অধিবৃত্ত-১ (Hyperbola-1)

অনুশীলনী \(5.C\) উদাহরণ সমুহ

উদাহরণ \(1.\) \(x^2-3y^2-2x=8\) অধিবৃত্তের কেন্দ্র, শীর্ষ, উপকেন্দ্র, উৎকেন্দ্রতা, অক্ষদ্বয় ও নাভিলম্বের দৈর্ঘ্য এবং নিয়ামকের সমীকরণ নির্ণয় কর এবং লেখচিত্র অঙ্কন কর।
[ ঢাঃ২০০৫;রাঃ২০১৩; চঃ২০০৮;সিঃ২০১৩,২০১০;বঃ২০০৭,২০১২]

উদাহরণ \(2.\) উপকেন্দ্র দুইটির স্থানাঙ্ক \((4, 2)\) ও \((8, 2)\) এবং উৎকেন্দ্রিকতা \(2\) হলে অধিবৃত্তের সমীকরণ নির্ণয় কর।
[ সিঃ ২০১১, ২০০২]

উদাহরণ \(3.\) এমন একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র \((1, -8)\) উৎকেন্দ্রিকতা \(\sqrt{5}\) এবং নিয়ামকরেখা \(3x-4y=10\) ।
[ ঢাঃ ২০১৬,২০১০,২০০৬;চঃ ২০১৬, ২০০৯,২০০৬,২০০৪;যঃ ২০১৫,২০১৪,২০০৬; সিঃ ২০১৫,২০০৭,২০০৪; দিঃ ২০০১৫; বঃ ২০১০,২০০৫,২০০৩; রাঃ ২০১১,২০০৯,২০০৫;যঃ ২০১৫,২০১৪;কুঃ ২০০৬,২০০৩; মাঃ২০১৪।]

উদাহরণ \(4.\) \(\frac{x^2}{9}-\frac{y^2}{16}=1\) অধিবৃত্তের উপকেন্দ্র দুইটির স্থানাঙ্ক এবং নিয়ামকরেখা দুইটির সমীকরণ নির্ণয় কর।
[ ঢাঃ২০১৫,২০১১,২০১০,২০০৭; চঃ ২০১৫,২০০৫রাঃ২০১২,২০০৬,২০০৩দিঃ ২০১২;সিঃ ২০০৯,২০০৮ ; যঃ ২০১০,২০০৫]

উদাহরণ \(5.\) \(y=ax^2+bx+c\) এবং \(\frac{x^2}{p^2}+\frac{y^2}{q^2}=1\) যেখানে,\(a, b, q\ne 0\).
\((a)\) \(\frac{x^2}{9}-\frac{y^2}{16}=1\) অধিবৃত্তের উপকেন্দ্র দুইটির স্থানাঙ্ক নির্ণয় কর।
\((b)\) ১ম সমীকরণ দ্বারা নির্দেশিত কনিকের শীর্ষ \((-2, 3)\) বিন্দুতে অবস্থিত এবং এটি \((0, 5)\) বিন্দুগামী হলে \(a, b, c\)-এর মাণ নির্ণয় কর।
\((c)\) উদ্দীপকের উপবৃত্তটির উৎকেন্দ্রিকতা \(\frac{1}{3}\) এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য \(8\) একক হলে \(p^2+q^2\)-এর মাণ নির্ণয় কর।

উদাহরণ \(6.\) \(4x^2-9y^2-16x+18y-29=0\) অধিবৃত্তটির অসীমতট রেখার সমীকরণ নির্ণয় কর।

উদাহরণ \(7.\) দেখাও যে, \(x^2-8y^2=2\) অধিবৃত্তটির নিয়ামকরেখার সমীকরণ \(3x=\pm 4\) এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য \(\frac{1}{2\sqrt{2}}\)।
[ সিঃ২০১৬,২০১২; যঃ২০১৬,২০০৭; ঢাঃ ২০১৪;চঃ২০১২; বঃ২০০৮;কুঃ২০১০]

উদাহরণ \(8.\) দেখাও যে, \(7x^2-9y^2-14x-36y-92=0\) সমীকরণটি একটি অধিবৃত্ত নির্দেশ করে। এর কেন্দ্র, উপকেন্দ্রের স্থানাঙ্ক এবং দিকাক্ষের সমীকরণ নির্ণয় কর।

উদাহরণ \(9.\) একটি অধিবৃত্তের উপকেন্দ্র দুইটির দূরত্ব \(16\) এবং উৎকেন্দ্রিকতা \(\sqrt{2}\) অধিবৃত্তের অক্ষদ্বয় স্থানাঙ্কের অক্ষ বরাবর হলে সমীকরণটি নির্ণয় কর।
[ কুঃ২০১৫,২০১২;রাঃ২০১৬,২০০৭;দিঃ২০১৩;বঃ২০১৬,২০১৫,২০১৩;চঃ২০১৩,২০১০ ]

উদাহরণ \(10.\) এরূপ অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র \((1, 1)\), উৎকেন্দ্রিকতা \(\sqrt{3}\) এবং নিয়ামকের সমীকরণ \(2x+y=1\) ।
[ ঢাঃ ২০০৮,২০০৪;যঃ২০০৮,২০০৩;কূঃ২০০৯,২০০৮,২০০৪;দিঃ২০১১,২০০৯;রাঃ২০১৫;চঃ২০১৪,২০১১বঃ২০১৪,২০০৮;মাঃ২০১১,২০০৯ ]
উত্তরঃ \(7x^2-2y^2+12xy-2x+4y-7=0\)
উদাহরণ \(11.\) \(C(3, 2)\) বিন্দুটি উপবৃত্তের উপর অবস্থিত।hyperbola
\((a)\) \(x^2=4y\) পরাবৃত্তের \((2, 1)\) বিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর।
\((b)\) \(A\acute{A}=8\) হলে উপবৃত্তটির সমীকরণ নির্ণয় কর।
\((c)\) অধিবৃত্তটির সমীকরণ নির্ণয় কর।
উদাহরণ \(12.\) একটি অধিবৃত্তের শীর্ষবিন্দু দুইটির স্থাঙ্গাক \((0, \pm 3)\) এবং অসীমতটের সমীকরণ \(y=\pm x\) হলে, অধিবৃত্তটির সমীকরণ নির্ণয় কর।

উদাহরণ \(13.\) \(\frac{x^2}{9}-\frac{y^2}{4}=1\) অধিবৃত্তের উপরস্থ \((3, 0), (5, \frac{8}{3}), (-5, \frac{8}{3}),(5, -\frac{8}{3}),(-5, -\frac{8}{3})\) বিন্দুগুলির পরামিতিক স্থানাঙ্ক নির্ণয় কর।

উদাহরণ \(14.\) অধিবৃত্তের অক্ষদ্বয়কে \(X\) অক্ষ ও \(Y\) অক্ষ ধরে এর সমীকরণ নির্ণয় কর যার উৎকেন্দ্রিকতা \(\frac{3}{2}\) এবং দিকাক্ষদ্বয়ের মধ্যবর্তী দূরত্ব \(\frac{8}{3}\) ।
1 2 3 4 5