos{\left(2\tan^{-1}{\frac{y}{x}}\right)}\)
\(=\cos{\left\{\cos^{-1}{\frac{1-\left(\frac{y}{x}\right)^2}{1+\left(\frac{y}{x}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\frac{1-\left(\frac{y}{x}\right)^2}{1+\left(\frac{y}{x}\right)^2}\)
\(=\frac{1-\frac{y^2}{x^2}}{1+\frac{y^2}{x^2}}\)
\(=\frac{x^2-y^2}{x^2+y^2}\) ➜ লব ও হরকে \(x^2\) দ্বারা গুন করে,
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\cos{\left\{\cos^{-1}{\frac{1-\left(\frac{y}{x}\right)^2}{1+\left(\frac{y}{x}\right)^2}}\right\}}\) ➜ \(\because 2\tan^{-1}{x}=\cos^{-1}{\frac{1-x^2}{1+x^2}}\)
\(=\frac{1-\left(\frac{y}{x}\right)^2}{1+\left(\frac{y}{x}\right)^2}\)
\(=\frac{1-\frac{y^2}{x^2}}{1+\frac{y^2}{x^2}}\)
\(=\frac{x^2-y^2}{x^2+y^2}\) ➜ লব ও হরকে \(x^2\) দ্বারা গুন করে,
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
প্রমাণ করঃ
\(Q.3.(Lx)\) \(\sin^2{\left(\cos^{-1}{\frac{1}{3}}\right)}+\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}=\frac{14}{9}\) সিঃ২০১৭ ।
সমাধানঃ
\(L.S=\sin^2{\left(\cos^{-1}{\frac{1}{3}}\right)}+\cos^2{\left(\sin^{-1}{\frac{1}{\sqrt{3}}}\right)}\)
\(=\sin^2{\left\{\sin^{-1}{\sqrt{1-\left(\frac{1}{3}\right)^2}}\right\}}+\cos^2{\left\{\cos^{-1}{\sqrt{1-\left(\frac{1}{\sqrt{3}}\right)^2}}\right\}}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
এবং \(\sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)
\(=\left[\sin{\left\{\sin^{-1}{\sqrt{1-\left(\frac{1}{3}\right)^2}}\right\}}\right]^2+\left[\cos{\left\{\cos^{-1}{\sqrt{1-\left(\frac{1}{\sqrt{3}}\right)^2}}\right\}}\right]^2\)
\(=\left\{\sqrt{1-\frac{1}{9}}\right\}^2+\left\{\sqrt{1-\frac{1}{3}}\right\}^2\)
\(=\frac{9-1}{9}+\frac{3-1}{3}\)
\(=\frac{8}{9}+\frac{2}{3}\)
\(=\frac{8+6}{9}\)
\(=\frac{14}{9}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(=\sin^2{\left\{\sin^{-1}{\sqrt{1-\left(\frac{1}{3}\right)^2}}\right\}}+\cos^2{\left\{\cos^{-1}{\sqrt{1-\left(\frac{1}{\sqrt{3}}\right)^2}}\right\}}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
এবং \(\sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)
\(=\left[\sin{\left\{\sin^{-1}{\sqrt{1-\left(\frac{1}{3}\right)^2}}\right\}}\right]^2+\left[\cos{\left\{\cos^{-1}{\sqrt{1-\left(\frac{1}{\sqrt{3}}\right)^2}}\right\}}\right]^2\)
\(=\left\{\sqrt{1-\frac{1}{9}}\right\}^2+\left\{\sqrt{1-\frac{1}{3}}\right\}^2\)
\(=\frac{9-1}{9}+\frac{3-1}{3}\)
\(=\frac{8}{9}+\frac{2}{3}\)
\(=\frac{8+6}{9}\)
\(=\frac{14}{9}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
অধ্যায় \(7H\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
\(Q.4.(i)\) \(\cot^{-1}{\cos{\left(cosec^{-1}{\sqrt{\frac{3}{2}}}\right)}}\) এর মুখ্যমান নির্ণয় কর।
উত্তরঃ \(\frac{\pi}{3}\)
\(Q.4.(ii)\) \(\sec{A}=\sqrt{5}, \ cosec{B}=\frac{5}{3}\) এবং \(\cot{C}=3\) হলে, \(A+C-\frac{1}{2}B\) এর মান নির্ণয় কর।
উত্তরঃ \(\tan^{-1}{2}\)
\(Q.4.(iii)\) \(\sin{\theta}=\frac{4}{5}\) হলে প্রমাণ কর যে, \(\sec^{-1}{\sqrt{5}}+\frac{1}{2}\theta-\sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{2}\)
\(Q.4.(iv)\) যদি \(\sec{\theta}-cosec \ {\theta}=\frac{4}{3}\) হয় তবে দেখাও যে, \(\theta=\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
\(Q.4.(v)\) প্রমাণ কর যে, \(\sin^{-1}{\frac{3}{5}}+\frac{1}{2}\cos^{-1}{\frac{5}{13}}-\cot^{-1}{2}=\tan^{-1}{\frac{28}{29}}\)
\(Q.4.(vi)\) প্রমাণ কর যে, \(\frac{1}{2}\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{3}{5}}=\cot^{-1}{2}+\cot^{-1}{\frac{29}{28}}\)
\(Q.4.(vii)\) \(f(x)=\sin^{-1}{x}\) এবং \(g(x)=\cos{x}\) হলে, \(f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}+f\left\{\sqrt{g(2\theta)}\right\}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{\pi}{2}\)
\(Q.4.(viii)\) যদি \(\sin^{-1}{x}+\sin^{-1}{y}=\frac{\pi}{2}\) হয় তবে দেখাও যে,
\((a)\) \(x^2+y^2=1\)
\(Q.4.(ix)\) \(A+B+C=\pi, \ A=\tan^{-1}{2}\) এবং \(B=\tan^{-1}{3}\) হলে দেখাও যে, \(C=\frac{\pi}{4}\)
\(Q.4.(x)\) \(f(x)=\tan{x}, \ f^{-1}{x}+f^{-1}{y}=\pi\) হলে প্রমাণ কর যে, প্রাপ্ত সঞ্চারপথটি একটি সরলরেখা নির্দেশ করে যার ঢাল \(-1\)
\(Q.4.(xi)\) যদি \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi\) হয় তবে প্রমাণ কর যে, \(x+y+z=xyz\)
\(Q.4.(xii)\) যদি \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\frac{\pi}{2}\) হয় তবে প্রমাণ কর যে, \(xy+yz+zx=1\)
\(Q.4.(xiii)\) যদি \(cosec^{-1}{\frac{1+a^2}{2a}}-\sec^{-1}{\frac{1+b^2}{1-b^2}}=2\tan^{-1}{x}\) হয় তবে প্রমাণ কর যে, \(x=\frac{a-b}{1+ab}\)
\(Q.4.(xiv)\) \(\tan^{-1}{x}+\frac{1}{2}\sec^{-1}{\frac{1+y^2}{1-y^2}}+\frac{1}{2}cosec^{-1}{\frac{1+z^2}{2z}}=\pi\) হলে দেখাও যে, \(x+y+z=xyz\)
\(Q.4.(xv)\) যদি \(\cos^{-1}{x}+\cos^{-1}{y}+\cos^{-1}{z}=\pi\) হয় তবে দেখাও যে, \(x^2+y^2+z^2+xyz=1\)
\(Q.4.(xvi)\) যদি \(\cot{\theta}-\tan{\theta}=\frac{6}{5}\) হয় তবে প্রমাণ কর যে, \(\theta=\frac{1}{2}\sin^{-1}{\frac{5}{\sqrt{34}}}\)
উত্তরঃ \(\frac{\pi}{3}\)
রাঃ২০১৭।
\(Q.4.(ii)\) \(\sec{A}=\sqrt{5}, \ cosec{B}=\frac{5}{3}\) এবং \(\cot{C}=3\) হলে, \(A+C-\frac{1}{2}B\) এর মান নির্ণয় কর।
উত্তরঃ \(\tan^{-1}{2}\)
রাঃ২০১৯।
\(Q.4.(iii)\) \(\sin{\theta}=\frac{4}{5}\) হলে প্রমাণ কর যে, \(\sec^{-1}{\sqrt{5}}+\frac{1}{2}\theta-\sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{2}\)
কুঃ২০১৭।
\(Q.4.(iv)\) যদি \(\sec{\theta}-cosec \ {\theta}=\frac{4}{3}\) হয় তবে দেখাও যে, \(\theta=\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
\(Q.4.(v)\) প্রমাণ কর যে, \(\sin^{-1}{\frac{3}{5}}+\frac{1}{2}\cos^{-1}{\frac{5}{13}}-\cot^{-1}{2}=\tan^{-1}{\frac{28}{29}}\)
রাঃ২০১৪; চঃ,সিঃ,বঃ ২০১৩; মাঃ২০১২,২০১০; কুঃ২০১২।
\(Q.4.(vi)\) প্রমাণ কর যে, \(\frac{1}{2}\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{3}{5}}=\cot^{-1}{2}+\cot^{-1}{\frac{29}{28}}\)
দিঃ২০১৯।
\(Q.4.(vii)\) \(f(x)=\sin^{-1}{x}\) এবং \(g(x)=\cos{x}\) হলে, \(f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}+f\left\{\sqrt{g(2\theta)}\right\}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{\pi}{2}\)
যঃ২০১৯।
\(Q.4.(viii)\) যদি \(\sin^{-1}{x}+\sin^{-1}{y}=\frac{\pi}{2}\) হয় তবে দেখাও যে,
\((a)\) \(x^2+y^2=1\)
ঢাঃ২০১৯,২০১৩; চঃ২০১৫,২০০৬; যঃ২০১৪,২০১০,২০০৭; রাঃ২০১২,২০০৭; বঃ২০১২; সিঃ২০০৮; কুঃ২০০৭; মাঃ২০১১,২০০৯; রুয়েটঃ২০০৮-২০০৯ ।
\((a)\) \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)কুঃ২০১০,২০০৪ ।
\(Q.4.(ix)\) \(A+B+C=\pi, \ A=\tan^{-1}{2}\) এবং \(B=\tan^{-1}{3}\) হলে দেখাও যে, \(C=\frac{\pi}{4}\)
চঃ২০১৬,২০১৩,২০০৭; ঢাঃ২০০৮; বঃ২০০৭ ।
\(Q.4.(x)\) \(f(x)=\tan{x}, \ f^{-1}{x}+f^{-1}{y}=\pi\) হলে প্রমাণ কর যে, প্রাপ্ত সঞ্চারপথটি একটি সরলরেখা নির্দেশ করে যার ঢাল \(-1\)
রাঃ২০১৭ ।
\(Q.4.(xi)\) যদি \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi\) হয় তবে প্রমাণ কর যে, \(x+y+z=xyz\)
বঃ২০০৬ ।
\(Q.4.(xii)\) যদি \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\frac{\pi}{2}\) হয় তবে প্রমাণ কর যে, \(xy+yz+zx=1\)
\(Q.4.(xiii)\) যদি \(cosec^{-1}{\frac{1+a^2}{2a}}-\sec^{-1}{\frac{1+b^2}{1-b^2}}=2\tan^{-1}{x}\) হয় তবে প্রমাণ কর যে, \(x=\frac{a-b}{1+ab}\)
ঢাঃ২০১৯; দিঃ২০১১; চুয়েটঃ২০১১-২০১২ ।
\(Q.4.(xiv)\) \(\tan^{-1}{x}+\frac{1}{2}\sec^{-1}{\frac{1+y^2}{1-y^2}}+\frac{1}{2}cosec^{-1}{\frac{1+z^2}{2z}}=\pi\) হলে দেখাও যে, \(x+y+z=xyz\)
রাঃ২০১৫; চঃ২০১১; যঃ২০০৪ ।
\(Q.4.(xv)\) যদি \(\cos^{-1}{x}+\cos^{-1}{y}+\cos^{-1}{z}=\pi\) হয় তবে দেখাও যে, \(x^2+y^2+z^2+xyz=1\)
কুঃ২০১২ ।
\(Q.4.(xvi)\) যদি \(\cot{\theta}-\tan{\theta}=\frac{6}{5}\) হয় তবে প্রমাণ কর যে, \(\theta=\frac{1}{2}\sin^{-1}{\frac{5}{\sqrt{34}}}\)
যঃ২০১৭ ।
\(Q.4.(xvii)\) \(\cot^{-1}{y}-\tan^{-1}{x}=\frac{\pi}{6}\) হলে প্রমাণ কর যে, \(x+y+\sqrt{3}xy=\sqrt{3}\)
\(Q.4.(xviii)\) \(\sec^{-1}{\frac{1}{a}}+\sec^{-1}{\frac{1}{b}}=\alpha\) হলে প্রমাণ কর যে, \(\sin{\alpha}=\sqrt{a^2+b^2-2ab\cos{\alpha}}\)
\(Q.4.(xix)\) যদি \(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\) হয় তবে দেখাও যে, \(\theta=\pm\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
\(Q.4.(xx)\) যদি \(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\) হয় তবে দেখাও যে, \(\theta=\pm\frac{\pi}{4}+\cos^{-1}{\frac{1}{2\sqrt{2}}}\)
\(Q.4.(xxi)\) \(\tan^{-1}{a}+\frac{1}{2}\sec^{-1}{\frac{1+b^2}{1-b^2}}+\frac{1}{2}cosec^{-1}{\frac{1+c^2}{2c}}=\pi\) হলে দেখাও যে, \(a+b+c=acb\)
\(Q.4.(xxii)\) যদি \(2\tan^{-1}{x}=\sin^{-1}{\frac{2a}{1+a^2}}-\cos^{-1}{\frac{1-b^2}{1+b^2}}\) হয় তবে প্রমাণ কর যে, \(x=\frac{a-b}{1+ab}\)
\(Q.4.(xxiii)\) যদি \(\sin^{-1}{x}+\sin^{-1}{y}+\sin^{-1}{z}=\pi\) হয় তবে দেখাও যে, \(x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}=2xyz\)
\(Q.4.(xxiv)\) \(\sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}\)
\(+\cos^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}=\frac{\pi}{2}\) এবং \(|x|=\sqrt{2}\) হলে দেখাও যে, \(x=1\)
\(Q.4.(xxv)\) \(\sin{(\pi cosec \ {\theta})}=\cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}\) হলে দেখাও যে, \(\theta=\sin^{-1}{\left(\frac{3}{4n+1}\right)}\)
অথবা, \(\theta=\sin^{-1}{\left(\frac{1}{1-4n}\right)}\)
\(Q.4.(xxvi)\) \(\tan{(\theta-\alpha)}\tan{(\theta-\beta)}=\tan^2{\theta}\) হলে দেখাও যে, \(\theta=\frac{1}{2}\tan^{-1}{\left\{\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\right\}}\)
\(Q.4.(xxvii)\) দেখাও যে, \(\cot^{-1}{(2n-1)}-\cot^{-1}{(2n+1)}=\cot^{-1}{(2n^2)}\)
ইহার সাহায্যে দেখাও যে, \(\cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}=\cot^{-1}{\left(\frac{4}{3}\right)}\)
\(Q.4.(xxviii)\) দেখাও যে, \(\tan^{-1}{(1+a)}-\tan^{-1}{a}=\cot^{-1}{(1+a+a^2)}\)
ইহার সাহায্যে দেখাও যে, \(\cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}=\cot^{-1}{\left(\frac{3}{2}\right)}\)
\(Q.4.(xxix)\) দেখাও যে, \(\cot^{-1}{(1-a+a^2)}=\tan^{-1}{a}-\tan^{-1}{(a-1)}\)
\(Q.4.(xxx)\) যদি \(x=\sin{\left(\cos^{-1}{y}\right)}\) হয়, তবে দেখাও যে, \(x^2+y^2=1\)
\(Q.4.(xxxi)\) \(\sin^{-1}{\frac{x}{a}}+\sin^{-1}{\frac{y}{b}}=\theta\) হয় তবে দেখাও যে, \(\frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}.\)
\(Q.4.(xxxii)\) \(\cos^{-1}{x}+\cos^{-1}{y}=\theta\) হলে প্রমাণ কর যে, \(x^2-2xy\cos{\theta}+y^2=\sin^2{\theta}\)
\(Q.4.(xxxiii)\) \(\sec^{-1}{x}=cosec^{-1}{y}\) হলে প্রমাণ কর যে, \(\frac{1}{x^2}+\frac{1}{y^2}=1\)
চঃ২০১৭ ।
\(Q.4.(xviii)\) \(\sec^{-1}{\frac{1}{a}}+\sec^{-1}{\frac{1}{b}}=\alpha\) হলে প্রমাণ কর যে, \(\sin{\alpha}=\sqrt{a^2+b^2-2ab\cos{\alpha}}\)
চঃ২০১৯ ।
\(Q.4.(xix)\) যদি \(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\) হয় তবে দেখাও যে, \(\theta=\pm\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
চঃ২০১৯; যঃ২০১৫,২০০৬; বঃ২০১৫; কুঃ২০১৩; দিঃ২০১২; ঢাঃ,রাঃ,বঃ,সিঃ২০১০ ।
\(Q.4.(xx)\) যদি \(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\) হয় তবে দেখাও যে, \(\theta=\pm\frac{\pi}{4}+\cos^{-1}{\frac{1}{2\sqrt{2}}}\)
যঃ২০১৬ ।
\(Q.4.(xxi)\) \(\tan^{-1}{a}+\frac{1}{2}\sec^{-1}{\frac{1+b^2}{1-b^2}}+\frac{1}{2}cosec^{-1}{\frac{1+c^2}{2c}}=\pi\) হলে দেখাও যে, \(a+b+c=acb\)
রাঃ২০১৫; চঃ২০১১; যঃ২০০৪ ।
\(Q.4.(xxii)\) যদি \(2\tan^{-1}{x}=\sin^{-1}{\frac{2a}{1+a^2}}-\cos^{-1}{\frac{1-b^2}{1+b^2}}\) হয় তবে প্রমাণ কর যে, \(x=\frac{a-b}{1+ab}\)
যঃ২০০৫; ঢাঃ২০১৯; দিঃ২০১১; চুয়েটঃ২০১১-২০১২ ।
\(Q.4.(xxiii)\) যদি \(\sin^{-1}{x}+\sin^{-1}{y}+\sin^{-1}{z}=\pi\) হয় তবে দেখাও যে, \(x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}=2xyz\)
\(Q.4.(xxiv)\) \(\sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}\)
\(+\cos^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}=\frac{\pi}{2}\) এবং \(|x|=\sqrt{2}\) হলে দেখাও যে, \(x=1\)
\(Q.4.(xxv)\) \(\sin{(\pi cosec \ {\theta})}=\cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}\) হলে দেখাও যে, \(\theta=\sin^{-1}{\left(\frac{3}{4n+1}\right)}\)
অথবা, \(\theta=\sin^{-1}{\left(\frac{1}{1-4n}\right)}\)
\(Q.4.(xxvi)\) \(\tan{(\theta-\alpha)}\tan{(\theta-\beta)}=\tan^2{\theta}\) হলে দেখাও যে, \(\theta=\frac{1}{2}\tan^{-1}{\left\{\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\right\}}\)
\(Q.4.(xxvii)\) দেখাও যে, \(\cot^{-1}{(2n-1)}-\cot^{-1}{(2n+1)}=\cot^{-1}{(2n^2)}\)
ইহার সাহায্যে দেখাও যে, \(\cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}=\cot^{-1}{\left(\frac{4}{3}\right)}\)
\(Q.4.(xxviii)\) দেখাও যে, \(\tan^{-1}{(1+a)}-\tan^{-1}{a}=\cot^{-1}{(1+a+a^2)}\)
ইহার সাহায্যে দেখাও যে, \(\cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}=\cot^{-1}{\left(\frac{3}{2}\right)}\)
\(Q.4.(xxix)\) দেখাও যে, \(\cot^{-1}{(1-a+a^2)}=\tan^{-1}{a}-\tan^{-1}{(a-1)}\)
\(Q.4.(xxx)\) যদি \(x=\sin{\left(\cos^{-1}{y}\right)}\) হয়, তবে দেখাও যে, \(x^2+y^2=1\)
\(Q.4.(xxxi)\) \(\sin^{-1}{\frac{x}{a}}+\sin^{-1}{\frac{y}{b}}=\theta\) হয় তবে দেখাও যে, \(\frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}.\)
\(Q.4.(xxxii)\) \(\cos^{-1}{x}+\cos^{-1}{y}=\theta\) হলে প্রমাণ কর যে, \(x^2-2xy\cos{\theta}+y^2=\sin^2{\theta}\)
\(Q.4.(xxxiii)\) \(\sec^{-1}{x}=cosec^{-1}{y}\) হলে প্রমাণ কর যে, \(\frac{1}{x^2}+\frac{1}{y^2}=1\)
\(Q.4.(i)\) \(\cot^{-1}{\cos{\left(cosec^{-1}{\sqrt{\frac{3}{2}}}\right)}}\) এর মুখ্যমান নির্ণয় কর।
উত্তরঃ \(\frac{\pi}{3}\)
উত্তরঃ \(\frac{\pi}{3}\)
রাঃ২০১৭।
সমাধানঃ
প্রদত্ত রাশি,
\(\cot^{-1}{\cos{\left(cosec^{-1}{\sqrt{\frac{3}{2}}}\right)}}\)
\(=\cot^{-1}{\cos{\left(cosec^{-1}{\frac{\sqrt{3}}{\sqrt{2}}}\right)}}\)
\(=\cot^{-1}{\cos{\left(\cos^{-1}{\frac{1}{\sqrt{3}}}\right)}}\) ➜ এখানে,
\(\text{লম্ব}=\sqrt{2}, \ \text{অতিভুজ}=\sqrt{3}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{3})^2-(\sqrt{2})^2}\)
\(=\sqrt{3-2}\)
\(=\sqrt{1}\)
\(=1\)
\(\therefore cosec^{-1}{\frac{\sqrt{3}}{\sqrt{2}}}=\cos^{-1}{\frac{1}{\sqrt{3}}}\)
\(=\cot^{-1}{\frac{1}{\sqrt{3}}}\)
\(=\cot^{-1}{\left(\cot{\frac{\pi}{3}}\right)}\) ➜ \(\because \frac{1}{\sqrt{3}}=\cot{\frac{\pi}{3}}\)
\(=\frac{\pi}{3}\)
ইহাই নির্ণেয় মুখ্যমান।
\(\cot^{-1}{\cos{\left(cosec^{-1}{\sqrt{\frac{3}{2}}}\right)}}\)
\(=\cot^{-1}{\cos{\left(cosec^{-1}{\frac{\sqrt{3}}{\sqrt{2}}}\right)}}\)
\(=\cot^{-1}{\cos{\left(\cos^{-1}{\frac{1}{\sqrt{3}}}\right)}}\) ➜ এখানে,
\(\text{লম্ব}=\sqrt{2}, \ \text{অতিভুজ}=\sqrt{3}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{3})^2-(\sqrt{2})^2}\)
\(=\sqrt{3-2}\)
\(=\sqrt{1}\)
\(=1\)
\(\therefore cosec^{-1}{\frac{\sqrt{3}}{\sqrt{2}}}=\cos^{-1}{\frac{1}{\sqrt{3}}}\)
\(=\cot^{-1}{\frac{1}{\sqrt{3}}}\)
\(=\cot^{-1}{\left(\cot{\frac{\pi}{3}}\right)}\) ➜ \(\because \frac{1}{\sqrt{3}}=\cot{\frac{\pi}{3}}\)
\(=\frac{\pi}{3}\)
ইহাই নির্ণেয় মুখ্যমান।
\(Q.4.(ii)\) \(\sec{A}=\sqrt{5}, \ cosec{B}=\frac{5}{3}\) এবং \(\cot{C}=3\) হলে, \(A+C-\frac{1}{2}B\) এর মান নির্ণয় কর।
উত্তরঃ \(\tan^{-1}{2}\)
উত্তরঃ \(\tan^{-1}{2}\)
রাঃ২০১৯।
সমাধানঃ
দেওয়া আছে,
\(\sec{A}=\sqrt{5}, \ cosec{B}=\frac{5}{3}\) এবং \(\cot{C}=3\)
\(\Rightarrow A=\sec^{-1}{\sqrt{5}}, \ B=cosec^{-1}{\frac{5}{3}}\) এবং \(C=\cot^{-1}{3}\)
প্রদত্ত রাশি,
\(A+C-\frac{1}{2}B\)
\(=\sec^{-1}{\sqrt{5}}+\cot^{-1}{3}-\frac{1}{2}cosec^{-1}{\frac{5}{3}}\) ➜ \(\because A=\sec^{-1}{\sqrt{5}}, \ B=cosec^{-1}{\frac{5}{3}}\)
এবং \(C=\cot^{-1}{3}\)
\(=\tan^{-1}{2}+\tan^{-1}{\frac{1}{3}}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2}\)
\(=\sqrt{5-1}\)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sec^{-1}{\sqrt{5}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
তৃতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2}\)
\(=\sqrt{25-9}\)
\(=\sqrt{16}\)
\(=4\)
\(\therefore cosec^{-1}{\frac{5}{3}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{2\tan^{-1}{\frac{1}{3}}-\tan^{-1}{\frac{3}{4}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{2\times\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}}-\tan^{-1}{\frac{3}{4}}\right\}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{\frac{2}{3}}{1-\frac{1}{9}}}-\tan^{-1}{\frac{3}{4}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{6}{9-1}}-\tan^{-1}{\frac{3}{4}}\right\}\) ➜ দ্বিতীয় পদের
লব ও হরকে \(9\) দ্বারা গুন করে।
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{6}{8}}-\tan^{-1}{\frac{3}{4}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\frac{3}{4}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\{0\}\)
\(=\tan^{-1}{2}+0\)
\(=\tan^{-1}{2}\)
ইহাই নির্ণেয় মান।
\(\sec{A}=\sqrt{5}, \ cosec{B}=\frac{5}{3}\) এবং \(\cot{C}=3\)
\(\Rightarrow A=\sec^{-1}{\sqrt{5}}, \ B=cosec^{-1}{\frac{5}{3}}\) এবং \(C=\cot^{-1}{3}\)
প্রদত্ত রাশি,
\(A+C-\frac{1}{2}B\)
\(=\sec^{-1}{\sqrt{5}}+\cot^{-1}{3}-\frac{1}{2}cosec^{-1}{\frac{5}{3}}\) ➜ \(\because A=\sec^{-1}{\sqrt{5}}, \ B=cosec^{-1}{\frac{5}{3}}\)
এবং \(C=\cot^{-1}{3}\)
\(=\tan^{-1}{2}+\tan^{-1}{\frac{1}{3}}-\frac{1}{2}\tan^{-1}{\frac{3}{4}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2}\)
\(=\sqrt{5-1}\)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sec^{-1}{\sqrt{5}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
তৃতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2}\)
\(=\sqrt{25-9}\)
\(=\sqrt{16}\)
\(=4\)
\(\therefore cosec^{-1}{\frac{5}{3}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{2\tan^{-1}{\frac{1}{3}}-\tan^{-1}{\frac{3}{4}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{2\times\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}}-\tan^{-1}{\frac{3}{4}}\right\}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{\frac{2}{3}}{1-\frac{1}{9}}}-\tan^{-1}{\frac{3}{4}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{6}{9-1}}-\tan^{-1}{\frac{3}{4}}\right\}\) ➜ দ্বিতীয় পদের
লব ও হরকে \(9\) দ্বারা গুন করে।
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{6}{8}}-\tan^{-1}{\frac{3}{4}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{3}{4}}-\tan^{-1}{\frac{3}{4}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\{0\}\)
\(=\tan^{-1}{2}+0\)
\(=\tan^{-1}{2}\)
ইহাই নির্ণেয় মান।
\(Q.4.(iii)\) \(\sin{\theta}=\frac{4}{5}\) হলে প্রমাণ কর যে, \(\sec^{-1}{\sqrt{5}}+\frac{1}{2}\theta-\sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{2}\)
কুঃ২০১৭।
সমাধানঃ
দেওয়া আছে,
\(\sin{\theta}=\frac{4}{5}\)
\(\Rightarrow \theta=\sin^{-1}{\frac{4}{5}}\)
\(L.S=\sec^{-1}{\sqrt{5}}+\frac{1}{2}\theta-\sin^{-1}{\frac{1}{\sqrt{5}}}\)
\(=\sec^{-1}{\sqrt{5}}+\frac{1}{2}\sin^{-1}{\frac{4}{5}}-\sin^{-1}{\frac{1}{\sqrt{5}}}\) ➜ \(\because \theta=\sin^{-1}{\frac{4}{5}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2}\)
\(=\sqrt{5-1}\)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sec^{-1}{\sqrt{5}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2}\)
\(=\sqrt{25-16}\)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
তৃতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2}\)
\(=\sqrt{5-1}\)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-2\tan^{-1}{\frac{1}{2}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}}\right\}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{1}{1-\frac{1}{4}}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{4}{4-1}}\right\}\) ➜ তৃতীয় পদের
লব ও হরকে \(4\) দ্বারা গুন করে।
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{4}{3}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\{0\}\)
\(=\tan^{-1}{2}+0\)
\(=\tan^{-1}{2}\)
\(=R.S\)
\(\therefore \sec^{-1}{\sqrt{5}}+\frac{1}{2}\theta-\sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{2}\)
(প্রমাণিত)
\(\sin{\theta}=\frac{4}{5}\)
\(\Rightarrow \theta=\sin^{-1}{\frac{4}{5}}\)
\(L.S=\sec^{-1}{\sqrt{5}}+\frac{1}{2}\theta-\sin^{-1}{\frac{1}{\sqrt{5}}}\)
\(=\sec^{-1}{\sqrt{5}}+\frac{1}{2}\sin^{-1}{\frac{4}{5}}-\sin^{-1}{\frac{1}{\sqrt{5}}}\) ➜ \(\because \theta=\sin^{-1}{\frac{4}{5}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{ভূমি}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{লম্ব}=\sqrt{(\text{অতিভুজ})^2-(\text{ভূমি})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2}\)
\(=\sqrt{5-1}\)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sec^{-1}{\sqrt{5}}=\tan^{-1}{\frac{2}{1}}\)
\(=\tan^{-1}{2}\)
দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=4, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-4^2}\)
\(=\sqrt{25-16}\)
\(=\sqrt{9}\)
\(=3\)
\(\therefore \sin^{-1}{\frac{4}{5}}=\tan^{-1}{\frac{4}{3}}\)
তৃতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=1, \ \text{অতিভুজ}=\sqrt{5}\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{(\sqrt{5})^2-1^2}\)
\(=\sqrt{5-1}\)
\(=\sqrt{4}\)
\(=2\)
\(\therefore \sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-2\tan^{-1}{\frac{1}{2}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{2\times\frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}}\right\}\) ➜ \(\because 2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{1}{1-\frac{1}{4}}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{4}{4-1}}\right\}\) ➜ তৃতীয় পদের
লব ও হরকে \(4\) দ্বারা গুন করে।
\(=\tan^{-1}{2}+\frac{1}{2}\left\{\tan^{-1}{\frac{4}{3}}-\tan^{-1}{\frac{4}{3}}\right\}\)
\(=\tan^{-1}{2}+\frac{1}{2}\{0\}\)
\(=\tan^{-1}{2}+0\)
\(=\tan^{-1}{2}\)
\(=R.S\)
\(\therefore \sec^{-1}{\sqrt{5}}+\frac{1}{2}\theta-\sin^{-1}{\frac{1}{\sqrt{5}}}=\tan^{-1}{2}\)
(প্রমাণিত)
\(Q.4.(iv)\) যদি \(\sec{\theta}-cosec \ {\theta}=\frac{4}{3}\) হয় তবে দেখাও যে, \(\theta=\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
সমাধানঃ
দেওয়া আছে,
\(\sec{\theta}-cosec \ {\theta}=\frac{4}{3}\)
\(\Rightarrow \frac{1}{\cos{\theta}}-\frac{1}{\sin{\theta}}=\frac{4}{3}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
এবং \(cosec \ {A}=\frac{1}{\sin{A}}\)
\(\Rightarrow \frac{\sin{\theta}-\cos{\theta}}{\sin{\theta}\cos{\theta}}=\frac{4}{3}\)
\(\Rightarrow \frac{\sin{\theta}-\cos{\theta}}{2\sin{\theta}\cos{\theta}}=\frac{2}{3}\)
\(\Rightarrow \frac{\sin{\theta}-\cos{\theta}}{\sin{2\theta}}=\frac{2}{3}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \frac{(\sin{\theta}-\cos{\theta})^2}{\sin^2{2\theta}}=\frac{4}{9}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\sin^2{\theta}-2\sin{\theta}\cos{\theta}+\cos^2{\theta}}{\sin^2{2\theta}}=\frac{4}{9}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(\Rightarrow \frac{\sin^2{\theta}+\cos^2{\theta}-2\sin{\theta}\cos{\theta}}{\sin^2{2\theta}}=\frac{4}{9}\)
\(\Rightarrow \frac{1-\sin{2\theta}}{\sin^2{2\theta}}=\frac{4}{9}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow 4\sin^2{2\theta}=9-9\sin{2\theta}\)
\(\Rightarrow 4\sin^2{2\theta}+9\sin{2\theta}-9=0\)
\(\Rightarrow 4\sin^2{2\theta}+12\sin{2\theta}-3\sin{2\theta}-9=0\)
\(\Rightarrow 4\sin{2\theta}(\sin{2\theta}+3)-3(\sin{2\theta}+3)=0\)
\(\Rightarrow (\sin{2\theta}+3)(4\sin{2\theta}-3)=0\)
\(\Rightarrow \sin{2\theta}+3\ne{0}, \ 4\sin{2\theta}-3=0\)
\(\Rightarrow 4\sin{2\theta}=3\)
\(\Rightarrow \sin{2\theta}=\frac{3}{4}\)
\(\Rightarrow 2\theta=\sin^{-1}{\frac{3}{4}}\)
\(\therefore \theta=\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
(দেখানো হলো।)
\(\sec{\theta}-cosec \ {\theta}=\frac{4}{3}\)
\(\Rightarrow \frac{1}{\cos{\theta}}-\frac{1}{\sin{\theta}}=\frac{4}{3}\) ➜ \(\because \sec{A}=\frac{1}{\cos{A}}\)
এবং \(cosec \ {A}=\frac{1}{\sin{A}}\)
\(\Rightarrow \frac{\sin{\theta}-\cos{\theta}}{\sin{\theta}\cos{\theta}}=\frac{4}{3}\)
\(\Rightarrow \frac{\sin{\theta}-\cos{\theta}}{2\sin{\theta}\cos{\theta}}=\frac{2}{3}\)
\(\Rightarrow \frac{\sin{\theta}-\cos{\theta}}{\sin{2\theta}}=\frac{2}{3}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \frac{(\sin{\theta}-\cos{\theta})^2}{\sin^2{2\theta}}=\frac{4}{9}\) ➜ উভয় পার্শে বর্গ করে।
\(\Rightarrow \frac{\sin^2{\theta}-2\sin{\theta}\cos{\theta}+\cos^2{\theta}}{\sin^2{2\theta}}=\frac{4}{9}\) ➜ \(\because (a-b)^2=a^2-2ab+b^2\)
\(\Rightarrow \frac{\sin^2{\theta}+\cos^2{\theta}-2\sin{\theta}\cos{\theta}}{\sin^2{2\theta}}=\frac{4}{9}\)
\(\Rightarrow \frac{1-\sin{2\theta}}{\sin^2{2\theta}}=\frac{4}{9}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow 4\sin^2{2\theta}=9-9\sin{2\theta}\)
\(\Rightarrow 4\sin^2{2\theta}+9\sin{2\theta}-9=0\)
\(\Rightarrow 4\sin^2{2\theta}+12\sin{2\theta}-3\sin{2\theta}-9=0\)
\(\Rightarrow 4\sin{2\theta}(\sin{2\theta}+3)-3(\sin{2\theta}+3)=0\)
\(\Rightarrow (\sin{2\theta}+3)(4\sin{2\theta}-3)=0\)
\(\Rightarrow \sin{2\theta}+3\ne{0}, \ 4\sin{2\theta}-3=0\)
\(\Rightarrow 4\sin{2\theta}=3\)
\(\Rightarrow \sin{2\theta}=\frac{3}{4}\)
\(\Rightarrow 2\theta=\sin^{-1}{\frac{3}{4}}\)
\(\therefore \theta=\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
(দেখানো হলো।)
\(Q.4.(v)\) প্রমাণ কর যে, \(\sin^{-1}{\frac{3}{5}}+\frac{1}{2}\cos^{-1}{\frac{5}{13}}-\cot^{-1}{2}=\tan^{-1}{\frac{28}{29}}\)
রাঃ২০১৪; চঃ,সিঃ,বঃ ২০১৩; মাঃ২০১২,২০১০; কুঃ২০১২।
সমাধানঃ
ধরি,
\(\frac{1}{2}\cos^{-1}{\frac{5}{13}}=A\)
\(\Rightarrow \cos^{-1}{\frac{5}{13}}=2A\)
\(\Rightarrow \frac{5}{13}=\cos{2A}\)
\(\Rightarrow \frac{5}{13}=\frac{1-\tan^2{A}}{1+\tan^2{A}}\) ➜ \(\because \cos{2x}=\frac{1-\tan^2{x}}{1+\tan^2{x}}\)
\(\Rightarrow 5+5\tan^2{A}=13-13\tan^2{A}\)
\(\Rightarrow 5\tan^2{A}+13\tan^2{A}=13-5\)
\(\Rightarrow 18\tan^2{A}=8\)
\(\Rightarrow \tan^2{A}=\frac{8}{18}\)
\(\Rightarrow \tan^2{A}=\frac{4}{9}\)
\(\Rightarrow \tan{A}=\sqrt{\frac{4}{9}}\)
\(\Rightarrow \tan{A}=\frac{2}{3}\)
\(\Rightarrow A=\tan^{-1}{\frac{2}{3}}\)
\(\therefore \frac{1}{2}\cos^{-1}{\frac{5}{13}}=\tan^{-1}{\frac{2}{3}}\)
\(L.S=\sin^{-1}{\frac{3}{5}}+\frac{1}{2}\cos^{-1}{\frac{5}{13}}-\cot^{-1}{2}\)
\(=\sin^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{2}{3}}-\tan^{-1}{\frac{1}{2}}\) ➜ \(\because \frac{1}{2}\cos^{-1}{\frac{5}{13}}=\tan^{-1}{\frac{2}{3}}\)
এবং \(\cot^{-1}{A}=\tan^{-1}{\frac{1}{A}}\)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{2}{3}}-\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=3, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2}\)
\(=\sqrt{25-9}\)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4}\times\frac{2}{3}}}-\tan^{-1}{\frac{1}{2}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{6}{12}}}-\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\frac{9+8}{12-6}}-\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের
লব ও হরকে \(12\) দ্বারা গুন করে।
\(=\tan^{-1}{\frac{17}{6}}-\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\frac{\frac{17}{6}-\frac{1}{2}}{1+\frac{17}{6}\times\frac{1}{2}}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\frac{\frac{17}{6}-\frac{1}{2}}{1+\frac{17}{12}}}\)
\(=\tan^{-1}{\frac{34-6}{12+17}}\) ➜ লব ও হরকে \(12\) দ্বারা গুন করে।
\(=\tan^{-1}{\frac{28}{29}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\frac{1}{2}\cos^{-1}{\frac{5}{13}}=A\)
\(\Rightarrow \cos^{-1}{\frac{5}{13}}=2A\)
\(\Rightarrow \frac{5}{13}=\cos{2A}\)
\(\Rightarrow \frac{5}{13}=\frac{1-\tan^2{A}}{1+\tan^2{A}}\) ➜ \(\because \cos{2x}=\frac{1-\tan^2{x}}{1+\tan^2{x}}\)
\(\Rightarrow 5+5\tan^2{A}=13-13\tan^2{A}\)
\(\Rightarrow 5\tan^2{A}+13\tan^2{A}=13-5\)
\(\Rightarrow 18\tan^2{A}=8\)
\(\Rightarrow \tan^2{A}=\frac{8}{18}\)
\(\Rightarrow \tan^2{A}=\frac{4}{9}\)
\(\Rightarrow \tan{A}=\sqrt{\frac{4}{9}}\)
\(\Rightarrow \tan{A}=\frac{2}{3}\)
\(\Rightarrow A=\tan^{-1}{\frac{2}{3}}\)
\(\therefore \frac{1}{2}\cos^{-1}{\frac{5}{13}}=\tan^{-1}{\frac{2}{3}}\)
\(L.S=\sin^{-1}{\frac{3}{5}}+\frac{1}{2}\cos^{-1}{\frac{5}{13}}-\cot^{-1}{2}\)
\(=\sin^{-1}{\frac{3}{5}}+\tan^{-1}{\frac{2}{3}}-\tan^{-1}{\frac{1}{2}}\) ➜ \(\because \frac{1}{2}\cos^{-1}{\frac{5}{13}}=\tan^{-1}{\frac{2}{3}}\)
এবং \(\cot^{-1}{A}=\tan^{-1}{\frac{1}{A}}\)
\(=\tan^{-1}{\frac{3}{4}}+\tan^{-1}{\frac{2}{3}}-\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=3, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2}\)
\(=\sqrt{25-9}\)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4}\times\frac{2}{3}}}-\tan^{-1}{\frac{1}{2}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{6}{12}}}-\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\frac{9+8}{12-6}}-\tan^{-1}{\frac{1}{2}}\) ➜ প্রথম পদের
লব ও হরকে \(12\) দ্বারা গুন করে।
\(=\tan^{-1}{\frac{17}{6}}-\tan^{-1}{\frac{1}{2}}\)
\(=\tan^{-1}{\frac{\frac{17}{6}-\frac{1}{2}}{1+\frac{17}{6}\times\frac{1}{2}}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)
\(=\tan^{-1}{\frac{\frac{17}{6}-\frac{1}{2}}{1+\frac{17}{12}}}\)
\(=\tan^{-1}{\frac{34-6}{12+17}}\) ➜ লব ও হরকে \(12\) দ্বারা গুন করে।
\(=\tan^{-1}{\frac{28}{29}}\)
\(=R.S\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(vi)\) প্রমাণ কর যে, \(\frac{1}{2}\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{3}{5}}=\cot^{-1}{2}+\cot^{-1}{\frac{29}{28}}\)
দিঃ২০১৯।
সমাধানঃ
ধরি,
\(\frac{1}{2}\sin^{-1}{\frac{12}{13}}=A\)
\(\Rightarrow \sin^{-1}{\frac{12}{13}}=2A\)
\(\Rightarrow \frac{12}{13}=\sin{2A}\)
\(\Rightarrow \frac{12}{13}=\frac{2\tan{A}}{1+\tan^2{A}}\) ➜ \(\because \sin{2x}=\frac{2\tan{x}}{1+\tan^2{x}}\)
\(\Rightarrow 12+12\tan^2{A}=26\tan{A}\)
\(\Rightarrow 12\tan^2{A}-26\tan{A}+12=0\)
\(\Rightarrow 6\tan^2{A}-13\tan{A}+6=0\) ➜ উভয় পার্শে \(2\) ভাগ করে।
\(\Rightarrow 6\tan^2{A}-9\tan{A}-4\tan{A}+6=0\)
\(\Rightarrow 3\tan{A}(2\tan{A}-3)-2(2\tan{A}-3)=0\)
\(\Rightarrow (2\tan{A}-3)(3\tan{A}-2)=0\)
\(\Rightarrow 2\tan{A}-3=0, \ 3\tan{A}-2=0\)
\(\Rightarrow 2\tan{A}=3, \ 3\tan{A}=2\)
\(\Rightarrow \tan{A}=\frac{3}{2}, \ \tan{A}=\frac{2}{3}\)
\(\Rightarrow A=\tan^{-1}{\frac{3}{2}}, \ A=\tan^{-1}{\frac{2}{3}}\)
\(\therefore \frac{1}{2}\sin^{-1}{\frac{12}{13}}=\tan^{-1}{\frac{2}{3}}\) ➜ \(\tan{A}\) এর ক্ষুদ্র মানটি গ্রহণ করে,
\(L.S=\frac{1}{2}\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{3}{5}}\)
\(=\tan^{-1}{\frac{2}{3}}+\sin^{-1}{\frac{3}{5}}\) ➜ \(\because \frac{1}{2}\sin^{-1}{\frac{12}{13}}=\tan^{-1}{\frac{2}{3}}\)
\(=\tan^{-1}{\frac{2}{3}}+\tan^{-1}{\frac{3}{4}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2}\)
\(=\sqrt{25-9}\)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\frac{\frac{2}{3}+\frac{3}{4}}{1-\frac{2}{3}\times\frac{3}{4}}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\frac{\frac{2}{3}+\frac{3}{4}}{1-\frac{6}{12}}}\)
\(=\tan^{-1}{\frac{8+9}{12-6}}\) ➜ লব ও হরকে \(12\) দ্বারা গুন করে।
\(=\tan^{-1}{\frac{17}{6}}\)
আবার,
\(R.S=\cot^{-1}{2}+\cot^{-1}{\frac{29}{28}}\)
\(=\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{28}{29}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\frac{\frac{1}{2}+\frac{28}{29}}{1-\frac{1}{2}\times\frac{28}{29}}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\frac{\frac{1}{2}+\frac{28}{29}}{1-\frac{28}{58}}}\)
\(=\tan^{-1}{\frac{29+56}{58-28}}\) ➜ লব ও হরকে \(58\) দ্বারা গুন করে।
\(=\tan^{-1}{\frac{85}{30}}\)
\(=\tan^{-1}{\frac{17}{6}}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(\frac{1}{2}\sin^{-1}{\frac{12}{13}}=A\)
\(\Rightarrow \sin^{-1}{\frac{12}{13}}=2A\)
\(\Rightarrow \frac{12}{13}=\sin{2A}\)
\(\Rightarrow \frac{12}{13}=\frac{2\tan{A}}{1+\tan^2{A}}\) ➜ \(\because \sin{2x}=\frac{2\tan{x}}{1+\tan^2{x}}\)
\(\Rightarrow 12+12\tan^2{A}=26\tan{A}\)
\(\Rightarrow 12\tan^2{A}-26\tan{A}+12=0\)
\(\Rightarrow 6\tan^2{A}-13\tan{A}+6=0\) ➜ উভয় পার্শে \(2\) ভাগ করে।
\(\Rightarrow 6\tan^2{A}-9\tan{A}-4\tan{A}+6=0\)
\(\Rightarrow 3\tan{A}(2\tan{A}-3)-2(2\tan{A}-3)=0\)
\(\Rightarrow (2\tan{A}-3)(3\tan{A}-2)=0\)
\(\Rightarrow 2\tan{A}-3=0, \ 3\tan{A}-2=0\)
\(\Rightarrow 2\tan{A}=3, \ 3\tan{A}=2\)
\(\Rightarrow \tan{A}=\frac{3}{2}, \ \tan{A}=\frac{2}{3}\)
\(\Rightarrow A=\tan^{-1}{\frac{3}{2}}, \ A=\tan^{-1}{\frac{2}{3}}\)
\(\therefore \frac{1}{2}\sin^{-1}{\frac{12}{13}}=\tan^{-1}{\frac{2}{3}}\) ➜ \(\tan{A}\) এর ক্ষুদ্র মানটি গ্রহণ করে,
\(L.S=\frac{1}{2}\sin^{-1}{\frac{12}{13}}+\sin^{-1}{\frac{3}{5}}\)
\(=\tan^{-1}{\frac{2}{3}}+\sin^{-1}{\frac{3}{5}}\) ➜ \(\because \frac{1}{2}\sin^{-1}{\frac{12}{13}}=\tan^{-1}{\frac{2}{3}}\)
\(=\tan^{-1}{\frac{2}{3}}+\tan^{-1}{\frac{3}{4}}\) ➜ দ্বিতীয় পদের ক্ষেত্রে,
\(\text{লম্ব}=3, \ \text{অতিভুজ}=5\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{5^2-3^2}\)
\(=\sqrt{25-9}\)
\(=\sqrt{16}\)
\(=4\)
\(\therefore \sin^{-1}{\frac{3}{5}}=\tan^{-1}{\frac{3}{4}}\)
\(=\tan^{-1}{\frac{\frac{2}{3}+\frac{3}{4}}{1-\frac{2}{3}\times\frac{3}{4}}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\frac{\frac{2}{3}+\frac{3}{4}}{1-\frac{6}{12}}}\)
\(=\tan^{-1}{\frac{8+9}{12-6}}\) ➜ লব ও হরকে \(12\) দ্বারা গুন করে।
\(=\tan^{-1}{\frac{17}{6}}\)
আবার,
\(R.S=\cot^{-1}{2}+\cot^{-1}{\frac{29}{28}}\)
\(=\tan^{-1}{\frac{1}{2}}+\tan^{-1}{\frac{28}{29}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\frac{\frac{1}{2}+\frac{28}{29}}{1-\frac{1}{2}\times\frac{28}{29}}}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(=\tan^{-1}{\frac{\frac{1}{2}+\frac{28}{29}}{1-\frac{28}{58}}}\)
\(=\tan^{-1}{\frac{29+56}{58-28}}\) ➜ লব ও হরকে \(58\) দ্বারা গুন করে।
\(=\tan^{-1}{\frac{85}{30}}\)
\(=\tan^{-1}{\frac{17}{6}}\)
\(\therefore L.S=R.S\)
(প্রমাণিত)
\(Q.4.(vii)\) \(f(x)=\sin^{-1}{x}\) এবং \(g(x)=\cos{x}\) হলে, \(f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}+f\left\{\sqrt{g(2\theta)}\right\}\) এর মান নির্ণয় কর।
উত্তরঃ \(\frac{\pi}{2}\)
উত্তরঃ \(\frac{\pi}{2}\)
যঃ২০১৯।
সমাধানঃ
দেওয়া আছে,
\(f(x)=\sin^{-1}{x}\) এবং \(g(x)=\cos{x}\)
\(\therefore g\left(\frac{\pi}{2}-\theta\right)=\cos{\left(\frac{\pi}{2}-\theta\right)}\)
\(=\sin{\theta}\)
এবং
\(g(2\theta)=\cos{2\theta}\)
আবার,
\(f(x)=\sin^{-1}{x}\)
\(\Rightarrow f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}=\sin^{-1}{(\sqrt{2}\sin{\theta})}\) ➜ \(\because g\left(\frac{\pi}{2}-\theta\right)=\sin{\theta}\)
এবং
\(f\left\{\sqrt{g(2\theta)}\right\}=\sin^{-1}{\sqrt{g(2\theta)}}\)
\(=\sin^{-1}{\sqrt{\cos{2\theta}}}\)
এখন প্রদত্ত রাশি,
\(f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}+f\left\{\sqrt{g(2\theta)}\right\}\)
\(=\sin^{-1}{(\sqrt{2}\sin{\theta})}+\sin^{-1}{\sqrt{\cos{2\theta}}}\) ➜ \(\because f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}=\sin^{-1}{(\sqrt{2}\sin{\theta})}\)
এবং \(f\left\{\sqrt{g(2\theta)}\right\}=\sin^{-1}{\sqrt{\cos{2\theta}}}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{1-(\sqrt{\cos{2\theta}})^2}+\sqrt{\cos{2\theta}}\sqrt{1-(\sqrt{2}\sin{\theta})^2}\right\}}\) ➜ \(\because \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{1-\cos{2\theta}}+\sqrt{\cos{2\theta}}\sqrt{1-2\sin^2{\theta}}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{2\sin^2{\theta}}+\sqrt{\cos{2\theta}}\sqrt{\cos{2\theta}}\right\}}\) ➜ \(\because 1-\cos{2A}=2\sin^2{A}\)
এবং \(1-2\sin^2{A}=\cos{2A}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{2}\sin{\theta}+\cos{2\theta}\right\}}\)
\(=\sin^{-1}{\left\{2\sin^2{\theta}+\cos{2\theta}\right\}}\)
\(=\sin^{-1}{\left\{2\sin^2{\theta}+1-2\sin^2{\theta}\right\}}\) ➜ \(\because \cos{2A}=1-2\sin^2{A}\)
\(=\sin^{-1}{\left\{1\right\}}\)
\(=\sin^{-1}{\left\{\sin{\frac{\pi}{2}}\right\}}\) ➜ \(\because 1=\sin{\frac{\pi}{2}}\)
\(=\frac{\pi}{2}\)
ইহাই নির্ণেয় মান।
\(f(x)=\sin^{-1}{x}\) এবং \(g(x)=\cos{x}\)
\(\therefore g\left(\frac{\pi}{2}-\theta\right)=\cos{\left(\frac{\pi}{2}-\theta\right)}\)
\(=\sin{\theta}\)
এবং
\(g(2\theta)=\cos{2\theta}\)
আবার,
\(f(x)=\sin^{-1}{x}\)
\(\Rightarrow f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}=\sin^{-1}{(\sqrt{2}\sin{\theta})}\) ➜ \(\because g\left(\frac{\pi}{2}-\theta\right)=\sin{\theta}\)
এবং
\(f\left\{\sqrt{g(2\theta)}\right\}=\sin^{-1}{\sqrt{g(2\theta)}}\)
\(=\sin^{-1}{\sqrt{\cos{2\theta}}}\)
এখন প্রদত্ত রাশি,
\(f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}+f\left\{\sqrt{g(2\theta)}\right\}\)
\(=\sin^{-1}{(\sqrt{2}\sin{\theta})}+\sin^{-1}{\sqrt{\cos{2\theta}}}\) ➜ \(\because f\left\{\sqrt{2} \ g\left(\frac{\pi}{2}-\theta\right)\right\}=\sin^{-1}{(\sqrt{2}\sin{\theta})}\)
এবং \(f\left\{\sqrt{g(2\theta)}\right\}=\sin^{-1}{\sqrt{\cos{2\theta}}}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{1-(\sqrt{\cos{2\theta}})^2}+\sqrt{\cos{2\theta}}\sqrt{1-(\sqrt{2}\sin{\theta})^2}\right\}}\) ➜ \(\because \sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{1-\cos{2\theta}}+\sqrt{\cos{2\theta}}\sqrt{1-2\sin^2{\theta}}\right\}}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{2\sin^2{\theta}}+\sqrt{\cos{2\theta}}\sqrt{\cos{2\theta}}\right\}}\) ➜ \(\because 1-\cos{2A}=2\sin^2{A}\)
এবং \(1-2\sin^2{A}=\cos{2A}\)
\(=\sin^{-1}{\left\{\sqrt{2}\sin{\theta}\sqrt{2}\sin{\theta}+\cos{2\theta}\right\}}\)
\(=\sin^{-1}{\left\{2\sin^2{\theta}+\cos{2\theta}\right\}}\)
\(=\sin^{-1}{\left\{2\sin^2{\theta}+1-2\sin^2{\theta}\right\}}\) ➜ \(\because \cos{2A}=1-2\sin^2{A}\)
\(=\sin^{-1}{\left\{1\right\}}\)
\(=\sin^{-1}{\left\{\sin{\frac{\pi}{2}}\right\}}\) ➜ \(\because 1=\sin{\frac{\pi}{2}}\)
\(=\frac{\pi}{2}\)
ইহাই নির্ণেয় মান।
\(Q.4.(viii)\) যদি \(\sin^{-1}{x}+\sin^{-1}{y}=\frac{\pi}{2}\) হয় তবে দেখাও যে,
\((a)\) \(x^2+y^2=1\)
\((a)\) \(x^2+y^2=1\)
ঢাঃ২০১৯,২০১৩; চঃ২০১৫,২০০৬; যঃ২০১৪,২০১০,২০০৭; রাঃ২০১২,২০০৭; বঃ২০১২; সিঃ২০০৮; কুঃ২০০৭; মাঃ২০১১,২০০৯; রুয়েটঃ২০০৮-২০০৯ ।
\((a)\) \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)কুঃ২০১০,২০০৪ ।
সমাধানঃ
\((a)\)
দেওয়া আছে,\(\sin^{-1}{x}+\sin^{-1}{y}=\frac{\pi}{2}\)
\(\Rightarrow \sin^{-1}{x}=\frac{\pi}{2}-\sin^{-1}{y}\)
\(\Rightarrow x=\sin{\left(\frac{\pi}{2}-\sin^{-1}{y}\right)}\)
\(\Rightarrow x=\cos{\left(\sin^{-1}{y}\right)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি প্রথম চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(1\) একটি বিজোড় সংখ্যা,
সুতরাং সাইন অনুপাতের পরিবর্তন হয়ে কোসাইন হয়েছে।
\(\Rightarrow x=\cos{\left(\cos^{-1}{\sqrt{1-y^2}}\right)}\) ➜ প্রথম পদের ক্ষেত্রে,
\(\text{লম্ব}=y, \ \text{অতিভুজ}=1\)
\(\therefore \text{ভূমি}=\sqrt{(\text{অতিভুজ})^2-(\text{লম্ব})^2} \)
\(=\sqrt{1^2-y^2}\)
\(=\sqrt{1-y^2}\)
\(\therefore \sin^{-1}{y}=\cos^{-1}{\frac{\sqrt{1-y^2}}{1}}\)
\(=\cos^{-1}{\sqrt{1-y^2}}\)
\(\Rightarrow x=\sqrt{1-y^2}\)
\(\Rightarrow x^2=1-y^2\) ➜ উভয় পার্শে বর্গ করে।
\(\therefore x^2+y^2=1\)
(প্রমাণিত)
\((b)\)
দেওয়া আছে,\(\sin^{-1}{x}+\sin^{-1}{y}=\frac{\pi}{2}\)
\(\Rightarrow \sin^{-1}{x\sqrt{1-y^2}+y\sqrt{1-x^2}}=\frac{\pi}{2}\) ➜ \(\because \sin^{-1}{A}+\sin^{-1}{B}=\sin^{-1}{\left(A\sqrt{1-B^2}+B\sqrt{1-A^2}\right)}\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-x^2}=\sin{\frac{\pi}{2}}\)
\(\therefore x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\) ➜ \(\because \sin{\frac{\pi}{2}}=1\)
(প্রমাণিত)
\(Q.4.(ix)\) \(A+B+C=\pi, \ A=\tan^{-1}{2}\) এবং \(B=\tan^{-1}{3}\) হলে দেখাও যে, \(C=\frac{\pi}{4}\)
চঃ২০১৬,২০১৩,২০০৭; ঢাঃ২০০৮; বঃ২০০৭ ।
সমাধানঃ
দেওয়া আছে,
\(A+B+C=\pi, \ A=\tan^{-1}{2}\) এবং \(B=\tan^{-1}{3}\)
\(\Rightarrow A+B+C=\pi\)
\(\Rightarrow \tan^{-1}{2}+\tan^{-1}{3}+C=\pi\)
\(\Rightarrow \tan^{-1}{\frac{2+3}{1-2\times3}}+C=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(\Rightarrow \tan^{-1}{\frac{5}{1-6}}+C=\pi\)
\(\Rightarrow \tan^{-1}{\frac{5}{-5}}+C=\pi\)
\(\Rightarrow \tan^{-1}{(-1)}+C=\pi\)
\(\Rightarrow \tan^{-1}{\left(-\tan{\frac{\pi}{4}}\right)}+C=\pi\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(\Rightarrow \tan^{-1}{\left\{\tan{\left(\pi-\frac{\pi}{4}\right)}\right\}}+C=\pi\) ➜ \(\because \tan{\left(\pi-\frac{\pi}{4}\right)}=-\tan{\frac{\pi}{4}}\)
\(\Rightarrow \pi-\frac{\pi}{4}+C=\pi\)
\(\Rightarrow C=\pi-\pi+\frac{\pi}{4}\)
\(\therefore C=\frac{\pi}{4}\)
(দেখানো হলো)
\(A+B+C=\pi, \ A=\tan^{-1}{2}\) এবং \(B=\tan^{-1}{3}\)
\(\Rightarrow A+B+C=\pi\)
\(\Rightarrow \tan^{-1}{2}+\tan^{-1}{3}+C=\pi\)
\(\Rightarrow \tan^{-1}{\frac{2+3}{1-2\times3}}+C=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(\Rightarrow \tan^{-1}{\frac{5}{1-6}}+C=\pi\)
\(\Rightarrow \tan^{-1}{\frac{5}{-5}}+C=\pi\)
\(\Rightarrow \tan^{-1}{(-1)}+C=\pi\)
\(\Rightarrow \tan^{-1}{\left(-\tan{\frac{\pi}{4}}\right)}+C=\pi\) ➜ \(\because 1=\tan{\frac{\pi}{4}}\)
\(\Rightarrow \tan^{-1}{\left\{\tan{\left(\pi-\frac{\pi}{4}\right)}\right\}}+C=\pi\) ➜ \(\because \tan{\left(\pi-\frac{\pi}{4}\right)}=-\tan{\frac{\pi}{4}}\)
\(\Rightarrow \pi-\frac{\pi}{4}+C=\pi\)
\(\Rightarrow C=\pi-\pi+\frac{\pi}{4}\)
\(\therefore C=\frac{\pi}{4}\)
(দেখানো হলো)
\(Q.4.(x)\) \(f(x)=\tan{x}, \ f^{-1}{x}+f^{-1}{y}=\pi\) হলে প্রমাণ কর যে, প্রাপ্ত সঞ্চারপথটি একটি সরলরেখা নির্দেশ করে যার ঢাল \(-1\)
রাঃ২০১৭ ।
সমাধানঃ
দেওয়া আছে,
\(f(x)=\tan{x}, \ f^{-1}{x}+f^{-1}{y}=\pi\)
\(\Rightarrow f^{-1}{x}=\tan^{-1}{x}, \ f^{-1}{y}=\tan^{-1}{y}\)
এখন,
\(f^{-1}{x}+f^{-1}{y}=\pi\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{y}=\pi\)
\(\Rightarrow \tan^{-1}{\frac{x+y}{1-xy}}=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(\Rightarrow \frac{x+y}{1-xy}=\tan{\pi}\)
\(\Rightarrow \frac{x+y}{1-xy}=0\) ➜ \(\because \tan{\pi}=0\)
\(\Rightarrow x+y=0\)
\(\because x+y=0, \ x\) এবং \(y\) এর একঘাত সমীকরণ।
অতএব ইহা একটি সরলরেখার সমীকরণ নির্দেশ করে।
যার ঢাল \(=-\frac{1}{1}\) ➜ \(\because ax+by+c=0\) সমীকরণের
ঢাল \(=-\frac{a}{b}\)
\(=-1\)
(প্রমাণিত)
\(f(x)=\tan{x}, \ f^{-1}{x}+f^{-1}{y}=\pi\)
\(\Rightarrow f^{-1}{x}=\tan^{-1}{x}, \ f^{-1}{y}=\tan^{-1}{y}\)
এখন,
\(f^{-1}{x}+f^{-1}{y}=\pi\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{y}=\pi\)
\(\Rightarrow \tan^{-1}{\frac{x+y}{1-xy}}=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)
\(\Rightarrow \frac{x+y}{1-xy}=\tan{\pi}\)
\(\Rightarrow \frac{x+y}{1-xy}=0\) ➜ \(\because \tan{\pi}=0\)
\(\Rightarrow x+y=0\)
\(\because x+y=0, \ x\) এবং \(y\) এর একঘাত সমীকরণ।
অতএব ইহা একটি সরলরেখার সমীকরণ নির্দেশ করে।
যার ঢাল \(=-\frac{1}{1}\) ➜ \(\because ax+by+c=0\) সমীকরণের
ঢাল \(=-\frac{a}{b}\)
\(=-1\)
(প্রমাণিত)
\(Q.4.(xi)\) যদি \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi\) হয় তবে প্রমাণ কর যে, \(x+y+z=xyz\)
বঃ২০০৬ ।
সমাধানঃ
দেওয়া আছে,
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\tan{\pi}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=0\) ➜ \(\because \tan{\pi}=0\)
\(\Rightarrow x+y+z-xyz=0\)
\(\therefore x+y+z=xyz\)
(প্রমাণিত)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\tan{\pi}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=0\) ➜ \(\because \tan{\pi}=0\)
\(\Rightarrow x+y+z-xyz=0\)
\(\therefore x+y+z=xyz\)
(প্রমাণিত)
\(Q.4.(xii)\) যদি \(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\frac{\pi}{2}\) হয় তবে প্রমাণ কর যে, \(xy+yz+zx=1\)
সমাধানঃ
দেওয়া আছে,
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\frac{\pi}{2}\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}=\frac{\pi}{2}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\tan{\frac{\pi}{2}}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\infty\) ➜ \(\because \tan{\frac{\pi}{2}}=\infty\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\frac{1}{0}\)
\(\Rightarrow 1-yz-zx-xy=0\)
\(\Rightarrow 1=yz+zx+xy\)
\(\therefore xy+yz+zx=1\)
(প্রমাণিত)
\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\frac{\pi}{2}\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}=\frac{\pi}{2}\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\tan{\frac{\pi}{2}}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\infty\) ➜ \(\because \tan{\frac{\pi}{2}}=\infty\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\frac{1}{0}\)
\(\Rightarrow 1-yz-zx-xy=0\)
\(\Rightarrow 1=yz+zx+xy\)
\(\therefore xy+yz+zx=1\)
(প্রমাণিত)
\(Q.4.(xiii)\) যদি \(cosec^{-1}{\frac{1+a^2}{2a}}-\sec^{-1}{\frac{1+b^2}{1-b^2}}=2\tan^{-1}{x}\) হয় তবে প্রমাণ কর যে, \(x=\frac{a-b}{1+ab}\)
ঢাঃ২০১৯; দিঃ২০১১; চুয়েটঃ২০১১-২০১২ ।
সমাধানঃ
দেওয়া আছে,
\(cosec^{-1}{\frac{1+a^2}{2a}}-\sec^{-1}{\frac{1+b^2}{1-b^2}}=2\tan^{-1}{x}\)
\(\Rightarrow \sin^{-1}{\frac{2a}{1+a^2}}-\cos^{-1}{\frac{1-b^2}{1+b^2}}=2\tan^{-1}{x}\) ➜ \(\because cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
এবং \(\sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(\Rightarrow 2\tan^{-1}{a}-2\tan^{-1}{b}=2\tan^{-1}{x}\) ➜ \(\because \sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow 2\left(\tan^{-1}{a}-\tan^{-1}{b}\right)=2\tan^{-1}{x}\)
\(\Rightarrow \tan^{-1}{\left(\frac{a-b}{1+ab}\right)}=\tan^{-1}{x}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(\Rightarrow \frac{a-b}{1+ab}=x\)
\(\therefore x=\frac{a-b}{1+ab}\)
(প্রমাণিত)
\(cosec^{-1}{\frac{1+a^2}{2a}}-\sec^{-1}{\frac{1+b^2}{1-b^2}}=2\tan^{-1}{x}\)
\(\Rightarrow \sin^{-1}{\frac{2a}{1+a^2}}-\cos^{-1}{\frac{1-b^2}{1+b^2}}=2\tan^{-1}{x}\) ➜ \(\because cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
এবং \(\sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(\Rightarrow 2\tan^{-1}{a}-2\tan^{-1}{b}=2\tan^{-1}{x}\) ➜ \(\because \sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow 2\left(\tan^{-1}{a}-\tan^{-1}{b}\right)=2\tan^{-1}{x}\)
\(\Rightarrow \tan^{-1}{\left(\frac{a-b}{1+ab}\right)}=\tan^{-1}{x}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(\Rightarrow \frac{a-b}{1+ab}=x\)
\(\therefore x=\frac{a-b}{1+ab}\)
(প্রমাণিত)
\(Q.4.(xiv)\) \(\tan^{-1}{x}+\frac{1}{2}\sec^{-1}{\frac{1+y^2}{1-y^2}}+\frac{1}{2}cosec^{-1}{\frac{1+z^2}{2z}}=\pi\) হলে দেখাও যে, \(x+y+z=xyz\)
রাঃ২০১৫; চঃ২০১১; যঃ২০০৪ ।
সমাধানঃ
দেওয়া আছে,
\(\tan^{-1}{x}+\frac{1}{2}\sec^{-1}{\frac{1+y^2}{1-y^2}}+\frac{1}{2}cosec^{-1}{\frac{1+z^2}{2z}}=\pi\)
\(\Rightarrow \tan^{-1}{x}+\frac{1}{2}\cos^{-1}{\frac{1-y^2}{1+y^2}}+\frac{1}{2}\sin^{-1}{\frac{2z}{1+z^2}}=\pi\) ➜ \(\because \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
এবং \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
\(\Rightarrow \tan^{-1}{x}+\frac{1}{2}\times2\tan^{-1}{y}+\frac{1}{2}\times2\tan^{-1}{z}=\pi\) ➜ \(\because \cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\tan{\pi}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=0\) ➜ \(\because \tan{\pi}=0\)
\(\Rightarrow x+y+z-xyz=0\)
\(\therefore x+y+z=xyz\)
(প্রমাণিত)
\(\tan^{-1}{x}+\frac{1}{2}\sec^{-1}{\frac{1+y^2}{1-y^2}}+\frac{1}{2}cosec^{-1}{\frac{1+z^2}{2z}}=\pi\)
\(\Rightarrow \tan^{-1}{x}+\frac{1}{2}\cos^{-1}{\frac{1-y^2}{1+y^2}}+\frac{1}{2}\sin^{-1}{\frac{2z}{1+z^2}}=\pi\) ➜ \(\because \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
এবং \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
\(\Rightarrow \tan^{-1}{x}+\frac{1}{2}\times2\tan^{-1}{y}+\frac{1}{2}\times2\tan^{-1}{z}=\pi\) ➜ \(\because \cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi\)
\(\Rightarrow \tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=\tan{\pi}\)
\(\Rightarrow \frac{x+y+z-xyz}{1-yz-zx-xy}=0\) ➜ \(\because \tan{\pi}=0\)
\(\Rightarrow x+y+z-xyz=0\)
\(\therefore x+y+z=xyz\)
(প্রমাণিত)
\(Q.4.(xv)\) যদি \(\cos^{-1}{x}+\cos^{-1}{y}+\cos^{-1}{z}=\pi\) হয় তবে দেখাও যে, \(x^2+y^2+z^2+2xyz=1\)
কুঃ২০১২ ।
সমাধানঃ
দেওয়া আছে,
\(\cos^{-1}{x}+\cos^{-1}{y}+\cos^{-1}{z}=\pi\)
\(\Rightarrow \cos^{-1}{x}+\cos^{-1}{y}=\pi-\cos^{-1}{z}\)
\(\Rightarrow \cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}=\pi-\cos^{-1}{z}\) ➜ \(\because \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=\cos{\left(\pi-\cos^{-1}{z}\right)}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=-\cos{\left(\cos^{-1}{z}\right)}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=-z\)
\(\Rightarrow xy+z=\sqrt{(1-x^2)(1-y^2)}\)
\(\Rightarrow (xy+z)^2=(1-x^2)(1-y^2)\)
\(\Rightarrow x^2y^2+2xyz+z^2=1-x^2-y^2+x^2y^2\)
\(\Rightarrow x^2y^2+2xyz+z^2+x^2+y^2-x^2y^2=1\)
\(\therefore x^2+y^2+z^2+2xyz=1\)
(প্রমাণিত)
\(\cos^{-1}{x}+\cos^{-1}{y}+\cos^{-1}{z}=\pi\)
\(\Rightarrow \cos^{-1}{x}+\cos^{-1}{y}=\pi-\cos^{-1}{z}\)
\(\Rightarrow \cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}=\pi-\cos^{-1}{z}\) ➜ \(\because \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=\cos{\left(\pi-\cos^{-1}{z}\right)}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=-\cos{\left(\cos^{-1}{z}\right)}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=-z\)
\(\Rightarrow xy+z=\sqrt{(1-x^2)(1-y^2)}\)
\(\Rightarrow (xy+z)^2=(1-x^2)(1-y^2)\)
\(\Rightarrow x^2y^2+2xyz+z^2=1-x^2-y^2+x^2y^2\)
\(\Rightarrow x^2y^2+2xyz+z^2+x^2+y^2-x^2y^2=1\)
\(\therefore x^2+y^2+z^2+2xyz=1\)
(প্রমাণিত)
\(Q.4.(xvi)\) যদি \(\cot{\theta}-\tan{\theta}=\frac{6}{5}\) হয় তবে প্রমাণ কর যে, \(\theta=\frac{1}{2}\sin^{-1}{\frac{5}{\sqrt{34}}}\)
যঃ২০১৭ ।
সমাধানঃ
দেওয়া আছে,
\(\cot{\theta}-\tan{\theta}=\frac{6}{5}\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}-\frac{\sin{\theta}}{\cos{\theta}}=\frac{6}{5}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
এবং \(\tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \frac{\cos^2{\theta}-\sin^2{\theta}}{\sin{\theta}\cos{\theta}}=\frac{6}{5}\)
\(\Rightarrow \frac{\cos{2\theta}}{\sin{\theta}\cos{\theta}}=\frac{6}{5}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
\(\Rightarrow \frac{2\cos{2\theta}}{2\sin{\theta}\cos{\theta}}=\frac{6}{5}\) ➜ লব ও হরকে \(2\) দ্বারা গুন করে,
\(\Rightarrow \frac{2\cos{2\theta}}{\sin{2\theta}}=\frac{6}{5}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \frac{\cos{2\theta}}{\sin{2\theta}}=\frac{3}{5}\)
\(\Rightarrow \cot{2\theta}=\frac{3}{5}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\Rightarrow 2\theta=\cot^{-1}{\frac{3}{5}}\)
\(\Rightarrow 2\theta=\sin^{-1}{\frac{5}{\sqrt{34}}}\) ➜ এখানে,
\(\text{ভূমি}=3, \ \text{লম্ব}=5\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{5^2+3^2}\)
\(=\sqrt{25+9}\)
\(=\sqrt{34}\)
\(\therefore \cot^{-1}{\frac{3}{5}}=\sin^{-1}{\frac{5}{\sqrt{34}}}\)
\(\therefore \theta=\frac{1}{2}\sin^{-1}{\frac{5}{\sqrt{34}}}\)
(প্রমাণিত)
\(\cot{\theta}-\tan{\theta}=\frac{6}{5}\)
\(\Rightarrow \frac{\cos{\theta}}{\sin{\theta}}-\frac{\sin{\theta}}{\cos{\theta}}=\frac{6}{5}\) ➜ \(\because \cot{A}=\frac{\cos{A}}{\sin{A}}\)
এবং \(\tan{A}=\frac{\sin{A}}{\cos{A}}\)
\(\Rightarrow \frac{\cos^2{\theta}-\sin^2{\theta}}{\sin{\theta}\cos{\theta}}=\frac{6}{5}\)
\(\Rightarrow \frac{\cos{2\theta}}{\sin{\theta}\cos{\theta}}=\frac{6}{5}\) ➜ \(\because \cos^2{A}-\sin^2{A}=\cos{2A}\)
\(\Rightarrow \frac{2\cos{2\theta}}{2\sin{\theta}\cos{\theta}}=\frac{6}{5}\) ➜ লব ও হরকে \(2\) দ্বারা গুন করে,
\(\Rightarrow \frac{2\cos{2\theta}}{\sin{2\theta}}=\frac{6}{5}\) ➜ \(\because 2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \frac{\cos{2\theta}}{\sin{2\theta}}=\frac{3}{5}\)
\(\Rightarrow \cot{2\theta}=\frac{3}{5}\) ➜ \(\because \frac{\cos{A}}{\sin{A}}=\cot{A}\)
\(\Rightarrow 2\theta=\cot^{-1}{\frac{3}{5}}\)
\(\Rightarrow 2\theta=\sin^{-1}{\frac{5}{\sqrt{34}}}\) ➜ এখানে,
\(\text{ভূমি}=3, \ \text{লম্ব}=5\)
\(\therefore \text{অতিভুজ}=\sqrt{(\text{লম্ব})^2+(\text{ভূমি})^2} \)
\(=\sqrt{5^2+3^2}\)
\(=\sqrt{25+9}\)
\(=\sqrt{34}\)
\(\therefore \cot^{-1}{\frac{3}{5}}=\sin^{-1}{\frac{5}{\sqrt{34}}}\)
\(\therefore \theta=\frac{1}{2}\sin^{-1}{\frac{5}{\sqrt{34}}}\)
(প্রমাণিত)
\(Q.4.(xvii)\) \(\cot^{-1}{y}-\tan^{-1}{x}=\frac{\pi}{6}\) হলে প্রমাণ কর যে, \(x+y+\sqrt{3}xy=\sqrt{3}\)
চঃ২০১৭ ।
সমাধানঃ
দেওয়া আছে,
\(\cot^{-1}{y}-\tan^{-1}{x}=\frac{\pi}{6}\)
\(\Rightarrow \tan^{-1}{\frac{1}{y}}-\tan^{-1}{x}=\frac{\pi}{6}\) ➜ \(\because \cot^{-1}{A}=\tan^{-1}{\frac{1}{A}}\)
\(\Rightarrow \tan^{-1}{\left(\frac{\frac{1}{y}-x}{1+\frac{1}{y}\times{x}}\right)}=\frac{\pi}{6}\) ➜ \(\because \tan^{-1}{A}-\tan^{-1}{B}=\tan^{-1}{\frac{A-B}{1+AB}}\)
\(\Rightarrow \frac{\frac{1}{y}-x}{1+\frac{x}{y}}=\tan{\frac{\pi}{6}}\)
\(\Rightarrow \frac{1-xy}{y+x}=\frac{1}{\sqrt{3}}\) ➜ বাম পাশের,
লব ও হরকে \(y\) দ্বারা গুন করে,
এবং \(\tan{\frac{\pi}{6}}=\frac{1}{\sqrt{3}}\)
\(\Rightarrow y+x=\sqrt{3}-\sqrt{3}xy\)
\(\therefore x+y+\sqrt{3}xy=\sqrt{3}\)
(প্রমাণিত)
\(\cot^{-1}{y}-\tan^{-1}{x}=\frac{\pi}{6}\)
\(\Rightarrow \tan^{-1}{\frac{1}{y}}-\tan^{-1}{x}=\frac{\pi}{6}\) ➜ \(\because \cot^{-1}{A}=\tan^{-1}{\frac{1}{A}}\)
\(\Rightarrow \tan^{-1}{\left(\frac{\frac{1}{y}-x}{1+\frac{1}{y}\times{x}}\right)}=\frac{\pi}{6}\) ➜ \(\because \tan^{-1}{A}-\tan^{-1}{B}=\tan^{-1}{\frac{A-B}{1+AB}}\)
\(\Rightarrow \frac{\frac{1}{y}-x}{1+\frac{x}{y}}=\tan{\frac{\pi}{6}}\)
\(\Rightarrow \frac{1-xy}{y+x}=\frac{1}{\sqrt{3}}\) ➜ বাম পাশের,
লব ও হরকে \(y\) দ্বারা গুন করে,
এবং \(\tan{\frac{\pi}{6}}=\frac{1}{\sqrt{3}}\)
\(\Rightarrow y+x=\sqrt{3}-\sqrt{3}xy\)
\(\therefore x+y+\sqrt{3}xy=\sqrt{3}\)
(প্রমাণিত)
\(Q.4.(xviii)\) \(\sec^{-1}{\frac{1}{a}}+\sec^{-1}{\frac{1}{b}}=\alpha\) হলে প্রমাণ কর যে, \(\sin{\alpha}=\sqrt{a^2+b^2-2ab\cos{\alpha}}\)
চঃ২০১৯ ।
সমাধানঃ
দেওয়া আছে,
\(\sec^{-1}{\frac{1}{a}}+\sec^{-1}{\frac{1}{b}}=\alpha\)
\(\Rightarrow \cos^{-1}{a}+\cos^{-1}{b}=\alpha\) ➜ \(\because \sec^{-1}{\frac{1}{x}}=\cos^{-1}{x}\)
\(\Rightarrow \cos^{-1}{\{ab-\sqrt{(1-a^2)(1-b^2)}\}}=\alpha\) ➜ \(\because \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\Rightarrow ab-\sqrt{(1-a^2)(1-b^2)}=\cos{\alpha}\)
\(\Rightarrow ab-\cos{\alpha}=\sqrt{(1-a^2)(1-b^2)}\)
\(\Rightarrow (ab-\cos{\alpha})^2=(1-a^2)(1-b^2)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow a^2b^2-2ab\cos{\alpha}+\cos^2{\alpha}=1-a^2-b^2+a^2b^2\) ➜ \(\because (x-y)^2=x^2-2xy+y^2\)
\(\Rightarrow a^2b^2-2ab\cos{\alpha}+a^2+b^2-a^2b^2=1-\cos^2{\alpha}\)
\(\Rightarrow a^2+b^2-2ab\cos{\alpha}=\sin^2{\alpha}\)
\(\Rightarrow \sin^2{\alpha}=a^2+b^2-2ab\cos{\alpha}\)
\(\therefore \sin{\alpha}=\sqrt{a^2+b^2-2ab\cos{\alpha}}\)
(প্রমাণিত)
\(\sec^{-1}{\frac{1}{a}}+\sec^{-1}{\frac{1}{b}}=\alpha\)
\(\Rightarrow \cos^{-1}{a}+\cos^{-1}{b}=\alpha\) ➜ \(\because \sec^{-1}{\frac{1}{x}}=\cos^{-1}{x}\)
\(\Rightarrow \cos^{-1}{\{ab-\sqrt{(1-a^2)(1-b^2)}\}}=\alpha\) ➜ \(\because \cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)
\(\Rightarrow ab-\sqrt{(1-a^2)(1-b^2)}=\cos{\alpha}\)
\(\Rightarrow ab-\cos{\alpha}=\sqrt{(1-a^2)(1-b^2)}\)
\(\Rightarrow (ab-\cos{\alpha})^2=(1-a^2)(1-b^2)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow a^2b^2-2ab\cos{\alpha}+\cos^2{\alpha}=1-a^2-b^2+a^2b^2\) ➜ \(\because (x-y)^2=x^2-2xy+y^2\)
\(\Rightarrow a^2b^2-2ab\cos{\alpha}+a^2+b^2-a^2b^2=1-\cos^2{\alpha}\)
\(\Rightarrow a^2+b^2-2ab\cos{\alpha}=\sin^2{\alpha}\)
\(\Rightarrow \sin^2{\alpha}=a^2+b^2-2ab\cos{\alpha}\)
\(\therefore \sin{\alpha}=\sqrt{a^2+b^2-2ab\cos{\alpha}}\)
(প্রমাণিত)
\(Q.4.(xix)\) যদি \(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\) হয় তবে দেখাও যে, \(\theta=\pm\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
চঃ২০১৯; যঃ২০১৫,২০০৬; বঃ২০১৫; কুঃ২০১৩; দিঃ২০১২; ঢাঃ,রাঃ,বঃ,সিঃ২০১০ ।
সমাধানঃ
দেওয়া আছে,
\(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\)
\(\Rightarrow \sin{(\pi\cos{\theta})}=\sin{\left(\frac{\pi}{2}\pm\pi\sin{\theta}\right)}\) ➜ \(\because \cos{(\pi\sin{\theta})}=\sin{\left(\frac{\pi}{2}\pm\pi\sin{\theta}\right)}\)
\(\Rightarrow \pi\cos{\theta}=\frac{\pi}{2}\pm\pi\sin{\theta}\)
\(\Rightarrow \pi\cos{\theta}=\pi\left(\frac{1}{2}\pm\sin{\theta}\right)\)
\(\Rightarrow \cos{\theta}=\frac{1}{2}\pm\sin{\theta}\)
\(\Rightarrow \cos{\theta}\pm\sin{\theta}=\frac{1}{2}\)
\(\Rightarrow (\cos{\theta}\pm\sin{\theta})^2=\frac{1}{4}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \cos^2{\theta}\pm2\sin{\theta}\cos{\theta}+\sin^2{\theta}=\frac{1}{4}\)
\(\Rightarrow \sin^2{\theta}+\cos^2{\theta}\pm2\sin{\theta}\cos{\theta}=\frac{1}{4}\)
\(\Rightarrow 1\pm\sin{2\theta}=\frac{1}{4}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \pm\sin{2\theta}=\frac{1}{4}-1\)
\(\Rightarrow \pm\sin{2\theta}=\frac{1-4}{4}\)
\(\Rightarrow \pm\sin{2\theta}=\frac{-3}{4}\)
\(\Rightarrow \pm\sin{2\theta}=-\frac{3}{4}\)
\(\Rightarrow \sin{2\theta}=\pm\frac{3}{4}\)
\(\Rightarrow 2\theta=\pm\sin^{-1}{\frac{3}{4}}\)
\(\therefore \theta=\pm\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
(দেখানো হলো)
\(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\)
\(\Rightarrow \sin{(\pi\cos{\theta})}=\sin{\left(\frac{\pi}{2}\pm\pi\sin{\theta}\right)}\) ➜ \(\because \cos{(\pi\sin{\theta})}=\sin{\left(\frac{\pi}{2}\pm\pi\sin{\theta}\right)}\)
\(\Rightarrow \pi\cos{\theta}=\frac{\pi}{2}\pm\pi\sin{\theta}\)
\(\Rightarrow \pi\cos{\theta}=\pi\left(\frac{1}{2}\pm\sin{\theta}\right)\)
\(\Rightarrow \cos{\theta}=\frac{1}{2}\pm\sin{\theta}\)
\(\Rightarrow \cos{\theta}\pm\sin{\theta}=\frac{1}{2}\)
\(\Rightarrow (\cos{\theta}\pm\sin{\theta})^2=\frac{1}{4}\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \cos^2{\theta}\pm2\sin{\theta}\cos{\theta}+\sin^2{\theta}=\frac{1}{4}\)
\(\Rightarrow \sin^2{\theta}+\cos^2{\theta}\pm2\sin{\theta}\cos{\theta}=\frac{1}{4}\)
\(\Rightarrow 1\pm\sin{2\theta}=\frac{1}{4}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
এবং \(2\sin{A}\cos{A}=\sin{2A}\)
\(\Rightarrow \pm\sin{2\theta}=\frac{1}{4}-1\)
\(\Rightarrow \pm\sin{2\theta}=\frac{1-4}{4}\)
\(\Rightarrow \pm\sin{2\theta}=\frac{-3}{4}\)
\(\Rightarrow \pm\sin{2\theta}=-\frac{3}{4}\)
\(\Rightarrow \sin{2\theta}=\pm\frac{3}{4}\)
\(\Rightarrow 2\theta=\pm\sin^{-1}{\frac{3}{4}}\)
\(\therefore \theta=\pm\frac{1}{2}\sin^{-1}{\frac{3}{4}}\)
(দেখানো হলো)
\(Q.4.(xx)\) যদি \(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\) হয় তবে দেখাও যে, \(\theta=\pm\frac{\pi}{4}+\cos^{-1}{\frac{1}{2\sqrt{2}}}\)
যঃ২০১৬ ।
সমাধানঃ
দেওয়া আছে,
\(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\)
\(\Rightarrow \sin{(\pi\cos{\theta})}=\sin{\left(\frac{\pi}{2}\pm\pi\sin{\theta}\right)}\) ➜ \(\because \cos{(\pi\sin{\theta})}=\sin{\left(\frac{\pi}{2}\pm\pi\sin{\theta}\right)}\)
\(\Rightarrow \pi\cos{\theta}=\frac{\pi}{2}\pm\pi\sin{\theta}\)
\(\Rightarrow \pi\cos{\theta}=\pi\left(\frac{1}{2}\pm\sin{\theta}\right)\)
\(\Rightarrow \cos{\theta}=\frac{1}{2}\pm\sin{\theta}\)
\(\Rightarrow \cos{\theta}\pm\sin{\theta}=\frac{1}{2}\)
\(\Rightarrow \cos{\theta}\frac{1}{\sqrt{2}}\pm\sin{\theta}\frac{1}{\sqrt{2}}=\frac{1}{2\sqrt{2}}\) ➜ উভয় পার্শে \(\sqrt{2}\) ভাগ করে।
\(\Rightarrow \cos{\theta}\cos{\frac{\pi}{4}}\pm\sin{\theta}\sin{\frac{\pi}{4}}=\frac{1}{2\sqrt{2}}\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{\frac{\pi}{4}}=\sin{\frac{\pi}{4}}\)
\(\Rightarrow \cos{\left(\theta\pm\frac{\pi}{4}\right)}=\frac{1}{2\sqrt{2}}\) ➜ \(\because \cos{A}\cos{B}\pm\sin{A}\sin{B}=\cos{(A\pm{B})}\)
\(\Rightarrow \theta\pm\frac{\pi}{4}=\cos^{-1}{\frac{1}{2\sqrt{2}}}\)
\(\therefore \theta=\pm\frac{\pi}{4}+\cos^{-1}{\frac{1}{2\sqrt{2}}}\)
(দেখানো হলো)
\(\sin{(\pi\cos{\theta})}=\cos{(\pi\sin{\theta})}\)
\(\Rightarrow \sin{(\pi\cos{\theta})}=\sin{\left(\frac{\pi}{2}\pm\pi\sin{\theta}\right)}\) ➜ \(\because \cos{(\pi\sin{\theta})}=\sin{\left(\frac{\pi}{2}\pm\pi\sin{\theta}\right)}\)
\(\Rightarrow \pi\cos{\theta}=\frac{\pi}{2}\pm\pi\sin{\theta}\)
\(\Rightarrow \pi\cos{\theta}=\pi\left(\frac{1}{2}\pm\sin{\theta}\right)\)
\(\Rightarrow \cos{\theta}=\frac{1}{2}\pm\sin{\theta}\)
\(\Rightarrow \cos{\theta}\pm\sin{\theta}=\frac{1}{2}\)
\(\Rightarrow \cos{\theta}\frac{1}{\sqrt{2}}\pm\sin{\theta}\frac{1}{\sqrt{2}}=\frac{1}{2\sqrt{2}}\) ➜ উভয় পার্শে \(\sqrt{2}\) ভাগ করে।
\(\Rightarrow \cos{\theta}\cos{\frac{\pi}{4}}\pm\sin{\theta}\sin{\frac{\pi}{4}}=\frac{1}{2\sqrt{2}}\) ➜ \(\because \frac{1}{\sqrt{2}}=\cos{\frac{\pi}{4}}=\sin{\frac{\pi}{4}}\)
\(\Rightarrow \cos{\left(\theta\pm\frac{\pi}{4}\right)}=\frac{1}{2\sqrt{2}}\) ➜ \(\because \cos{A}\cos{B}\pm\sin{A}\sin{B}=\cos{(A\pm{B})}\)
\(\Rightarrow \theta\pm\frac{\pi}{4}=\cos^{-1}{\frac{1}{2\sqrt{2}}}\)
\(\therefore \theta=\pm\frac{\pi}{4}+\cos^{-1}{\frac{1}{2\sqrt{2}}}\)
(দেখানো হলো)
\(Q.4.(xxi)\) \(\tan^{-1}{a}+\frac{1}{2}\sec^{-1}{\frac{1+b^2}{1-b^2}}+\frac{1}{2}cosec^{-1}{\frac{1+c^2}{2c}}=\pi\) হলে দেখাও যে, \(a+b+c=acb\)
রাঃ২০১৫; চঃ২০১১; যঃ২০০৪ ।
সমাধানঃ
দেওয়া আছে,
\(\tan^{-1}{a}+\frac{1}{2}\sec^{-1}{\frac{1+b^2}{1-b^2}}+\frac{1}{2}cosec^{-1}{\frac{1+c^2}{2c}}=\pi\)
\(\Rightarrow \tan^{-1}{a}+\frac{1}{2}\cos^{-1}{\frac{1-b^2}{1+b^2}}+\frac{1}{2}\sin^{-1}{\frac{2c}{1+c^2}}=\pi\) ➜ \(\because \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
এবং \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
\(\Rightarrow \tan^{-1}{a}+\frac{1}{2}\times2\tan^{-1}{b}+\frac{1}{2}\times2\tan^{-1}{c}=\pi\) ➜ \(\because \cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow \tan^{-1}{a}+\tan^{-1}{b}+\tan^{-1}{c}=\pi\)
\(\Rightarrow \tan^{-1}{\left(\frac{a+b+c-abc}{1-bc-ca-ab}\right)}=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{a+b+c-abc}{1-bc-ca-ab}=\tan{\pi}\)
\(\Rightarrow \frac{a+b+c-abc}{1-bc-ca-ab}=0\) ➜ \(\because \tan{\pi}=0\)
\(\Rightarrow a+b+c-abc=0\)
\(\therefore a+b+c=abc\)
(প্রমাণিত)
\(\tan^{-1}{a}+\frac{1}{2}\sec^{-1}{\frac{1+b^2}{1-b^2}}+\frac{1}{2}cosec^{-1}{\frac{1+c^2}{2c}}=\pi\)
\(\Rightarrow \tan^{-1}{a}+\frac{1}{2}\cos^{-1}{\frac{1-b^2}{1+b^2}}+\frac{1}{2}\sin^{-1}{\frac{2c}{1+c^2}}=\pi\) ➜ \(\because \sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
এবং \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
\(\Rightarrow \tan^{-1}{a}+\frac{1}{2}\times2\tan^{-1}{b}+\frac{1}{2}\times2\tan^{-1}{c}=\pi\) ➜ \(\because \cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow \tan^{-1}{a}+\tan^{-1}{b}+\tan^{-1}{c}=\pi\)
\(\Rightarrow \tan^{-1}{\left(\frac{a+b+c-abc}{1-bc-ca-ab}\right)}=\pi\) ➜ \(\because \tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\)
\(\Rightarrow \frac{a+b+c-abc}{1-bc-ca-ab}=\tan{\pi}\)
\(\Rightarrow \frac{a+b+c-abc}{1-bc-ca-ab}=0\) ➜ \(\because \tan{\pi}=0\)
\(\Rightarrow a+b+c-abc=0\)
\(\therefore a+b+c=abc\)
(প্রমাণিত)
\(Q.4.(xxii)\) যদি \(2\tan^{-1}{x}=\sin^{-1}{\frac{2a}{1+a^2}}-\cos^{-1}{\frac{1-b^2}{1+b^2}}\) হয় তবে প্রমাণ কর যে, \(x=\frac{a-b}{1+ab}\)
যঃ২০০৫; ঢাঃ২০১৯; দিঃ২০১১; চুয়েটঃ২০১১-২০১২ ।
সমাধানঃ
দেওয়া আছে,
\(2\tan^{-1}{x}=cosec^{-1}{\frac{1+a^2}{2a}}-\sec^{-1}{\frac{1+b^2}{1-b^2}}\)
\(\Rightarrow 2\tan^{-1}{x}=\sin^{-1}{\frac{2a}{1+a^2}}-\cos^{-1}{\frac{1-b^2}{1+b^2}}\) ➜ \(\because cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
এবং \(\sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(\Rightarrow 2\tan^{-1}{x}=2\tan^{-1}{a}-2\tan^{-1}{b}\) ➜ \(\because \sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow 2\tan^{-1}{x}=2\left(\tan^{-1}{a}-\tan^{-1}{b}\right)\)
\(\Rightarrow \tan^{-1}{x}=\tan^{-1}{\left(\frac{a-b}{1+ab}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(\therefore x=\frac{a-b}{1+ab}\)
(প্রমাণিত)
\(2\tan^{-1}{x}=cosec^{-1}{\frac{1+a^2}{2a}}-\sec^{-1}{\frac{1+b^2}{1-b^2}}\)
\(\Rightarrow 2\tan^{-1}{x}=\sin^{-1}{\frac{2a}{1+a^2}}-\cos^{-1}{\frac{1-b^2}{1+b^2}}\) ➜ \(\because cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)
এবং \(\sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)
\(\Rightarrow 2\tan^{-1}{x}=2\tan^{-1}{a}-2\tan^{-1}{b}\) ➜ \(\because \sin^{-1}{\frac{2x}{1+x^2}}=2\tan^{-1}{x}\)
এবং \(\cos^{-1}{\frac{1-x^2}{1+x^2}}=2\tan^{-1}{x}\)
\(\Rightarrow 2\tan^{-1}{x}=2\left(\tan^{-1}{a}-\tan^{-1}{b}\right)\)
\(\Rightarrow \tan^{-1}{x}=\tan^{-1}{\left(\frac{a-b}{1+ab}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(\therefore x=\frac{a-b}{1+ab}\)
(প্রমাণিত)
\(Q.4.(xxiii)\) যদি \(\sin^{-1}{x}+\sin^{-1}{y}+\sin^{-1}{z}=\pi\) হয় তবে দেখাও যে, \(x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}=2xyz\)
সমাধানঃ
দেওয়া আছে,
\(\sin^{-1}{x}+\sin^{-1}{y}+\sin^{-1}{z}=\pi\)
ধরি,
\(\sin^{-1}{x}=A, \ \sin^{-1}{y}=B, \ \sin^{-1}{z}=C\)
\(\Rightarrow x=\sin{A}, \ y=\sin{B}, \ z=\sin{C}\)
এবং, \(A+B+C=\pi\)
\(L.S=x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}\)
\(=\sin{A}\sqrt{1-\sin^2{A}}+\sin{B}\sqrt{1-\sin^2{B}}+\sin{C}\sqrt{1-\sin^2{C}}\)
\(=\sin{A}\cos{A}+\sin{B}\cos{B}+\sin{C}\cos{C}\) ➜ \(\because \sqrt{1-\sin^2{x}}=\cos{x}\)
\(=\frac{1}{2}(2\sin{A}\cos{A}+2\sin{B}\cos{B}+2\sin{C}\cos{C})\)
\(=\frac{1}{2}(\sin{2A}+\sin{2B}+\sin{2C})\) ➜ \(\because 2\sin{x}\cos{x}=\sin{2x}\)
\(=\frac{1}{2}\left\{\sin{2A}+\sin{2B}+\sin{2C}\right\}\)
\(=\frac{1}{2}\left\{2\cos{\frac{2A+2B}{2}}\sin{\frac{2A-2B}{2}}+\sin{2C}\right\}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\frac{1}{2}\left\{2\sin{\frac{2(A+B)}{2}}\cos{\frac{2(A-B)}{2}}+\sin{2C}\right\}\)
\(=\frac{1}{2}\left\{2\sin{(A+B)}\cos{(A-B)}+\sin{2C}\right\}\)
\(=\frac{1}{2}\left\{2\sin{(\pi-C)}\cos{(A-B)}+\sin{2C}\right\}\) ➜ \(\because A+B=\pi-C\)
\(=\frac{1}{2}\left\{2\sin{\left(\frac{\pi}{2}\times2-C\right)}\cos{(A-B)}+\sin{2C}\right\}\)
\(=\frac{1}{2}\left\{2\sin{C}\cos{(A-B)}+2\sin{C}\cos{C}\right\}\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
এবং \(\sin{2A}=2\sin{A}\cos{A}\)
\(=\frac{1}{2}\times2\sin{C}\{\cos{(A-B)}+\cos{C}\}\)
\(=\sin{C}[\cos{(A-B)}+\cos{\{\pi-(A+B)\}}]\) ➜ \(\because C=\pi-(A+B)\)
\(=\sin{C}\left[\cos{(A-B)}+\cos{\left\{\frac{\pi}{2}\times2-(A+B)\right\}}\right]\)
\(=\sin{C}\left[\cos{(A-B)}-\cos{(A+B)}\right]\) ➜
\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(=\sin{C}\times2\sin{A}\sin{B}\) ➜ \(\because \cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
\(=2\sin{A}\sin{B}\sin{C}\)
\(=2xyz\) ➜ \(\because x=\sin{A}, \ y=\sin{B}, \ z=\sin{C}\)
(প্রমাণিত)
\(\sin^{-1}{x}+\sin^{-1}{y}+\sin^{-1}{z}=\pi\)
ধরি,
\(\sin^{-1}{x}=A, \ \sin^{-1}{y}=B, \ \sin^{-1}{z}=C\)
\(\Rightarrow x=\sin{A}, \ y=\sin{B}, \ z=\sin{C}\)
এবং, \(A+B+C=\pi\)
\(L.S=x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}\)
\(=\sin{A}\sqrt{1-\sin^2{A}}+\sin{B}\sqrt{1-\sin^2{B}}+\sin{C}\sqrt{1-\sin^2{C}}\)
\(=\sin{A}\cos{A}+\sin{B}\cos{B}+\sin{C}\cos{C}\) ➜ \(\because \sqrt{1-\sin^2{x}}=\cos{x}\)
\(=\frac{1}{2}(2\sin{A}\cos{A}+2\sin{B}\cos{B}+2\sin{C}\cos{C})\)
\(=\frac{1}{2}(\sin{2A}+\sin{2B}+\sin{2C})\) ➜ \(\because 2\sin{x}\cos{x}=\sin{2x}\)
\(=\frac{1}{2}\left\{\sin{2A}+\sin{2B}+\sin{2C}\right\}\)
\(=\frac{1}{2}\left\{2\cos{\frac{2A+2B}{2}}\sin{\frac{2A-2B}{2}}+\sin{2C}\right\}\) ➜ \(\because \sin{C}+\sin{D}=2\sin{\frac{C+D}{2}}\cos{\frac{C-D}{2}}\)
\(=\frac{1}{2}\left\{2\sin{\frac{2(A+B)}{2}}\cos{\frac{2(A-B)}{2}}+\sin{2C}\right\}\)
\(=\frac{1}{2}\left\{2\sin{(A+B)}\cos{(A-B)}+\sin{2C}\right\}\)
\(=\frac{1}{2}\left\{2\sin{(\pi-C)}\cos{(A-B)}+\sin{2C}\right\}\) ➜ \(\because A+B=\pi-C\)
\(=\frac{1}{2}\left\{2\sin{\left(\frac{\pi}{2}\times2-C\right)}\cos{(A-B)}+\sin{2C}\right\}\)
\(=\frac{1}{2}\left\{2\sin{C}\cos{(A-B)}+2\sin{C}\cos{C}\right\}\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং সাইন অনুপাত ধনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
এবং \(\sin{2A}=2\sin{A}\cos{A}\)
\(=\frac{1}{2}\times2\sin{C}\{\cos{(A-B)}+\cos{C}\}\)
\(=\sin{C}[\cos{(A-B)}+\cos{\{\pi-(A+B)\}}]\) ➜ \(\because C=\pi-(A+B)\)
\(=\sin{C}\left[\cos{(A-B)}+\cos{\left\{\frac{\pi}{2}\times2-(A+B)\right\}}\right]\)
\(=\sin{C}\left[\cos{(A-B)}-\cos{(A+B)}\right]\) ➜

\(\because\) কোণ উৎপন্নকারী রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থিত
সুতরাং কোসাইন অনুপাত ঋনাত্মক।
আবার, \(\frac{\pi}{2}\) এর সহগুণক \(2\) একটি জোড় সংখ্যা,
সুতরাং অনুপাতের পরিবর্তন হয়নি।
\(=\sin{C}\times2\sin{A}\sin{B}\) ➜ \(\because \cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
\(=2\sin{A}\sin{B}\sin{C}\)
\(=2xyz\) ➜ \(\because x=\sin{A}, \ y=\sin{B}, \ z=\sin{C}\)
(প্রমাণিত)
\(Q.4.(xxiv)\) \(\sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}\)
\(+\cos^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}=\frac{\pi}{2}\) এবং \(|x|=\sqrt{2}\) হলে দেখাও যে, \(x=1\)
\(+\cos^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}=\frac{\pi}{2}\) এবং \(|x|=\sqrt{2}\) হলে দেখাও যে, \(x=1\)
সমাধানঃ
দেওয়া আছে,
\(\sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}\)
\(+\cos^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}=\frac{\pi}{2}\) এবং \(|x|=\sqrt{2}\)
\(\Rightarrow \sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}=\frac{\pi}{2}-\cos^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}\)
\(\Rightarrow \sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}=\sin^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}\) ➜ \(\because \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(\therefore \sin^{-1}{x}=\frac{\pi}{2}-\cos^{-1}{x}\)
\(\Rightarrow \left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)=\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)\)
\(\Rightarrow x\left(1-\frac{x}{2}+\frac{x^2}{4}-\frac{x^3}{8}+...\right)=x^2\left(1-\frac{x^2}{2}+\frac{x^4}{4}-\frac{x^6}{8}+...\right)\)
\(\Rightarrow \left\{1-\frac{x}{2}+\left(\frac{x}{2}\right)^2-\left(\frac{x}{2}\right)^3+...\right\}=x\left\{1-\frac{x^2}{2}+\left(\frac{x^2}{2}\right)^2-\left(\frac{x^2}{2}\right)^3+...\right\}\)
\(\Rightarrow \left(1-\frac{x}{2}\right)^{-1}=x\left(1-\frac{x^2}{2}\right)^{-1}\) ➜ \(\because 1-x+x^2-x^3+...=(1-x)^{-1}\)
\(\Rightarrow \left(\frac{2-x}{2}\right)^{-1}=x\left(\frac{2-x^2}{2}\right)^{-1}\)
\(\Rightarrow \frac{2}{2-x}=x\frac{2}{2-x^2}\)
\(\Rightarrow \frac{1}{2-x}=\frac{x}{2-x^2}\)
\(\Rightarrow 2x-x^2=2-x^2\)
\(\Rightarrow 2x=2\)
\(\Rightarrow x=\frac{2}{2}\)
\(\therefore x=1\)
(দেখানো হলো)
\(\sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}\)
\(+\cos^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}=\frac{\pi}{2}\) এবং \(|x|=\sqrt{2}\)
\(\Rightarrow \sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}=\frac{\pi}{2}-\cos^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}\)
\(\Rightarrow \sin^{-1}{\left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)}=\sin^{-1}{\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)}\) ➜ \(\because \sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)
\(\therefore \sin^{-1}{x}=\frac{\pi}{2}-\cos^{-1}{x}\)
\(\Rightarrow \left(x-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^4}{8}+...\right)=\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-\frac{x^8}{8}+...\right)\)
\(\Rightarrow x\left(1-\frac{x}{2}+\frac{x^2}{4}-\frac{x^3}{8}+...\right)=x^2\left(1-\frac{x^2}{2}+\frac{x^4}{4}-\frac{x^6}{8}+...\right)\)
\(\Rightarrow \left\{1-\frac{x}{2}+\left(\frac{x}{2}\right)^2-\left(\frac{x}{2}\right)^3+...\right\}=x\left\{1-\frac{x^2}{2}+\left(\frac{x^2}{2}\right)^2-\left(\frac{x^2}{2}\right)^3+...\right\}\)
\(\Rightarrow \left(1-\frac{x}{2}\right)^{-1}=x\left(1-\frac{x^2}{2}\right)^{-1}\) ➜ \(\because 1-x+x^2-x^3+...=(1-x)^{-1}\)
\(\Rightarrow \left(\frac{2-x}{2}\right)^{-1}=x\left(\frac{2-x^2}{2}\right)^{-1}\)
\(\Rightarrow \frac{2}{2-x}=x\frac{2}{2-x^2}\)
\(\Rightarrow \frac{1}{2-x}=\frac{x}{2-x^2}\)
\(\Rightarrow 2x-x^2=2-x^2\)
\(\Rightarrow 2x=2\)
\(\Rightarrow x=\frac{2}{2}\)
\(\therefore x=1\)
(দেখানো হলো)
\(Q.4.(xxv)\) \(\sin{(\pi cosec \ {\theta})}=\cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}\) হলে দেখাও যে, \(\theta=\sin^{-1}{\left(\frac{3}{4n+1}\right)}\)
অথবা, \(\theta=\sin^{-1}{\left(\frac{1}{1-4n}\right)}\)
অথবা, \(\theta=\sin^{-1}{\left(\frac{1}{1-4n}\right)}\)
সমাধানঃ
দেওয়া আছে,
\(\sin{(\pi cosec \ {\theta})}=\cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}\)
\(\Rightarrow \cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}=\sin{(\pi cosec \ {\theta})}\)
\(\Rightarrow \cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}=\cos{\left(\frac{\pi}{2}-\pi cosec \ {\theta}\right)}\) ➜ \(\because \sin{x}=\cos{\left(\frac{\pi}{2}-x\right)}\)
\(\Rightarrow \frac{\pi}{2} cosec \ {\theta}=2n\pi\pm\left(\frac{\pi}{2}-\pi cosec \ {\theta}\right)\) ➜ সাধারণ মান গ্রহণ করে,
\(\Rightarrow \frac{\pi}{2} cosec \ {\theta}=\pi\left(2n+\frac{1}{2}- cosec \ {\theta}\right)\) ➜ ধনাত্মক চিহ্ন ব্যবহার করে,
\(\Rightarrow \frac{1}{2} cosec \ {\theta}=2n+\frac{1}{2}- cosec \ {\theta}\)
\(\Rightarrow \frac{1}{2} cosec \ {\theta}+ cosec \ {\theta}=2n+\frac{1}{2}\)
\(\Rightarrow \frac{1+2}{2} cosec \ {\theta}=\frac{4n+1}{2}\)
\(\Rightarrow \frac{3}{2} cosec \ {\theta}=\frac{4n+1}{2}\)
\(\Rightarrow cosec \ {\theta}=\frac{4n+1}{2}\times\frac{2}{3}\)
\(\Rightarrow cosec \ {\theta}=\frac{4n+1}{3}\)
\(\Rightarrow \frac{1}{cosec \ {\theta}}=\frac{3}{4n+1}\) ➜ ব্যস্তকরণ করে,
\(\Rightarrow \sin{\theta}=\frac{3}{4n+1}\)
\(\therefore \theta=\sin^{-1}{\left(\frac{3}{4n+1}\right)}\)
আবার,
\(\frac{\pi}{2} cosec \ {\theta}=\pi\left(2n-\frac{1}{2}+ cosec \ {\theta}\right)\) ➜ ঋনাত্মক চিহ্ন ব্যবহার করে,
\(\Rightarrow \frac{1}{2} cosec \ {\theta}=2n-\frac{1}{2}+ cosec \ {\theta}\)
\(\Rightarrow \frac{1}{2} cosec \ {\theta}- cosec \ {\theta}=2n-\frac{1}{2}\)
\(\Rightarrow \frac{1-2}{2} cosec \ {\theta}=\frac{4n-1}{2}\)
\(\Rightarrow -\frac{1}{2} cosec \ {\theta}=-\frac{1-4n}{2}\)
\(\Rightarrow \frac{1}{2} cosec \ {\theta}=\frac{1-4n}{2}\)
\(\Rightarrow cosec \ {\theta}=\frac{1-4n}{2}\times2\)
\(\Rightarrow cosec \ {\theta}=1-4n\)
\(\Rightarrow \frac{1}{cosec \ {\theta}}=\frac{1}{1-4n}\) ➜ ব্যস্তকরণ করে,
\(\Rightarrow \sin{\theta}=\frac{1}{1-4n}\)
\(\therefore \theta=\sin^{-1}{\left(\frac{1}{1-4n}\right)}\)
(দেখানো হলো)
\(\sin{(\pi cosec \ {\theta})}=\cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}\)
\(\Rightarrow \cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}=\sin{(\pi cosec \ {\theta})}\)
\(\Rightarrow \cos{\left(\frac{\pi}{2} cosec \ {\theta}\right)}=\cos{\left(\frac{\pi}{2}-\pi cosec \ {\theta}\right)}\) ➜ \(\because \sin{x}=\cos{\left(\frac{\pi}{2}-x\right)}\)
\(\Rightarrow \frac{\pi}{2} cosec \ {\theta}=2n\pi\pm\left(\frac{\pi}{2}-\pi cosec \ {\theta}\right)\) ➜ সাধারণ মান গ্রহণ করে,
\(\Rightarrow \frac{\pi}{2} cosec \ {\theta}=\pi\left(2n+\frac{1}{2}- cosec \ {\theta}\right)\) ➜ ধনাত্মক চিহ্ন ব্যবহার করে,
\(\Rightarrow \frac{1}{2} cosec \ {\theta}=2n+\frac{1}{2}- cosec \ {\theta}\)
\(\Rightarrow \frac{1}{2} cosec \ {\theta}+ cosec \ {\theta}=2n+\frac{1}{2}\)
\(\Rightarrow \frac{1+2}{2} cosec \ {\theta}=\frac{4n+1}{2}\)
\(\Rightarrow \frac{3}{2} cosec \ {\theta}=\frac{4n+1}{2}\)
\(\Rightarrow cosec \ {\theta}=\frac{4n+1}{2}\times\frac{2}{3}\)
\(\Rightarrow cosec \ {\theta}=\frac{4n+1}{3}\)
\(\Rightarrow \frac{1}{cosec \ {\theta}}=\frac{3}{4n+1}\) ➜ ব্যস্তকরণ করে,
\(\Rightarrow \sin{\theta}=\frac{3}{4n+1}\)
\(\therefore \theta=\sin^{-1}{\left(\frac{3}{4n+1}\right)}\)
আবার,
\(\frac{\pi}{2} cosec \ {\theta}=\pi\left(2n-\frac{1}{2}+ cosec \ {\theta}\right)\) ➜ ঋনাত্মক চিহ্ন ব্যবহার করে,
\(\Rightarrow \frac{1}{2} cosec \ {\theta}=2n-\frac{1}{2}+ cosec \ {\theta}\)
\(\Rightarrow \frac{1}{2} cosec \ {\theta}- cosec \ {\theta}=2n-\frac{1}{2}\)
\(\Rightarrow \frac{1-2}{2} cosec \ {\theta}=\frac{4n-1}{2}\)
\(\Rightarrow -\frac{1}{2} cosec \ {\theta}=-\frac{1-4n}{2}\)
\(\Rightarrow \frac{1}{2} cosec \ {\theta}=\frac{1-4n}{2}\)
\(\Rightarrow cosec \ {\theta}=\frac{1-4n}{2}\times2\)
\(\Rightarrow cosec \ {\theta}=1-4n\)
\(\Rightarrow \frac{1}{cosec \ {\theta}}=\frac{1}{1-4n}\) ➜ ব্যস্তকরণ করে,
\(\Rightarrow \sin{\theta}=\frac{1}{1-4n}\)
\(\therefore \theta=\sin^{-1}{\left(\frac{1}{1-4n}\right)}\)
(দেখানো হলো)
\(Q.4.(xxvi)\) \(\tan{(\theta-\alpha)}\tan{(\theta-\beta)}=\tan^2{\theta}\) হলে দেখাও যে, \(\theta=\frac{1}{2}\tan^{-1}{\left\{\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\right\}}\)
সমাধানঃ
দেওয়া আছে,
\(\tan{(\theta-\alpha)}\tan{(\theta-\beta)}=\tan^2{\theta}\)
\(\Rightarrow \frac{\sin{(\theta-\alpha)}\sin{(\theta-\beta)}}{\cos{(\theta-\alpha)}\cos{(\theta-\beta)}}=\tan^2{\theta}\) ➜ \(\because \tan{x}=\frac{\sin{x}}{\cos{x}}\)
\(\Rightarrow \frac{\cos{(\theta-\alpha)}\cos{(\theta-\beta)}}{\sin{(\theta-\alpha)}\sin{(\theta-\beta)}}=\frac{1}{\tan^2{\theta}}\) ➜ ব্যস্তকরণ করে,
\(\Rightarrow \frac{\cos{(\theta-\alpha)}\cos{(\theta-\beta)}+\sin{(\theta-\alpha)}\sin{(\theta-\beta)}}{\cos{(\theta-\alpha)}\cos{(\theta-\beta)}-\sin{(\theta-\alpha)}\sin{(\theta-\beta)}}=\frac{1+\tan^2{\theta}}{1-\tan^2{\theta}}\) ➜ যোজন-বিয়োজন করে,
\(\Rightarrow \frac{\cos{(\theta-\alpha-\theta+\beta)}}{\cos{(\theta-\alpha+\theta-\beta)}}=\frac{1}{\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
এবং \(\cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(\Rightarrow \frac{\cos{(-\alpha+\beta)}}{\cos{(2\theta-\alpha-\beta)}}=\frac{1}{\cos{2\theta}}\) ➜ \(\because \frac{1-\tan^2{A}}{1+\tan^2{A}}=\cos{2A}\)
\(\Rightarrow \frac{\cos{(\alpha-\beta)}}{\cos{\{2\theta-(\alpha+\beta)\}}}=\frac{1}{\cos{2\theta}}\) ➜ \(\because \cos{(-A)}=\cos{A}\)
\(\Rightarrow \cos{\{2\theta-(\alpha+\beta)\}}=\cos{2\theta}\cos{(\alpha-\beta)}\)
\(\Rightarrow \cos{(2\theta)}\cos{(\alpha+\beta)}+\sin{(2\theta)}\sin{(\alpha+\beta)}=\cos{2\theta}\cos{(\alpha-\beta)}\)
\(\Rightarrow \sin{(2\theta)}\sin{(\alpha+\beta)}=\cos{2\theta}\cos{(\alpha-\beta)}-\cos{(2\theta)}\cos{(\alpha+\beta)}\)
\(\Rightarrow \sin{(2\theta)}\sin{(\alpha+\beta)}=\cos{2\theta}\{\cos{(\alpha-\beta)}-\cos{(\alpha+\beta)}\}\)
\(\Rightarrow \sin{(2\theta)}\sin{(\alpha+\beta)}=\cos{2\theta}\times2\sin{\alpha}\sin{\beta}\) ➜ \(\because \cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
\(\Rightarrow \frac{\sin{(2\theta)}}{\cos{2\theta}}=\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\)
\(\Rightarrow \tan{(2\theta)}=\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\)
\(\Rightarrow 2\theta=\tan^{-1}{\left\{\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\right\}}\)
\(\therefore \theta=\frac{1}{2}\tan^{-1}{\left\{\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\right\}}\)
(দেখানো হলো)
\(\tan{(\theta-\alpha)}\tan{(\theta-\beta)}=\tan^2{\theta}\)
\(\Rightarrow \frac{\sin{(\theta-\alpha)}\sin{(\theta-\beta)}}{\cos{(\theta-\alpha)}\cos{(\theta-\beta)}}=\tan^2{\theta}\) ➜ \(\because \tan{x}=\frac{\sin{x}}{\cos{x}}\)
\(\Rightarrow \frac{\cos{(\theta-\alpha)}\cos{(\theta-\beta)}}{\sin{(\theta-\alpha)}\sin{(\theta-\beta)}}=\frac{1}{\tan^2{\theta}}\) ➜ ব্যস্তকরণ করে,
\(\Rightarrow \frac{\cos{(\theta-\alpha)}\cos{(\theta-\beta)}+\sin{(\theta-\alpha)}\sin{(\theta-\beta)}}{\cos{(\theta-\alpha)}\cos{(\theta-\beta)}-\sin{(\theta-\alpha)}\sin{(\theta-\beta)}}=\frac{1+\tan^2{\theta}}{1-\tan^2{\theta}}\) ➜ যোজন-বিয়োজন করে,
\(\Rightarrow \frac{\cos{(\theta-\alpha-\theta+\beta)}}{\cos{(\theta-\alpha+\theta-\beta)}}=\frac{1}{\frac{1-\tan^2{\theta}}{1+\tan^2{\theta}}}\) ➜ \(\because \cos{A}\cos{B}+\sin{A}\sin{B}=\cos{(A-B)}\)
এবং \(\cos{A}\cos{B}-\sin{A}\sin{B}=\cos{(A+B)}\)
\(\Rightarrow \frac{\cos{(-\alpha+\beta)}}{\cos{(2\theta-\alpha-\beta)}}=\frac{1}{\cos{2\theta}}\) ➜ \(\because \frac{1-\tan^2{A}}{1+\tan^2{A}}=\cos{2A}\)
\(\Rightarrow \frac{\cos{(\alpha-\beta)}}{\cos{\{2\theta-(\alpha+\beta)\}}}=\frac{1}{\cos{2\theta}}\) ➜ \(\because \cos{(-A)}=\cos{A}\)
\(\Rightarrow \cos{\{2\theta-(\alpha+\beta)\}}=\cos{2\theta}\cos{(\alpha-\beta)}\)
\(\Rightarrow \cos{(2\theta)}\cos{(\alpha+\beta)}+\sin{(2\theta)}\sin{(\alpha+\beta)}=\cos{2\theta}\cos{(\alpha-\beta)}\)
\(\Rightarrow \sin{(2\theta)}\sin{(\alpha+\beta)}=\cos{2\theta}\cos{(\alpha-\beta)}-\cos{(2\theta)}\cos{(\alpha+\beta)}\)
\(\Rightarrow \sin{(2\theta)}\sin{(\alpha+\beta)}=\cos{2\theta}\{\cos{(\alpha-\beta)}-\cos{(\alpha+\beta)}\}\)
\(\Rightarrow \sin{(2\theta)}\sin{(\alpha+\beta)}=\cos{2\theta}\times2\sin{\alpha}\sin{\beta}\) ➜ \(\because \cos{(A-B)}-\cos{(A+B)}=2\sin{A}\sin{B}\)
\(\Rightarrow \frac{\sin{(2\theta)}}{\cos{2\theta}}=\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\)
\(\Rightarrow \tan{(2\theta)}=\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\)
\(\Rightarrow 2\theta=\tan^{-1}{\left\{\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\right\}}\)
\(\therefore \theta=\frac{1}{2}\tan^{-1}{\left\{\frac{2\sin{\alpha}\sin{\beta}}{\sin{(\alpha+\beta)}}\right\}}\)
(দেখানো হলো)
\(Q.4.(xxvii)\) দেখাও যে, \(\cot^{-1}{(2n-1)}-\cot^{-1}{(2n+1)}=\cot^{-1}{(2n^2)}\)
ইহার সাহায্যে দেখাও যে, \(\cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}=\cot^{-1}{\left(\frac{4}{3}\right)}\)
ইহার সাহায্যে দেখাও যে, \(\cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}=\cot^{-1}{\left(\frac{4}{3}\right)}\)
সমাধানঃ
এখানে,
\(\cot^{-1}{(2n-1)}-\cot^{-1}{(2n+1)}\)
\(=\tan^{-1}{\frac{1}{2n-1}}-\tan^{-1}{\frac{1}{2n+1}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2n-1}-\frac{1}{2n+1}}{1+\frac{1}{2n-1}\times\frac{1}{2n+1}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{1}{2n-1}-\frac{1}{2n+1}}{1+\frac{1}{(2n-1)(2n+1)}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{(2n+1)-(2n-1)}{(2n-1)(2n+1)+1}\right\}}\) ➜ লব ও হরকে \((2n-1)(2n+1)\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{2n+1-2n+1}{4n^2-1+1}\right)}\)
\(=\tan^{-1}{\left(\frac{2}{4n^2}\right)}\)
\(=\tan^{-1}{\left(\frac{1}{2n^2}\right)}\)
\(=\cot^{-1}{(2n^2)}\)
\(\therefore \cot^{-1}{(2n-1)}-\cot^{-1}{(2n+1)}=\cot^{-1}{(2n^2)}\)
(দেখানো হলো)
এখন
\(n=1, \ 2, \ 3\) বসিয়ে,
\(\cot^{-1}{1}-\cot^{-1}{3}=\cot^{-1}{(2.1^2)}\)
\(\cot^{-1}{3}-\cot^{-1}{5}=\cot^{-1}{(2.2^2)}\)
\(\cot^{-1}{5}-\cot^{-1}{7}=\cot^{-1}{(2.3^2)}\)
সবগুলি যোগ করে,
\(\cot^{-1}{1}-\cot^{-1}{7}=\cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}\)
\(\Rightarrow \cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}=\cot^{-1}{1}-\cot^{-1}{7}\)
\(=\cot^{-1}{\left(\frac{1\times7+1}{7-1}\right)}\) ➜ \(\because \cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\)
\(=\cot^{-1}{\left(\frac{7+1}{6}\right)}\)
\(=\cot^{-1}{\left(\frac{8}{6}\right)}\)
\(=\cot^{-1}{\left(\frac{4}{3}\right)}\)
\(\therefore \cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}=\cot^{-1}{\left(\frac{4}{3}\right)}\)
(দেখানো হলো)
\(\cot^{-1}{(2n-1)}-\cot^{-1}{(2n+1)}\)
\(=\tan^{-1}{\frac{1}{2n-1}}-\tan^{-1}{\frac{1}{2n+1}}\) ➜ \(\because \cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)
\(=\tan^{-1}{\left(\frac{\frac{1}{2n-1}-\frac{1}{2n+1}}{1+\frac{1}{2n-1}\times\frac{1}{2n+1}}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{\frac{1}{2n-1}-\frac{1}{2n+1}}{1+\frac{1}{(2n-1)(2n+1)}}\right\}}\)
\(=\tan^{-1}{\left\{\frac{(2n+1)-(2n-1)}{(2n-1)(2n+1)+1}\right\}}\) ➜ লব ও হরকে \((2n-1)(2n+1)\) দ্বারা গুন করে,
\(=\tan^{-1}{\left(\frac{2n+1-2n+1}{4n^2-1+1}\right)}\)
\(=\tan^{-1}{\left(\frac{2}{4n^2}\right)}\)
\(=\tan^{-1}{\left(\frac{1}{2n^2}\right)}\)
\(=\cot^{-1}{(2n^2)}\)
\(\therefore \cot^{-1}{(2n-1)}-\cot^{-1}{(2n+1)}=\cot^{-1}{(2n^2)}\)
(দেখানো হলো)
এখন
\(n=1, \ 2, \ 3\) বসিয়ে,
\(\cot^{-1}{1}-\cot^{-1}{3}=\cot^{-1}{(2.1^2)}\)
\(\cot^{-1}{3}-\cot^{-1}{5}=\cot^{-1}{(2.2^2)}\)
\(\cot^{-1}{5}-\cot^{-1}{7}=\cot^{-1}{(2.3^2)}\)
সবগুলি যোগ করে,
\(\cot^{-1}{1}-\cot^{-1}{7}=\cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}\)
\(\Rightarrow \cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}=\cot^{-1}{1}-\cot^{-1}{7}\)
\(=\cot^{-1}{\left(\frac{1\times7+1}{7-1}\right)}\) ➜ \(\because \cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\left(\frac{xy+1}{y-x}\right)}\)
\(=\cot^{-1}{\left(\frac{7+1}{6}\right)}\)
\(=\cot^{-1}{\left(\frac{8}{6}\right)}\)
\(=\cot^{-1}{\left(\frac{4}{3}\right)}\)
\(\therefore \cot^{-1}{(2.1^2)}+\cot^{-1}{(2.2^2)}+\cot^{-1}{(2.3^2)}=\cot^{-1}{\left(\frac{4}{3}\right)}\)
(দেখানো হলো)
\(Q.4.(xxviii)\) দেখাও যে, \(\tan^{-1}{(1+a)}-\tan^{-1}{a}=\cot^{-1}{(1+a+a^2)}\)
ইহার সাহায্যে দেখাও যে, \(\cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}=\cot^{-1}{\left(\frac{3}{2}\right)}\)
ইহার সাহায্যে দেখাও যে, \(\cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}=\cot^{-1}{\left(\frac{3}{2}\right)}\)
সমাধানঃ
এখানে,
\(\tan^{-1}{(1+a)}-\tan^{-1}{a}\)
\(=\tan^{-1}{\left\{\frac{(1+a)-a}{1+(1+a)a}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{1+a-a}{1+a+a^2}\right)}\)
\(=\tan^{-1}{\left(\frac{1}{1+a+a^2}\right)}\)
\(=\cot^{-1}{(1+a+a^2)}\) ➜ \(\because \tan^{-1}{\left(\frac{1}{x}\right)}=\cot^{-1}{x}\)
\(\therefore \tan^{-1}{(1+a)}-\tan^{-1}{a}=\cot^{-1}{(1+a+a^2)}\)
(দেখানো হলো)
এখন
\(n=1, \ 2, \ 3, \ 4\) বসিয়ে,
\(\tan^{-1}{2}-\tan^{-1}{1}=\cot^{-1}{3}\)
\(\tan^{-1}{3}-\tan^{-1}{2}=\cot^{-1}{7}\)
\(\tan^{-1}{4}-\tan^{-1}{3}=\cot^{-1}{13}\)
\(\tan^{-1}{5}-\tan^{-1}{4}=\cot^{-1}{21}\)
সবগুলি যোগ করে,
\(\tan^{-1}{5}-\tan^{-1}{1}=\cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}\)
\(\Rightarrow \cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}=\tan^{-1}{5}-\tan^{-1}{1}\)
\(=\tan^{-1}{\left(\frac{5-1}{1+5\times1}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{5-1}{1+5}\right)}\)
\(=\tan^{-1}{\left(\frac{4}{6}\right)}\)
\(=\tan^{-1}{\left(\frac{2}{3}\right)}\)
\(=\cot^{-1}{\left(\frac{3}{2}\right)}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(\therefore \cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}=\cot^{-1}{\left(\frac{3}{2}\right)}\)
(দেখানো হলো)
\(\tan^{-1}{(1+a)}-\tan^{-1}{a}\)
\(=\tan^{-1}{\left\{\frac{(1+a)-a}{1+(1+a)a}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{1+a-a}{1+a+a^2}\right)}\)
\(=\tan^{-1}{\left(\frac{1}{1+a+a^2}\right)}\)
\(=\cot^{-1}{(1+a+a^2)}\) ➜ \(\because \tan^{-1}{\left(\frac{1}{x}\right)}=\cot^{-1}{x}\)
\(\therefore \tan^{-1}{(1+a)}-\tan^{-1}{a}=\cot^{-1}{(1+a+a^2)}\)
(দেখানো হলো)
এখন
\(n=1, \ 2, \ 3, \ 4\) বসিয়ে,
\(\tan^{-1}{2}-\tan^{-1}{1}=\cot^{-1}{3}\)
\(\tan^{-1}{3}-\tan^{-1}{2}=\cot^{-1}{7}\)
\(\tan^{-1}{4}-\tan^{-1}{3}=\cot^{-1}{13}\)
\(\tan^{-1}{5}-\tan^{-1}{4}=\cot^{-1}{21}\)
সবগুলি যোগ করে,
\(\tan^{-1}{5}-\tan^{-1}{1}=\cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}\)
\(\Rightarrow \cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}=\tan^{-1}{5}-\tan^{-1}{1}\)
\(=\tan^{-1}{\left(\frac{5-1}{1+5\times1}\right)}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left(\frac{5-1}{1+5}\right)}\)
\(=\tan^{-1}{\left(\frac{4}{6}\right)}\)
\(=\tan^{-1}{\left(\frac{2}{3}\right)}\)
\(=\cot^{-1}{\left(\frac{3}{2}\right)}\) ➜ \(\because \tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)
\(\therefore \cot^{-1}{3}+\cot^{-1}{7}+\cot^{-1}{13}+\cot^{-1}{21}=\cot^{-1}{\left(\frac{3}{2}\right)}\)
(দেখানো হলো)
\(Q.4.(xxix)\) দেখাও যে, \(\cot^{-1}{(1-a+a^2)}=\tan^{-1}{a}-\tan^{-1}{(a-1)}\)
সমাধানঃ
\(R.S=\tan^{-1}{a}-\tan^{-1}{(a-1)}\)
\(=\tan^{-1}{\left\{\frac{a-(a-1)}{1+a(a-1)}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{a-a+1}{1+a^2-a}\right\}}\)
\(=\tan^{-1}{\left\{\frac{1}{1-a+a^2}\right\}}\)
\(=\cot^{-1}{(1-a+a^2)}\) ➜ \(\because \tan^{-1}{\frac{1}{x}}=\cot^{-1}{x}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(=\tan^{-1}{\left\{\frac{a-(a-1)}{1+a(a-1)}\right\}}\) ➜ \(\because \tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\left(\frac{x-y}{1+xy}\right)}\)
\(=\tan^{-1}{\left\{\frac{a-a+1}{1+a^2-a}\right\}}\)
\(=\tan^{-1}{\left\{\frac{1}{1-a+a^2}\right\}}\)
\(=\cot^{-1}{(1-a+a^2)}\) ➜ \(\because \tan^{-1}{\frac{1}{x}}=\cot^{-1}{x}\)
\(=L.S\)
\(\therefore L.S=R.S\)
(দেখানো হলো)
\(Q.4.(xxx)\) যদি \(x=\sin{\left(\cos^{-1}{y}\right)}\) হয়, তবে দেখাও যে, \(x^2+y^2=1\)
সমাধানঃ
দেওয়া আছে,
\(x=\sin{\left(\cos^{-1}{y}\right)}\)
\(\Rightarrow x=\sin{\left(\sin^{-1}{\sqrt{1-y^2}}\right)}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow x=\sqrt{1-y^2}\)
\(\Rightarrow x^2=1-y^2\) ➜ উভয় পার্শে বর্গ করে,
\(\therefore x^2+y^2=1\)
(দেখানো হলো)
\(x=\sin{\left(\cos^{-1}{y}\right)}\)
\(\Rightarrow x=\sin{\left(\sin^{-1}{\sqrt{1-y^2}}\right)}\) ➜ \(\because \cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow x=\sqrt{1-y^2}\)
\(\Rightarrow x^2=1-y^2\) ➜ উভয় পার্শে বর্গ করে,
\(\therefore x^2+y^2=1\)
(দেখানো হলো)
\(Q.4.(xxxi)\) \(\sin^{-1}{\frac{x}{a}}+\sin^{-1}{\frac{y}{b}}=\theta\) হয় তবে দেখাও যে, \(\frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}.\)
সমাধানঃ
দেওয়া আছে,
\(\sin^{-1}{\frac{x}{a}}+\sin^{-1}{\frac{y}{b}}=\theta\)
\(\Rightarrow \sin^{-1}{\frac{x}{a}}=\theta-\sin^{-1}{\frac{y}{b}}\)
\(\Rightarrow \frac{x}{a}=\sin{\left(\theta-\sin^{-1}{\frac{y}{b}}\right)}\)
\(\Rightarrow \frac{x}{a}=\sin{\theta}\cos{\left(\sin^{-1}{\frac{y}{b}}\right)}-\cos{\theta}\sin{\left(\sin^{-1}{\frac{y}{b}}\right)}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{x}{a}=\sin{\theta}\cos{\left(\sin^{-1}{\frac{y}{b}}\right)}-\cos{\theta}\times\frac{y}{b}\)
\(\Rightarrow \frac{x}{a}=\sin{\theta}\cos{\left\{\cos^{-1}{\sqrt{1-\left(\frac{y}{b}\right)^2}}\right\}}-\frac{y}{b}\cos{\theta}\) ➜ \(\because \sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow \frac{x}{a}=\sin{\theta}\sqrt{1-\frac{y^2}{b^2}}-\frac{y}{b}\cos{\theta}\)
\(\Rightarrow \frac{x}{a}+\frac{y}{b}\cos{\theta}=\sin{\theta}\sqrt{1-\frac{y^2}{b^2}}\)
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}\cos^2{\theta}=\sin^2{\theta}\left(1-\frac{y^2}{b^2}\right)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}\cos^2{\theta}=\sin^2{\theta}-\frac{y^2}{b^2}\sin^2{\theta}\)
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}\cos^2{\theta}+\frac{y^2}{b^2}\sin^2{\theta}=\sin^2{\theta}\)
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}(\sin^2{\theta}+\cos^2{\theta})=\sin^2{\theta}\)
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}.1=\sin^2{\theta}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\therefore \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}\)
(দেখানো হলো)
\(\sin^{-1}{\frac{x}{a}}+\sin^{-1}{\frac{y}{b}}=\theta\)
\(\Rightarrow \sin^{-1}{\frac{x}{a}}=\theta-\sin^{-1}{\frac{y}{b}}\)
\(\Rightarrow \frac{x}{a}=\sin{\left(\theta-\sin^{-1}{\frac{y}{b}}\right)}\)
\(\Rightarrow \frac{x}{a}=\sin{\theta}\cos{\left(\sin^{-1}{\frac{y}{b}}\right)}-\cos{\theta}\sin{\left(\sin^{-1}{\frac{y}{b}}\right)}\) ➜ \(\because \sin{(A-B)}=\sin{A}\cos{B}-\cos{A}\sin{B}\)
\(\Rightarrow \frac{x}{a}=\sin{\theta}\cos{\left(\sin^{-1}{\frac{y}{b}}\right)}-\cos{\theta}\times\frac{y}{b}\)
\(\Rightarrow \frac{x}{a}=\sin{\theta}\cos{\left\{\cos^{-1}{\sqrt{1-\left(\frac{y}{b}\right)^2}}\right\}}-\frac{y}{b}\cos{\theta}\) ➜ \(\because \sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)
\(\Rightarrow \frac{x}{a}=\sin{\theta}\sqrt{1-\frac{y^2}{b^2}}-\frac{y}{b}\cos{\theta}\)
\(\Rightarrow \frac{x}{a}+\frac{y}{b}\cos{\theta}=\sin{\theta}\sqrt{1-\frac{y^2}{b^2}}\)
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}\cos^2{\theta}=\sin^2{\theta}\left(1-\frac{y^2}{b^2}\right)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}\cos^2{\theta}=\sin^2{\theta}-\frac{y^2}{b^2}\sin^2{\theta}\)
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}\cos^2{\theta}+\frac{y^2}{b^2}\sin^2{\theta}=\sin^2{\theta}\)
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}(\sin^2{\theta}+\cos^2{\theta})=\sin^2{\theta}\)
\(\Rightarrow \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}.1=\sin^2{\theta}\) ➜ \(\because \sin^2{A}+\cos^2{A}=1\)
\(\therefore \frac{x^2}{a^2}+\frac{2xy}{ab}\cos{\theta}+\frac{y^2}{b^2}=\sin^2{\theta}\)
(দেখানো হলো)
\(Q.4.(xxxii)\) \(\cos^{-1}{x}+\cos^{-1}{y}=\theta\) হলে প্রমাণ কর যে, \(x^2-2xy\cos{\theta}+y^2=\sin^2{\theta}\)
সমাধানঃ
দেওয়া আছে,
\(\cos^{-1}{x}+\cos^{-1}{y}=\theta\)
\(\Rightarrow \cos^{-1}{\left\{xy-\sqrt{(1-x^2)(1-y^2)}\right\}}=\theta\) ➜ \(\because \cos^{-1}{A}+\cos^{-1}{B}=\cos^{-1}{\left\{AB-\sqrt{(1-A^2)(1-B^2)}\right\}}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=\cos{\theta}\)
\(\Rightarrow xy-\cos{\theta}=\sqrt{(1-x^2)(1-y^2)}\)
\(\Rightarrow x^2y^2-2xy\cos{\theta}+\cos^2{\theta}=(1-x^2)(1-y^2)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow x^2y^2-2xy\cos{\theta}+\cos^2{\theta}=1-x^2-y^2+x^2y^2\)
\(\Rightarrow x^2y^2-2xy\cos{\theta}+x^2+y^2-x^2y^2=1-\cos^2{\theta}\)
\(\therefore x^2-2xy\cos{\theta}+y^2=\sin^2{\theta}\) ➜ \(\because 1-\cos^2{A}=\sin^2{A}\)
(দেখানো হলো)
\(\cos^{-1}{x}+\cos^{-1}{y}=\theta\)
\(\Rightarrow \cos^{-1}{\left\{xy-\sqrt{(1-x^2)(1-y^2)}\right\}}=\theta\) ➜ \(\because \cos^{-1}{A}+\cos^{-1}{B}=\cos^{-1}{\left\{AB-\sqrt{(1-A^2)(1-B^2)}\right\}}\)
\(\Rightarrow xy-\sqrt{(1-x^2)(1-y^2)}=\cos{\theta}\)
\(\Rightarrow xy-\cos{\theta}=\sqrt{(1-x^2)(1-y^2)}\)
\(\Rightarrow x^2y^2-2xy\cos{\theta}+\cos^2{\theta}=(1-x^2)(1-y^2)\) ➜ উভয় পার্শে বর্গ করে,
\(\Rightarrow x^2y^2-2xy\cos{\theta}+\cos^2{\theta}=1-x^2-y^2+x^2y^2\)
\(\Rightarrow x^2y^2-2xy\cos{\theta}+x^2+y^2-x^2y^2=1-\cos^2{\theta}\)
\(\therefore x^2-2xy\cos{\theta}+y^2=\sin^2{\theta}\) ➜ \(\because 1-\cos^2{A}=\sin^2{A}\)
(দেখানো হলো)
\(Q.4.(xxxiii)\) \(\sec^{-1}{x}=cosec^{-1}{y}\) হলে প্রমাণ কর যে, \(\frac{1}{x^2}+\frac{1}{y^2}=1\)
সমাধানঃ
দেওয়া আছে,
\(\sec^{-1}{x}=cosec^{-1}{y}\)
\(\Rightarrow \cos^{-1}{\frac{1}{x}}=\sin^{-1}{\frac{1}{y}}\) ➜ \(\because \sec^{-1}{A}=\cos^{-1}{\frac{1}{A}}\)
এবং \(cosec^{-1}{A}=\sin^{-1}{\frac{1}{A}}\)
\(\Rightarrow \cos^{-1}{\frac{1}{x}}=\cos^{-1}{\sqrt{1-\left(\frac{1}{y}\right)^2}}\) ➜ \(\because \sin^{-1}{A}=\cos^{-1}{\sqrt{1-A^2}}\)
\(\Rightarrow \frac{1}{x}=\sqrt{1-\frac{1}{y^2}}\)
\(\Rightarrow \frac{1}{x^2}=1-\frac{1}{y^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\therefore \frac{1}{x^2}+\frac{1}{y^2}=1\)
(প্রমাণিত)
\(\sec^{-1}{x}=cosec^{-1}{y}\)
\(\Rightarrow \cos^{-1}{\frac{1}{x}}=\sin^{-1}{\frac{1}{y}}\) ➜ \(\because \sec^{-1}{A}=\cos^{-1}{\frac{1}{A}}\)
এবং \(cosec^{-1}{A}=\sin^{-1}{\frac{1}{A}}\)
\(\Rightarrow \cos^{-1}{\frac{1}{x}}=\cos^{-1}{\sqrt{1-\left(\frac{1}{y}\right)^2}}\) ➜ \(\because \sin^{-1}{A}=\cos^{-1}{\sqrt{1-A^2}}\)
\(\Rightarrow \frac{1}{x}=\sqrt{1-\frac{1}{y^2}}\)
\(\Rightarrow \frac{1}{x^2}=1-\frac{1}{y^2}\) ➜ উভয় পার্শে বর্গ করে,
\(\therefore \frac{1}{x^2}+\frac{1}{y^2}=1\)
(প্রমাণিত)
ঐতিহাসিক পটভূমি বিপরীত ত্রিকোণমিতিক ফাংশন \(\sin^{-1}{x}=cosec^{-1}{\frac{1}{x}}\) \(cosec^{-1}{x}=\sin^{-1}{\frac{1}{x}}\)\(\sin^{-1}{x}=\cos^{-1}{\sqrt{1-x^2}}\)\(\sin^{-1}{x}=\sec^{-1}{\frac{1}{\sqrt{1-x^2}}}\)\(\sin^{-1}{x}=\tan^{-1}{\frac{x}{\sqrt{1-x^2}}}\)\(\sin^{-1}{x}=\cot^{-1}{\frac{\sqrt{1-x^2}}{x}}\)\(\cos^{-1}{x}=\sec^{-1}{\frac{1}{x}}\)\(\sec^{-1}{x}=\cos^{-1}{\frac{1}{x}}\)\(\cos^{-1}{x}=\sin^{-1}{\sqrt{1-x^2}}\)\(\cos^{-1}{x}=cosec^{-1}{\frac{1}{\sqrt{1-x^2}}}\)\(\cos^{-1}{x}=\tan^{-1}{\frac{\sqrt{1-x^2}}{x}}\)\(\cos^{-1}{x}=\cot^{-1}{\frac{x}{\sqrt{1-x^2}}}\)\(\tan^{-1}{x}=\cot^{-1}{\frac{1}{x}}\)\(\cot^{-1}{x}=\tan^{-1}{\frac{1}{x}}\)\(\tan^{-1}{x}=\sin^{-1}{\frac{x}{\sqrt{1+x^2}}}\)\(\tan^{-1}{x}=cosec^{-1}{\frac{\sqrt{1+x^2}}{x}}\)\(\tan^{-1}{x}=\cos^{-1}{\frac{1}{\sqrt{1+x^2}}}\)\(\tan^{-1}{x}=\sec^{-1}{\sqrt{1+x^2}}\)\(\sin^{-1}{x}+\cos^{-1}{x}=\frac{\pi}{2}\)\(\tan^{-1}{x}+\cot^{-1}{x}=\frac{\pi}{2}\)\(\sec^{-1}{x}+cosec^{-1}{x}=\frac{\pi}{2}\)\(\sin^{-1}{x}+\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\)\(\sin^{-1}{x}-\sin^{-1}{y}=\sin^{-1}{(x\sqrt{1-y^2}-y\sqrt{1-x^2})}\)\(\sin^{-1}{x}+\sin^{-1}{y}=\pi-\sin^{-1}{(x\sqrt{1-y^2}+y\sqrt{1-x^2})}\) যখন, \(x^2+y^2>1\)\(\cos^{-1}{x}+\cos^{-1}{y}=\cos^{-1}{\{xy-\sqrt{(1-x^2)(1-y^2)}\}}\)\(\cos^{-1}{x}-\cos^{-1}{y}=\cos^{-1}{\{xy+\sqrt{(1-x^2)(1-y^2)}\}}\)\(\tan^{-1}{x}+\tan^{-1}{y}=\tan^{-1}{\frac{x+y}{1-xy}}\)\(\tan^{-1}{x}-\tan^{-1}{y}=\tan^{-1}{\frac{x-y}{1+xy}}\)\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\tan^{-1}{\frac{x+y+z-xyz}{1-yz-zx-xy}}\)\(\tan^{-1}{x}+\tan^{-1}{y}=\pi+\tan^{-1}{\left(\frac{x+y}{1-xy}\right)}\) যখন, \(xy>1\)\(\tan^{-1}{x}+\tan^{-1}{y}+\tan^{-1}{z}=\pi+\tan^{-1}{\left(\frac{x+y+z-xyz}{1-yz-zx-xy}\right)}\) যখন, \(xy+yz+zx>1\)\(\cot^{-1}{x}+\cot^{-1}{y}=\cot^{-1}{\frac{xy-1}{y+x}}\)\(\cot^{-1}{x}-\cot^{-1}{y}=\cot^{-1}{\frac{xy+1}{y-x}}\)\(\cot^{-1}{x}+\cot^{-1}{y}+\cot^{-1}{z}=\cot^{-1}{\frac{xyz-x-y-z}{yz+zx+xy-1}}\)\(2\sin^{-1}{x}=\sin^{-1}{(2x\sqrt{1-x^2}})\)\(2\cos^{-1}{x}=\cos^{-1}{(2x^2-1)}\)\(2\sin^{-1}{x}=\pi-\sin^{-1}{(2x\sqrt{1-x^2})}\) যখন, \(x>\frac{1}{\sqrt{2}}\)\(3\sin^{-1}{x}=\sin^{-1}{(3x-4x^3)}\)\(3\cos^{-1}{x}=\cos^{-1}{(4x^3-3x)}\)\(3\tan^{-1}{x}=\tan^{-1}{\frac{3x-x^3}{1-3x^2}}\)\(3\cot^{-1}{x}=\cot^{-1}{\frac{x^3-3x}{3x^2-1}}\)\(2\tan^{-1}{x}=\tan^{-1}{\frac{2x}{1-x^2}}=\sin^{-1}{\frac{2x}{1+x^2}}=\cos^{-1}{\frac{1-x^2}{1+x^2}}=\cot^{-1}{\frac{1-x^2}{2x}}\)\( f(x)=y=\sin^{-1}{x}\)-এর লেখচিত্র\( f(x)=y=\cos^{-1}{x}\)-এর লেখচিত্র)\( f(x)=y=\tan^{-1}{x}\)-এর লেখচিত্র\( f(x)=y=cosec^{-1}{x}\)-এর লেখচিত্র\( f(x)=y=\sec^{-1}{x}\)-এর লেখচিত্র\( f(x)=y=\cot^{-1}{x}\)-এর লেখচিত্র অধ্যায় \(7H\)-এর উদাহরণসমুহ অধ্যায় \(7H\) / \(Q.1\)-এর সংক্ষিপ্ত প্রশ্নসমূহ অধ্যায় \(7H\) / \(Q.2\)-এর বর্ণনামূলক প্রশ্নসমূহ অধ্যায় \(7H\) / \(Q.3\)-এর বর্ণনামূলক প্রশ্নসমূহ অধ্যায় \(7H\) / \(Q.4\)-এর বর্ণনামূলক প্রশ্নসমূহ
Email: Golzarrahman1966@gmail.com
Visitors online: 000005